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Abstract

Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear
membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing
involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of
these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most
commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using
farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can
unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and
associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with
respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI
reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than
has previously been observed.
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Introduction

The nuclear lamina is an intermediate filament meshwork

composed of A- and B-type lamins. In mammalian somatic cells

the A-type lamins are represented by lamins A and C (LaA/C),

which arise through alternative splicing of the LMNA gene. Several

diseases are associated with mutations in LMNA, including

progeria, lipodystrophy, muscular dystrophy and peripheral

neuropathy [1]. LaA and LaC differ only by virtue of unique C-

terminal extensions, 96 residues for LaA and six for LaC [2].

Unlike LaC, LaA undergoes multistep posttranslational processing

at its C-terminal CaaX motif involving 3–4 enzymes. Initially a

farnesyl moiety is added to the cysteine by farnesyltransferase,

followed by cleavage of the last three amino acids (-aaXing) by

either Rce1 or ZmpSte24. This C-terminal cysteine is carbox-

ymethylated by isoprenylcysteine carboxymethyl transferase

(ICMT) to generate farnesylated/carboxymethylated-PreA. With-

in approximately 90 min of synthesis [3], ZmpSte24 cleaves PreA

[4,5,6] 14 amino acids upstream of the C-terminus to generate

mature LaA [7,8]. PreA is the only known substrate of ZmpSte24

[9].

Defective LaA processing has been implicated in both familial

and acquired forms of lipodystrophy. Mutations in LMNA that

alter certain charged residues on the surface of the Ig-fold region

common to both LaA and LaC are associated with Dunnigan-type

familial partial lipodystrophy (FPLD) [10,11]. FPLD patients

exhibit peri-pubertal onset of subcutaneous fat loss from the

extremities and trunk, hypercholesterolemia and type-II diabetes

[12,13]. There are reports of PreA accumulation in FPLD-patient

fibroblasts through an unknown mechanism [14,15]. PreA

accumulation is also observed in cells from HIV-infected patients

with acquired lipodystrophy [15,16]. This is likely related to

certain HIV PIs used in highly active antiretroviral therapy

(HAART) that inhibit the activity of ZmpSte24 [17,18,19].

Conclusive evidence for an involvement of PreA in HAART-

associated lipodystrophy has yet to be presented.

Incomplete LaA processing is also associated with the rare

premature aging disorder, HGPS, in which patients begin to

exhibit a phenocopy of premature ageing around 1–2 years and

die of cardiovascular-related illness by around 13 years of age

[20,21,22]. The most common HGPS mutation (LaA G608G)

generates a cryptic splice site within exon 11 of LMNA resulting in

deletion of 50 amino acid residues within the LaA C-terminus.

This truncated LaA, termed progerin, lacks the second cleavage

site for ZmpSte24, resulting in retention of the farnesylated and

carboxymethylated C-terminal cysteine [23,24,25]. In support of

farnesylated-PreA or -progerin toxicity [9,26] is restrictive

dermopathy (RD), a perinatal lethal disease with progeroid

features in which farnesylated PreA accumulates due to mutations

in ZMPSTE24 or LMNA [26,27]. Although the mechanism of

progerin or farnesylated-PreA toxicity remains unclear, these

observations led to studies that tested the efficacy of FTI in

ameliorating HGPS symptoms by inhibiting farnesylation of LaA

along with the other CaaX-motif proteins (there are ,100

predicted in the human genome). In cell culture and mouse

progeria models, FTIs yielded promising results with improved
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nuclear morphology in vitro [28,29,30,31,32], and weight gain with

increased viability in vivo [33,34,35]. Thus, a clinical trial for

HGPS patients with the FTI, lonafarnib, was rapidly established,

the outcome of which remains unreported [36].

Despite the clinical use of the LaA processing inhibitors, FTIs

and HIV PIs, there are fundamental deficits in our understanding

of the consequences. After prolonged treatment with either form of

inhibitor, the nuclear lamina will contain considerable levels of

PreA, either farnesylated or non-farnesylated. Would rapid

processing of this PreA occur following inhibitor release, or would

lamina disassembly during cell division be required? This question

has implications in terms of the reversibility of both FTIs and PIs,

which may in turn impact their clinical usage. Such reversibility,

or lack thereof, would also shed new light on lamina dynamics and

interactions within the nuclear lamina. In this study, we have

explored the recovery rates for LaA processing following

accumulation of both farnesylated and non-farnesylated forms of

PreA within the nuclear lamina.

Methods

Reagents and Treatment
HIV protease inhibitors were obtained from the National

Institutes of Health AIDS Research and Reference Reagent

Program. Nelfinavir, lopinavir and atazanavir sulfate were

prepared at a stock solution at 20mM in DMSO, indinavir sulfate

at 20mM in water, tipranavir at 20mM in ethyl acetate. FTI-277

(Sigma) was prepared as a stock at 10mM. Lov (Sigma, St. Louis,

MO) was used at 10mM and GGTI-2147 (Calbiochem) at 20mM.

BMS-214662 was a gift from M. Gelb, University of Washington.

Unless otherwise noted, Saos-2 cells were treated for 48 hr at

20mM for HIV PIs, Lov and GGTI-2147, and at 10mM for FTI-

277. Cycloheximide was used at 10mg/ml. Mitomycin C was used

at 10 mg/ml (2 hrs at 37uC). Control cells were incubated with the

vehicle DMSO or ethyl acetate. HGPS fibroblasts were treated

with FTI-277 at a dose of 10mM for 4–9 days.

Cell Culture
Saos-2 cells were maintained in 6% CO2 at 37uC in DMEM

(GIBCO BRL) with 10% FBS (Hyclone), and 10% penicillin/

streptomycin (GIBCO BRL). Human G608G HGPS fibroblasts

were obtained from the Coriell Cell Repository (repository

nos. AG01972) and maintained in 6% CO2 at 37uC in DMEM

with 15% FBS, 10% penicillin/streptomycin and 26 concentra-

tion of essential and non-essential amino acids. To washout the

inhibitors, cells were washed with PBS times and culture media

three times. Cells were transfected as described previously [37].

Antibodies
The following antibodies were used in this study: mouse anti-

LaA/C [38], anti-Nup153 [39], anti-HDJ-2 (MS-225, Thermo

Scientific); rabbit anti-Sun-2 [40], anti-nesprin-3 (gift from A.

Sonnenberg, Netherlands Cancer Institute, Amsterdam, NL), anti-

emerin (gift from G. Morris, Robert Jones and Agnes Hunt

Orthopaedic Hospital, Oswestry, UK), anti-LaA/C (Cell Signal-

ing), anti-LaB1 (ab16048, Abcam), anti-LaA (SC20680) and goat

anti-LaA (SC6214), anti-LaA/C (SC621) (Santa Cruz Biotechnol-

ogy). Secondary antibodies conjugated with AlexaFluor dyes

(Invitrogen) or peroxidase (Biosource International) were used as

previously described [37].

Immunofluorescence Microscopy
For immunofluorescence microscopy, cells were grown on glass

coverslips and fixed, permeabilized, immunolabeled and observed

as described previously [37]. Image quantification was performed

using IPLab software and NIH ImageJ Circularity software.

Unpaired t-tests were performed to evaluate the significance of the

results.

Immunoblotting-pulse chase immunoprecipitation
Subconfluent 35-mm dishes of Saos-2 cells, either untreated or

treated with DMSO, Lop, Lov, or FTI-277 for 48 hrs, were

incubated in 90% DMEM with 10% FBS, and 10% L-cysteine

and L-methionine-free media (MP Biolabs) with 25 mCi 35S

Translabel (MP Biolabs). After 18 hrs, Saos-2 cells were washed

once with PBS and refed with DMEM plus 10% FBS with or

without inhibitors. One hr later, Saos-2 cells were washed twice

with PBS and either incubated in DMEM with 10% FBS for an

additional 1–24 hr or lysed immediately. For cell lysis, cells were

washed three times in PBS and incubated in 800ml lysis buffer

(50 mM Tris-HCl, pH 9.0; 500 mM NaCl, 0.4% SDS, 2% TX-

100, 1mM dithiothreitol 10mg/ml in DMSO each of chymostatin,

leupeptin, antipain, and pepstatin) on ice for 5 min. The cells were

then scraped off and sheared 86 through a 26-gauge needle. After

centrifugation for 10 min at 10,0006G, the supernatant was

incubated overnight at 4uC with rabbit anti-LaA/C and protein

A-sepharose beads. Beads were washed three times in lysis buffer

and once in wash buffer (50 mM Tris-HCl, pH 7.4; 50 mM

NaCl). Samples were processed for SDS-PAGE and fluorography

[41]. All Densitometry was performed using NIH ImageJ.

Results

To explore PreA processing following treatment of human cells

with HIV protease inhibitors, we first examined their efficacy in

promoting farnesylated PreA accumulation. Saos-2 cells were

treated for 48h with various HIV-PIs and the relative levels of

PreA determined by immunoblot analysis. Lopinavir (Lop) and

nelfinavir were most effective in blocking the PreA maturation,

followed by atazanavir; whereas indinavir and tipranavir had little

effect on PreA accumulation (Figure 1A). As Lop provided the best

balance between cellular toxicity and PreA accumulation, we used

it exclusively for the remainder of our studies.

In order to determine the susceptibility of PreA accumulated at

the NE to proteolytic maturation, Saos-2 cells were treated for

48 hrs with Lop, prior to washout of the drug. Before drug

withdrawal, more than half of the total cellular LaA was detected

as PreA (Figure 1B, upper panel). However, by 3 hrs after Lop

washout ,50% of PreA was processed to maturity and by 5–7 hrs

the levels approached that of the control. Parallel immunofluo-

rescence experiments reveal the accumulation of PreA at the NE

(Figure 1C). Loss of PreA following Lop washout follows a time-

course similar to that observed by western blot. Complementary

pulse-chase experiments were performed on Saos-2 cells labeled

overnight with 35S Cys/Met in the presence of Lop (Figure 1B,

lower panel). After labeling, the cells were cells were ‘‘chased’’ for

1h in medium containing both Lop and excess non-radioactive

Cys/Met to ensure newly synthesized labeled lamins were

incorporated into the nuclear lamina. The chase was continued

for 7h in the absence of Lop. Roughly 50% of the accumulated

PreA is processed to the mature form by 3h, and by 7h it is fully

processed (Figure 1B, lower panel). To confirm that our results do

not reflect turnover of accumulated PreA in combination with de

novo synthesis, protein synthesis was inhibited with cyclohexamide

1 hr prior to and during the Lop washout (Figure S1). The rate of

PreA processing appears enhanced in the presence of cyclohex-

imide, most likely due to the elimination of any newly synthesized

PreA as a competitive substrate for ZmpSte24. In normal tissue
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culture cells, the half-time for newly synthesized PreA processing is

,1.5 hrs [3]. It is remarkable that the recovery half-time from

extended Lop treatment is only ,3h, especially as the bulk of the

total PreA in the Lop-treated cells appears integrated into the

nuclear lamina.

Following extended treatment with PIs, and concomitant with

PreA accumulation, cells acquire irregular nuclear profiles with

quantifiably decreased circularity (Figure 2A–C). Normal nuclear

morphology recovers independent of new protein synthesis over a

period of 7–15h following Lop washout (Figure 2C). To determine

if the effect of Lop on nuclear morphology is LaA-dependent Saos-

2 cells were depleted of LaA and LaC by RNAi in conjunction

with Lop treatment (Figure 2D–E). Cells depleted of LaA and LaC

retained normal nuclear morphology and circularity over the 48h

period of the experiment suggesting that PreA is the mediator of

Lop-induced nuclear dysmorphology. Another consequence of

HIV PI-treatment is the aberrant accumulation of LaA and LaC

in cytoplasmic aggregates in both mitotic and early G1 cells

(Figure 2F–K). In the former, aggregates tend to be adjacent to the

spindle poles. Similar aggregates have been described in cells

expressing progerin [42,43]. We also observed a range of other NE

proteins, including emerin, LaB1 (Figure 2G, J), sun-2 and

nesprin-3 (Figure S2) that were also retained within both the

mitotic and G1 aggregates. After Lop washout the frequency of

these aggregates diminished to control levels over a period of 7–

15h, paralleling the restoration of normal nuclear morphology

(Figure 2H, K).

Considering the half-time of PreA maturation is ,3hrs after

Lop washout, what is the cause of this delay in morphological

recovery? One explanation is that nuclear and/or nuclear

envelope remodeling must take place during the lag period.

Another possibility is that the level of farnesylated-PreA at the time

of washout is far in excess of that required to induce these nuclear

abnormalities. To attempt to resolve this issue, we first determined

the lowest concentration of Lop that after 48h would produce an

accumulation of farnesylated-PreA equivalent to that observed 5–

7h after washout of our normal 20mm Lop (Figure 3). The

concentration of Lop chosen was 5mm. Subsequently we compared

nuclear circularity and appearance of LaA/C aggregates during

metaphase and early G1 from cells treated with 5mM or 20mM

Lop (Figure 3B). 5mM Lop was unable to induce a significant

change in nuclear morphology or to induce LaA/C aggregation.

These data imply that nuclear or nuclear envelope remodeling

likely accounts for the lag period, although a threshold for PreA

accumulation causing nuclear dysmorphology cannot be entirely

discounted. We next determined whether such remodeling might

require cell division. Cells were treated with mitomycin C prior to

Lop washout to prevent cell division. In treated cells, we observed

no difference in the maturation rate of farnesylated PreA

(Figure 3C). However, we did observe a significant delay in

recovery of nuclear circularity (Figure 3D). The suggestion is that

postmitotic nuclear reassembly partially contributes to the

restoration of normal nuclear morphology. However, we consider

it likely that ongoing synthesis of NE components and their

incorporation into interphase nuclei may also contribute to

recovery from Lop treatment.

Our next question was whether an accumulation of lamina-

associated non-farnesylated PreA, such as following long-term FTI

treatment, would be processed to maturity with similar efficiency

to that observed for farnesylated-PreA. We first examined the

efficacy of both lovastatin (Lov) and the farnesyl transferase

inhibitor FTI-277 in accumulating non-farnesylated PreA in Saos-

2 cells. Lov is an inhibitor of the enzyme HMG-CoA reductase

which catalyses the production of mevalonic acid, a key precursor

of isoprenoid synthesis. Treatment with Lov will consequently

block prenylation involving both farnesyl (C15) and geranylgeranyl

Figure 1. HIV PIs block LaA maturation, which is reversed rapidly following PI washout. (A) Blotted with PreA specific and LaA/C
antibodies, extracts from Saos-2 cells treated with vehicle (DMSO), Tip, Nel, Ata, Ind and Lop reveal different levels of PreA accumulation. Percentage
of mature LaA is listed under each lane. (B) Immunoblot of extracts from Saos-2 cells treated with Lop followed by washout indicates that half time of
LaA maturation is approximately 3 hrs. The processing rate of the overnight 35S Cys/Met labeled LaA following Lop washout is similar. Percentage of
mature LaA is listed under each lane. (C) Immunofluorescence microscopy of Saos-2 cells double labeled with the antibodies again PreA and Nup153.
PreA is accumulated on the NE after Lop treatment and disappears following Lop washout. All images are taken at the same exposure time. In the
merged images, DNA, revealed by staining with Hoechst dye, is shown in blue. Bar, 15mm.
doi:10.1371/journal.pone.0010874.g001
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Figure 2. Recovery from aberrant cellular phenotypes is delayed following Lop washout. (A) Immunofluorescence microscopy of Saos-2
cells. Altered interphase nuclear morphology and abnormal accumulation of LaA/C and emerin in the cytoplasm are evident after Lop treatment and
recover within 15 hrs following Lop washout. (B) The aberrant cytoplasmic aggregates after Lop treatment contain LaB1, predominantly colocalized
with LaA/C. (C) Nuclear circularity following Lop washout is significantly altered by PI treatment and following washout either without (grey bars) or
with cycloheximide (white bars) (error bars = SEM; N = .96). (D) Double labeled with antibodies against LaA/C and LaB1, Saos-2 cells exhibit normal
nuclear morphology after Lop treatment following LaA/C RNAi. (E) Nuclear circularity is higher in LaA/C RNAi treated cells (error bars = SEM; N = .65).
(F) Nuclear components such as LaA/C, emerin and LaB1 are diffuse in control cells during metaphase. (G) Lop treatment leads to aberrant
aggregation of LaA/C adjacent to metaphase chromosomes. Emerin and LaB1 are also retained in these aggregates (white arrows). (H) Measurements
of percentage of cells with metaphase aggregates indicate that mitotic abnormality recovers by ,15 hrs after Lop washout (error bars = SEM; N = 3,
.75 cells counted each experiment). (I) LaA/C, emerin and LaB1 localize on the NE in early G1. (J) Lop treatment leads to aberrant aggregation of LaA/
C in the cytoplasm in early G1. These aggregates also contain emerin and LaB1 (white arrows). (K) Measurements of percentage of cells with early G1
aggregates indicate that recovery of cytoplasmic abnormality is ,15 hrs after Lop washout (error bars = SEM; N = 3, .75 cells counted each
experiment). Bars, 5mm.
doi:10.1371/journal.pone.0010874.g002
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(C20) modifications. Both inhibitors induced accumulation of non-

farnesylated PreA at the NE of Saos-2 cells treated for 48 hrs

(Figure 4A). Following Lov washout the half-time of mature LaA

recovery was ,7h as determined by both western blot and pulse-

chase analysis (Figure 4B). Similar studies with FTI-277,

employing both western blot and pulse-chase analyses, revealed

a considerably slower restoration of non-farnesylated PreA

processing with a recovery half-time of ,12h (Figure 4C). With

either treatment, inhibition of new protein synthesis with

cyclohexamide added at drug washout accelerated PreA matura-

tion, likely due to reduced competition from newly synthesized

substrates. Analysis of the processing of HDJ-2, another

farnesylated protein, reveals that washout of lovastatin is rapid

whereas the processing of LaA is delayed (Figure 4B). However, in

the case of FTI washout, recovery of HDJ-2 farnesylation is

slowed, but not as markedly so as the maturation of non-

farnesylated pre-LaA (Figure 4C). We repeated the same

experiments with other FTIs such as L-744, 832 and BMS-

214662 and observed the same effect (Figure S3).

Both Lov and FTIs led to significant accumulation of the slower

migrating non-farnesylated-PreA, however lovastatin was consid-

erably more effective than any of the FTIs. Recently it was shown

that in the absence of farnesylation, PreA could be a substrate for

geranylgeranylation [44]. To explore this possibility, Saos-2 cells

were treated with geranylgeranyl transferase inhibitor (GGTI)-

2147 alone or in combination with FTI (Figure 4D). While GGTI-

alone had no effect on LaA maturation, and the FTI alone had

only a partial effect, in combination the GGTI and FTI largely

blocked LaA processing, yielding results similar to those obtained

with lovastatin. These results support the concept that farnesyl-

transferase inhibition induces geranylgeranlyation and maturation

of a substantial fraction of LaA. If the cytotoxic affects of Lop,

including nuclear dysmorphology and the appearance of mitotic

and G1 LaA/C-containing aggregates, can be ascribed to the

accumulation of farnesylated PreA, then inhibition of farnesyl-

transferase should abrogate these effects. To test this idea, Saos-2

cells were treated with Lop, both with and without FTI, for

periods of up to 72h (Figure 5A–B). Lop alone, as expected, caused

Figure 3. Recovery of nuclear morphology following Lop washout is time dependent and enhanced in cycling cells. (A) Probed with
LaA/C antibody, immunoblot of Saos-2 cells treated with increased concentrations of Lop from 0 to 40 mM reveals increased PreA accumulation in
parallel. Percentage of mature LaA is listed under each lane. (B) Measurements of interphase nuclear circularity (error bars = SEM; N = .80),
percentage of cells with metaphase and early G1 aggregates (error bars = SEM; N = 3, .75 cells counted each experiment) reveal that the effects of
5mM Lop differs significantly from 20mM Lop, with similar level to vehicle (DMSO) control. (C) Accumulated PreA in Lop treated cells complete its
maturation by 7 hrs following drug washout. Mitomycin C treatment prior to Lop removal does not affect PreA processing rate. Percentage of mature
LaA is listed under each lane. (D) Measurement of nuclear circularity indicates that mitomycin delays recovery of aberrant nuclear shape at 15 hrs
following Lop washout (error bars = SEM; N = .92).
doi:10.1371/journal.pone.0010874.g003

Dynamics of Lamin-A Processing

PLoS ONE | www.plosone.org 5 May 2010 | Volume 5 | Issue 5 | e10874



nuclear deformation (measured as loss of circularity) and mitotic

and G1 lamin-positive aggregates. Inclusion of FTI partially

suppressed these effects; whereas FTI and GGTI together almost

eliminated Lop-induced nuclear dismorphology and cytoplasmic

lamin aggregates. Subsequent washout of both FTI and GGTI

together or of FTI alone (leaving GGTI in the medium) resulted in

the re-appearance of Lop cytotoxicity over a period of about 24h.

Reappearance of dysmorphology was more rapid when both FTI

and GGTI were washed out together. The implication is that non-

prenylated PreA that has been accumulated over an extended

period can be utilized as a substrate by geranylgeranyl transferase

even in the presence of active farnesyl transferase.

That FTI treatment permits geranylgeranylation of LaA is of

particular significance given that FTI treatment of HGPS patients

is currently the subject of a clinical trial. The effectiveness of this

treatment strategy could be compromised by alternative lamin

prenylation. To begin to address this issue we first established that

FTI treatment indeed restored normal nuclear morphology, as

previously reported [28,29,30,31,32], and eliminated cytoplasmic

lamin-positive aggregates in HGPS dermal fibroblasts (Figure 6A).

Upon washout of the FTI, it took on the order of 48–72h to

reacquire the aberrant HGPS morphology. Western blot analysis

of cells after FTI treatment reveals a partial shift to slower

migrating forms for both progerin and LaA. While progerin does

not undergo ZmpSte24-mediated maturation, it does display a

mobility shift linked to prenylation and -aaXing (Figure 6B, S4A).

FTI washout revealed slow processing of both non-farnesylated

PreA and non-farnesylated progerin over a period of about 30h,

significantly longer than that observed in Saos-2 cells. Similarly,

HDJ-2 required a longer period to mature in HGPS cells (Figure

S4B). Combined treatment of HGPS fibroblasts with both FTI

and GGTI resulted in a more substantial shift of LaA to PreA

(Figure 6B). Albeit less dramatic, an increase in the accumulation

of non-farnesylated progerin was also observed. Thus our data

support the findings that in the absence of farnesylation, both full-

length PreA and, to a lesser extent, progerin can be geranylger-

anylated in HGPS dermal fibroblasts [44]. However, washout of

both FTI and GGTI did not appreciably enhance the rate of

return to the mature forms.

Discussion

In this study we have evaluated the processability of PreA

localized to the NE following the use of HIV PIs or FTIs.

Significant levels of farnesylated PreA accumulated by ZmpSte24

inhibition are rapidly processed upon enzyme activation, yet

abnormal nuclear phenotypes resulting from this accumulated

PreA are slower to resolve. Recovery occurs more rapidly in

proliferative cells, yet too quickly to require nuclear envelope

breakdown, suggesting a structural reorganization of the lamina

may constantly occur in cycling cells. We observed a much slower

recovery of endogenous LaA maturation following washout of FTI

or Lov than for Lop. This may not be surprising as our readout of

LaA maturation requires only ZmpSte24 cleavage for Lop

inhibition, whereas farnesylation, aaXing, carboxylmethylation

and then ZmpSte24 cleavage all must occur following FTI or Lov

Figure 4. Nonfarnesylated-PreA accumulated at the NE by prenylation inhibitors gradually matures following drug washout. (A)
Immunofluorescence microscopy of Saos-2 cells reveals significant accumulation of nonfarnesylated-PreA on the NE after a treatment of Lov or FTI-
277. DNA, revealed by staining with Hoechst dye, is shown at bottom column. Bar, 5mm (B) Immunoblot of extracts from Saos-2 cells treated with Lov
followed by washout indicates that half-time of PreA maturation is ,7 hrs. Cyclohexamide chase upon release from Lov block enhances maturation.
Accumulations of slower migrating non-farnesylated HDJ-2 regain farnesylation by 2 hrs following Lov washout. Processing rate of overnight 35S Cys/
Met labeled LaA following Lov removal is similar to unlabeled total population. (C) In similar experiments with FTI-277, the half-time of PreA
maturation following FTI-277 washout is ,15 hrs in total lysates, ,7 hrs with cyclohexamide chase and ,12 hrs in an overnight 35S Cys/Met labeled
population. HDJ-2 is farnesylated at a faster rate than LaA is processed upon FTI-277 washout. (D) Immunoblot of extracts of Saos-2 cells probed with
LaA antibody. In contrast to the incomplete PreA accumulation by FTI-277 treatment, a combinatorial treatment of FTI-277 and GGTI-2147 or Lov-
alone lead to more complete accumulation of non-prenylated PreA. Percentage of mature LaA or HDJ-2 is listed under each lane.
doi:10.1371/journal.pone.0010874.g004
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treatment. Furthermore, in the case of ZmpSte24 there are no

known substrates other than LaA, but there are ,30–100 other

substrates to compete for limited farnesylation, aaXing and

carboxylmethylation enzymes.

These observations suggest that components of the nuclear

lamina are readily accessible to processing enzymes such as the

soluble farnesyltransferase and the integral membrane ZmpSte24,

Rce1 and ICMT. Thus, the lamina may in fact be less static than

is generally envisaged. Previous studies utilizing FRAP analyses

have described GFP-LaA as essentially immobile [45,46].

However, in addition to relying on exogenous lamins with large

N-terminal fusion proteins, this technique only accounts for rather

large-scale movement of lamins within the nucleus. If lamins do

form structures similar to other intermediate filaments, then it is

difficult to imagine how an entire population of PreA assembled

into a static lamina could be readily accessible to the integral

membrane processing enzymes such as ZmpSte24. If all of the C-

terminal ‘tails’ were exposed on the surface of a lamin filament

that was capable of dynamic ‘rolling’ and situated adjacent to the

surface of the INM then this might permit sufficient association

with the processing enzymes. Or there could be focal assembly and

disassembly of lamin dimers that form the filaments, a model that

has been proposed for cytoplasmic intermediate filaments [47].

However, this possibility would be hard to reconcile with the A-

type lamin photobleaching data. An alternative explanation for the

rapid processing of lamina-associated PreA by ZmpSte14 would

be the lack of a filamentous lamina, at least in the conventional

sense.. In the absence of direct observations on the organization of

the somatic cell lamina, this latter suggestion cannot be entirely

excluded.

The mechanism by which farnesylated PreA leads to HGPS or

RD remains unknown. However, there is considerable evidence

that a shift in the ratio of farnesylated A-type lamins is seriously

detrimental [9,26]. Previously, aberrant mitotic and post-mitotic

aggregates of progerin have been described with a suggested role

in the etiology of HGPS [42,43]. We have observed identical

results in ZmpSte24-null cells. Although the purpose of this study

does not include investigating the mechanisms of PreA or progerin

toxicity, our findings have added to the long list of associated

phenotypes. We have found not only A-type lamins, emerin and

LaB1 in these aggregates (Dechat et al., 2007), but also Sun2 and

Nesprin 3, both LINC complex components. The displacement of

these NE constituents from the newly forming post-mitotic NE is a

possible mechanism by which aberrantly farnesylated lamins may

Figure 5. Aberrant cellular phenotypes recover rapidly in PI treated cells following washout of FTI and GGTI. (A) Labeled with LaA/C
antibody, immunofluorescence microscopy of Saos-2 cells reveals that the combination of FTI-277 and GGTI-2147, but not FTI-alone, rectify aberrant
nuclear morphology and abnormal nucleoplasmic aggregation caused by Lop. Release of FTI and GGTI enhance this phenotypic rebound. Bar 10mm.
(B) Measurements of nuclear circularity and percentage of cells with metaphase and early G1 aggregates reveal that corresponding cellular
phenotypes are reversed by 15 hrs following FTI-277 and GGTI-2147 washout and by 24 hrs following FTI-277 washout (error bars = SEM; N = 3, .75
cells counted each experiment).
doi:10.1371/journal.pone.0010874.g005
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be toxic. This could perturb the organization of nuclear structures

such as chromatin and NPCs as well as the way in which the

nucleus interacts with the cytoskeleton via the envelope spanning

LINC-complexes.

A role for farnesylated PreA in acquired lipodystrophy in HIV

patients receiving HAART treatment has not been conclusively

proven. However, there is considerable circumstantial evidence

that inhibition of ZmpSte24 by certain PIs may indeed contribute

to this lipodystophy [15,16]. And although it is unclear how PreA

may induce lipodystrophy, expression of progerin has been

reported to inhibit adipogenesis in human mesenchymal stem

cells [48].

In the case of nonfarnesylated-PreA and HDJ-2, maturation

following FTI washout in Saos-2 cells is considerably slower than is

found for Lov washout. This discrepancy may result from both

reduced clearance of the FTI and the geranylgeranylation of LaA

[44]. In support of PreA geranylgeranylation, we have observed

that GGTI must be utilized with the FTI to quantitatively inhibit

maturation of LaA. When the rapidly diving Saos-2 cells were

treated combinatorially with Lop, FTI and GGTI, the prenylation

inhibitors blocked the aberrant cellular phenotype associated with

Lop treatment-alone. However, upon washout of the FTI and

GGTI the cells rapidly acquired the nuclear abnormalities and

cytoplasmic aggregates that are normally observed following Lop

treatment. We attribute this to the shift of accumulated

nonprenylated PreA within the nuclear lamina to a toxic

prenylated state that rapidly induces an aberrant cellular

phenotype. Recently Lee et al. have reported that in cells lacking

the b-subunit of farnesyl transferase there is a significant

accumulation of PreA which is described as nonfarnesylated

[49]. However, the apparent presence of mature LaA in these cells

also suggests geranylgeranylation or some alternative mechanism

is promoting lamin A processing. Another recent study addressing

the subcellular localization of LaA processing described the

relatively rapid recovery of mature LaA following FTI washout

in the presence of cyclohexamide [50]. The discrepancy with our

rather slower recovery (1.5h versus 4–5h with cyclohexamide) may

be a reflection of the fact that these cells were expressing

exogenous GFP-tagged lamins that appear localized in nucleo-

plasmic aggregates during FTI treatment. It is conceivable that

this altered localization might enhance the exposure of PreA to the

various lamin processing enzymes.

Although HGPS cells required 3 days to reacquire their

aberrant nuclear profiles and cytoplasmic lamin aggregates after

FTI washout, we suspect that this delayed recovery likely results

from the extremely limited proliferative potential of these cells.

Additionally, we cannot rule out that there may be different levels

or activities of processing enzymes in these cells. Thus, it may be

useful to determine the reversibility of lonafarnib, the FTI

currently used in a clinical trial for HGPS, in order to evaluate

any potential risks associated with skipped doses or rapid

termination of the treatment in HGPS patients. Furthermore,

the rate of PreA and progerin geranylgeranylation during

lonafarnib treatment should be examined as this modification

can delay proteolytic maturation of wild type PreA [51] which in

turn could cause unintended accumulation of toxic PreA and

progerin. We did observed that at doses sufficient to block PreA

processing both Lov and the combinatorial FTI/GGTI treatment

led to an obvious inhibition of cell growth over 48 hrs in Saos-2

cells. Thus, effective inhibition of progerin prenylation may

require inhibitor concentrations too toxic for clinical use.

Supporting Information

Figure S1 Inhibition of protein synthesis does not impair PreA

processing following PI washout. Saos-2 cells were treated with

cyclohexamide at the time of Lop washout. PreA levels

dramatically disappear by 3 hrs following washout. Percent of

mature LaA listed below.

Found at: doi:10.1371/journal.pone.0010874.s001 (0.08 MB TIF)

Figure S2 Sun-2 and Nesprin-3 are present in abnormal

cytoplasmic aggregates during mitosis and early G1 during Lop

treatment. A 48hr treatment of Saos-2 cells with Lop led to the

accumulation of Sun 2 and Nesprin-3 at LaA/C immunoreactive

Figure 6. LaA and progerin are slow to mature in HGPS cells following FTI washout. (A) FTI-277 treatment of HGPS cells for 96 hrs inhibits
abnormal nuclear morphology as observed by LaA/C imunofluorescence (error bars = SEM; N = .80). Bar, 10mm. (B) After a 9 day FTI-277 treatment,
,50% of the LaA is PreA and nonfarnesylated-progerin (non-farD50). In contrast FTI-277 and GGTI-2147 lead to a more complete accumulation of
PreA and non-farD50. Following FTI or FTI and GGTI washout, mature LaA (matA) and farnesylated progerin (farD50) slowly recover, but at relatively
similar rates. Percentage of mature LaA or LaAD50 is listed above or below each lane, respectively.
doi:10.1371/journal.pone.0010874.g006
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cytoplasmic aggregates in metaphase (upper panels) and early G1

(lower panels). DNA is labeled by Hoechst dye in blue. Bar, 10mm.

Found at: doi:10.1371/journal.pone.0010874.s002 (0.46 MB TIF)

Figure S3 Multiple FTIs failed to permit rapid processivity of

PreA following washout. As detected by anti-LaA immunoblots of

Saos-2 cell lysates, PreA was refractory to processing following

washout of 10mm L-744, 832 or 1mm BMS-214662. Percent of

mature LaA listed below.

Found at: doi:10.1371/journal.pone.0010874.s003 (0.79 MB TIF)

Figure S4 In HGPS cells, HDJ-2 exhibits prolonged maturation

following FTI washout. (A) An anti-HA immunoblot of extracts

from WT human fibroblasts expressing exogenous HA-progerin

were either treated with DMSO (control) or FTI-277 for 48 hrs

immediately following transfection. The FTI-277 treated progerin

migrates more slowly. (B) In HGPS cells treated with FTI-277 for

96hrs, HDJ-2 is incompletely processed by 24hrs following FTI-

277. Percent of mature HDJ-2 listed above.

Found at: doi:10.1371/journal.pone.0010874.s004 (0.10 MB TIF)
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