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Electrostatic effects in nanosystems are understood via a physical picture built on their multiscale
character and the distinct behavior of mobile ions versus charge groups fixed to the nanostructure.
The Poisson-Boltzmann equation is nondimensionalized to introduce a factor \ that measures the
density of mobile ion charge versus that due to fixed charges; the diffusive smearing and volume
exclusion effects of the former tend to diminish its value relative to that from the fixed charges. We
introduce the ratio o of the average nearest-neighbor atom distance to the characteristic size of the
features of the nanostructure of interest (e.g., a viral capsomer). We show that a unified treatment
(i.e., N o) and a perturbation expansion around o=0 yields, through analytic continuation, an
approximation to the electrostatic potential of high accuracy and computational efficiency. The
approach was analyzed via Padé approximants and demonstrated on viral system electrostatics; it
can be generalized to accommodate extended Poisson-Boltzmann models, and has wider
applicability to nonequilibrium electrodiffusion and many-particle quantum systems. © 2010
American Institute of Physics. [doi:10.1063/1.3424771]

I. INTRODUCTION

A nanostructure is strongly influenced by electrostatic
effects. For example, the capsid of many viruses may un-
dergo structural transition due to changes in pH and salinity.
These effects are the result of the strength of Coulomb inter-
actions, but also reflect channeling of the electrical field due
to contrasts in dielectric constant € between the host aqueous
medium or membranes and the nanosystem.

The Poisson-Boltzmann (PB) equation has traditionally
been used to compute the electrostatic potential around a
macromolecule. However, a PB model ignores the volume of
ions in the medium. Therefore, the PB equation is only valid
for dilute ionic solutions and several angstroms away from
the fixed charges on the nanosystem of interest (i.e., concen-
tration =0.15 M). While the PB equation has been used to
model these systems, the million or more atoms in a virus or
other nanosystem and its surroundings makes direct PB
simulation a challenge. Parameter studies, e.g., to determine
virus stability for a range of pH, salinity, and temperature, is
made possible via approximations to the complete PB
solution." However, our goal is to construct a formalism that
allows such parameter studies while retaining the accuracy of
a full nonlinear all-atom analysis.

Several approaches and software packages for solving
the linear and nonlinear PB equation have been presented
throughout the past decade. An overview of numerical tech-
niques commonly applied to PB type equations is provided
in Ref. 2. For the linear PB, in one approach the electrostatic
potential is expressed as a superposition of basis functions.’
The electrostatic energy functional is then minimized with
respect to the expansion coefficients subject to total charge
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conservation. The boundary element method utilizes analyti-
cal solutions obtained in terms of Green’s functions and dis-
cretization on domain surfaces (molecular surfaces) are used
to compute the potential in the whole domain for a linear
problem.4‘5 One of the most common approaches used to
solve the linear and the nonlinear PB equation is the finite
difference formulation, where spatial derivatives are approxi-
mated using neighboring points.6_8 A successive over-
relaxation method yields rapid convergence in solving the
linear systems obtained from finite difference discretization.®
A finite difference domain decomposition scheme with local
correction is used to solve the problem in two dimensions.
However, a straightforward extension to three dimensions
required O(N *log N?) computer operations.9 In comparison,
a hybrid of boundary element and finite difference methods
combined advantages of both techniques and has been used
to study nucleic acid structures.'® An indirect way of solving
the equation is by reformulating the elliptic PB equation as
the long-time solution of an advection-diffusion equation.11
Adaptive finite element techniques have been used to solve
the PB equation for large systems. Potentials in specific re-
gions within a system are calculated using boundary condi-
tions derived from a coarse-grained PB solution over the
entire system. This has been implemented in the adaptive PB
solver (APBS) using standard focusing techniques with the
Bank—Holst algorithm.12 In this approach, dielectric discon-
tinuity across the molecular surface is captured using a dense
adaptive mesh of tetrahedral elements. However, one might
argue that in a physically relevant model, the dielectric dis-
continuity is not present; rather, & gradually increases to its
unperturbed bulk value with distance from the molecule-
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medium boundary.8 This allows application of regular grids
leading to simple numeric schemes with multigrid
implementations.13

Multiscale analysis is a powerful methodology that has
been applied to a broad spectrum of complex classical'*™*
and quantum%_3 0 many-body systems, and to reaction/
transport/mechanical phenomena in porous media.>'™’ The
problems to which it has been applied are usually governed
by linear equations, although nonlinear reacting-deforming
porous media have been treated through this approach.36
Multiscale analysis has been used to derive rigorous stochas-
tic equations for nanosystem dynamics starting from the
classical Liouville equation.Sg_41 In this paper, we explore an
analogous multiscale approach to the PB problem designed
for nanosystem applications. Through our formalism, dielec-
tric channeling, and a coarse-grained PB equation, coupling
of electrostatic effects across scales in space are captured.
We identify characteristic charge densities and lengths which
enable the evaluation of various effects as they influence
dielectric channeling and coarse-grained electrostatics. For
example, coarse-grained potential profiles affect small scale
potential fluctuations and conversely. A new effect coarse-
grained dielectric anisotropy is identified. The main objective
of this paper is to outline our mathematical and conceptual
framework. However, implementation of an implied multi-
scale numerical algorithm is used to validate the theory and
shows promise for efficient PB simulation.

We consider a formulation in terms of two parameters o
and \. The first is the ratio of the average nearest-neighbor
atom distance to a characteristic length of a nanoscale feature
in the system of interest. The second, A, is the ratio of a
typical single mobile ion charge density at infinity to the
average charge density within a charged group fixed to the
nanostructure. Our procedure is to recast the o,
N-parametrized problem in to one, wherein A =g, and then
develop a unified perturbation scheme starting from o=0 and
continuing to the value o equal to the value of \ of interest.
In the following, we reformulate the PB problem in a multi-
scale fashion and explore a method to construct solutions in
the limit of small o, demonstrating both numerically and
analytically the accuracy of this approach.

Il. MULTISCALE FORMULATION

Let 7 be position in the system expressed in units such
that as one traverses an average nearest-neighbor atom dis-
tance, ¥ moves a distance of about one (about 1 A). As 1
traverses the whole nanosystem, it moves a distance of
O(o7"). By definition, o is the ratio of the average atomic
nearest-neighbor distance to the size of the nanosystem. It is

natural to introduce a scaled position R=o7. As one traverses

the whole nanosystem, R moves a distance of about 1 in its
unit (about several nanometers). We construct the electrical
potential ® by making the ansatz that it simultaneously de-

pends on 7 and R, and show the smallness of ¢ allows one to

construct the 7and R dependencies simultaneously.
Consider the PB model expressed in the 7 spatial vari-
able
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V. (eVd)+f=0, (2.1)

where ¢ is the dielectric constant and f is the charge density.
Both f and & depend on position, reflecting the underlying
spatial variation in the atomic scale structure, while they also
account for the nanoscale variation in structure (e.g., the size
of the nanosystem is roughly ¢™!). In our formulation, f is
divided into f,; due to discrete charges fixed to the nanosys-
tem and a contribution f. from mobile charges.

A nondimensionalization of the PB equation reveals a
factor that enables the development of a novel approximation
scheme. r, is a length characteristic of the ® profile. A sta-
tionary charge density within the region excluded by a typi-
cal fixed ion f,, a single mobile ion charge density at infinity
[« the dielectric constant of free space g,, and kzT/e are
other characteristic quantities. With this we define a new set
of dimensionless variables indicated by a

“~7 via r=rnr, R=or, ®=kzTd/e,

e=e8, fi=fda [o=Tfe

As @ depends on both 7 and R by our multiscale ansatz, the
chain rule implies, upon letting V, and V, be 7 and R gradi-
ents, respectively,

(Vo+ V) [ &(Vo+ VD)) +£(R.F D) + f4(R,7) = 0.
(2.2)

Some details on the derivation of Eq. (2.2) are provided in
Appendix A. With this, the multiscale ansatz Eq. (2.2) and
introduction of the dimensionless variables, the multiscale
PB equation becomes

(Vo+ oV,) - [ &(Vo+ oV )®)] + \FL(R. 7. B) + FR. D =0,
(2.3)

where A:rifwe/ gokgT and rf:sOkBT/ fee.
Dropping the “~" for simplicity, this yields

(Vo+aVy) -[ 6(Vy+aV)®)]+ MR, 7 D) + £,(R,7) = 0.
(2.4)

The objective is to construct ®(R,7,0,\) via parameter
unification and analytic continuation. Typical values of fac-
tors in the expression for N at biological conditions (see
Table I) imply that \ ranges from 1072 to 1073, For many
nanosystems, o lie in the same range. Therefore, we suggest
a methodology where \ is set equal to o to achieve a unified
perturbation methodology. We proceed in a perturbative
fashion to construct ® along the line A=0, continuing per-
turbatively from the (o,\) origin to the \ value of interest.
With this, we seek a small o perturbative solution to the
following equation:

(Vo+aV)) -[ e(Vy+0V,)®)] + ofu(R, 7, D) + f,(R,7) =0.
(2.5)

The above decomposition of charge is based on the no-
tion that the fixed charges are well-localized and thereby
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TABLE I. List of universal and system-specific parameters used in calcula-
tion.

Universal parameters Values Equation Reference
Maximum dielectric &,, 4 (4.6) 11 and 56
Minimum dielectric &y, 80 (4.6) 11 and 56
Dielectric transition width 5A (4.5) and (4.6) 8, 11, and 56
System specific parameters

pH 7 11 and 56
£ 102¢A  (4.3) and (4.4) This paper, 64
Fine grid spacing 0.3-0.9 A (2.2)-(2.4) This paper
Coarse grid spacing 20-22 A (2.2)-(2.4) This paper
Temperature T 298.5 K (2.2)-(2.4) This paper
Salinity C; 0.125M  (3.2) and (3.6) 65

creates a high charge density. In contrast, the mobile ions are
highly fluctuating and thereby have an effectively more dif-
fuse charge distribution and correspondingly lower charge
density. In addition, the excluded volume effect on mobile
ion distribution around fixed charges prevents excessive
counter-ion accumulation. In contrast, if there were no ex-
cluded volume then the counter-ion charge density would
mirror that of the fixed charges. However, observations of
correlation functions in dense media support the notion that
mobile ion density is diffusive in nature for a large number
of problems with 1:1 electrolyte and hence can be treated
perturbatively (as discussed further in Sec. VI).

While the original PB Eq. (2.1) masks the multiscale
character of the nanosystem problem, the reformulated one
makes o explicit. For a million-atom nanosystem such as a
small virus, o is roughly 1072, Hence, one expects that solu-
tions to Eq. (2.5) can be constructed as a Taylor series in o

O=> (R,

n=0

(2.6)

This theme is developed in Sec. III.

lll. MULTISCALE PERTURBATION ANALYSIS

Consider details of the development of the potential as a
Taylor series in o as suggested in the previous section. Using
Eq. (2.6) and analyzing the multiscale PB equation order-by-
order, we construct ®. For arbitrary r-dependent function A,

we define the linear operator P such that

PA=V,- (sV,A). (3.1)

To O(o-o) in the multiscale perturbation series, one obtains
P®y+f,(R,7)=0. This implies ®, can be obtained in the
form ®y=®*(R)+ 6(R,7), where 6 satisfied PO+f,(R,7)=0.
Since f, is independent of ®, € can readily be obtained via a
linear numerical solver. Note that ® and ®,, vanishes for the
isolated nanosystem in an infinite medium as || — . Here,
@* captures the R dependent variations in the zeroth order
solution. It stays constant over changes on the angstrom
scale. Hence, f’CI)*(R):O. The behavior of the contribution
" to ®, is addressed via an analysis of the problem to
higher order.
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To O(o), one obtains

PO, +V, - (eV,D) + V, - (6VP0) + fo0)(Pg.R.7) =0,
(3.2)

where f, () is the coefficient of order 0(cd”) when expanding
f.in o and depends on @ as shown in Sec. IV.
We define b to be the solution of

Pb,+ deldr,=0, a=1,2,3, (3.3)

where b, and r, are the ath Cartesian components of b and
7. It arises in a manner similar to the formulation of flow in

porous media where the analog to b yields the permeability
tensor.*” Linearity of Eq. (3.2) and the definition of b implies
the equation ®;=b-V,®"+ ¢, where ¢ is a solution to

ﬁ{/f—l— 60 . (SVA] 0) + VSI i (8'5‘00) +fc(())((1)0,13,;) =0. (34)

A more detailed derivation of the above is shown in Appen-
dix B.

Let b,=c,—r, Then

Pc,=0. (3.5)
Since ®; must be bound as |r]— c, b, must be bound there
for a nanosystem in an infinite medium. Thus, the auxiliary
quantity c¢,—r, as |r]—c. This provides the asymptotic
condition needed to determine c,,, and thus b,. For the class
of problems of interest, ® —0 as 7 and R go to infinity,
which is ensured to O(o) via the above asymptotic condi-
tions. Finally, ¢ vanishes as |r]— and b, is nonzero and
has angstrom scale variations near and within the nanosys-
tem in response to variations in &. This completes the O(o)
analysis.

To O(0?)
ﬁ¢)2+ 6] . (SV_‘I(I)()) + VSO . (SV_\lq)l) + 61 . (8'5\0(131)

+fc(l)(;’1€’(1)(),(1)l):09 (36)

where f,(;) is the coefficient of O(o) when expanding f, in o
about 0=0. As a consequence, f,(;) depends on both ®; and
®,, as shown in Sec. IV.

An equation for ®* is obtained as follows. First, a

weight is introduced W(7,R) that samples 7 space in the vi-
cinity of a point ?Szo"lls. Equation (3.6) is multiplied by
w(r, IS), integrated over 7, and using the boundary conditions
at infinity, one finds

V- [65V,0 14V, - (sVoi) +(V, - (sV,6))
+f;(l)(]§,q)0,q)l) =0, (3.7)

where

Lo (R®o®) = (fa). () = J FrW(E - DA, (3.8)

. by
8,0 =(&)0n +\ & ,
org,

(3.9)
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W(.R) = N exp — {o(7 — P)*/A%}. (3.10)

N is a normalization constant. The coarse-grained dielectric
factor £* is a tensor. Its profile across the nanosystem, and
the directionality it creates because of its tensorial character,
accounts for large-scale channeling. This anisotropy follows
from an averaging of the potential response to short-scale
dielectric variations as shown above. b, serves as a response
function underlying the effective dielectric tensor. In arriving

at this result, we have ignored (V- (eV,®,)) via arguments
provided in Appendix C. The coarse-grained PB Eq. (3.7)
yields the long-scale background potential profile ®* across
the system.

The resolution of the coarse-grained PB equation is de-
termined by the width Ag~!""? of W. The width of W is taken
to be much greater than the short length scale (i.e., the aver-
age nearest-neighbor atom distance of about 1 A) but much
smaller than the size of the features we wish to resolve (e.g.,
a viral capsomer), allowing the function to die out beyond
the integrating volume, i.e., at distances of several nanom-
eters away from r,. The form of W is discussed further in
Appendix C. As @ captures all the short-scale features di-
rectly related to the nanosystem via 6, and ®; captures them

via b and ¢, our multiscale approach retains both short-scale
and long-scale behaviors. Thus, our approach is not a semi-
phenomenological method that requires recalibration with

each new application. While the auxiliary quantities b, i,
and 6 must be computed at atomic resolution, the linearity of
the equations they satisfy, unlike for the original PB equa-
tion, is readily solved numerically. This adds to the great
efficiency of our methodology which retains both long-scale
and short-scale variations, relegating the nonlinearity to a
coarse-grained equation for ®*. Even though the coarse-

grained potential ®* is only R-dependent, the charge density
remains multiscale in nature and hence, short-scale structure
of the potential is accounted for in 6 and ®,. ®,, in particu-
lar, accounts for local correction to the smooth background
potential ®*. Solutions to Eqgs. (3.4) and (3.7) are essentially
coupled, yielding an interscale feedback loop that computes
the smooth background potential ®* and the local correction
@, simultaneously. We validate the perturbation scheme via
computational implementation, and in particular show that
®,> o®,> o?®,. The interscale feedback relationship im-
plied by the above development is summarized in Fig. 1.

IV. DETAILED PHYSICAL FORMULATION

The detailed physical formulation of the PB model
adopts integrated notions from our earlier work'" and that of
others.* Mobile ion concentrations are assumed to be at
equilibrium. Let C; and u; be the concentration and chemical
potential of mobile ions of type [, [=1,2,--+,L. We adopt the
phenomenological model

W=y + kT In(y; ' C) + 7 F® (4.1

for activity coefficient ')’1_1 and reference potential of [, u;,
and Faraday constant F. Given that far from the nanosystem
®—0 and C;— C7, and that u; is constant across the system
at equilibrium, then
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FIG. 1. Interscale feedback loop implied by the perturbation analysis.

C,= y,Cre T ®ksT (4.2)

With this, the charge density from the mobile ions is given
by

L

_ o _FydikyT
fo= 2 Y FCre @kt
=1

(4.3)

To simulate the excluded volume effect that prohibits the
unphysical overlap of the mobile ions with the nanosystem
atoms, 7, is taken to be one except near an atom fixed to the
nanosystem (i=1,2,---,N). i(r) is the identity of the nano-
system atom closest to 7 and F,-(;) is the location of the atom
i(r). With this,

yi=g(|r—ripli(a; + b)), Ay), (4.4)

where A;; is a dimensionless transition width parameter for
the i, [ pair.

07)(['/S 1

2
Min {1 — e Nixu=D% 3. > 1
i=1,N

g Ai) = (4.5)

where x;=|r—ryp|/(a;+b)), a; is the radius of nanosystem
atom i, and b, is the radius of mobile ion /. With this the
mobile ion excluded layer has a thickness of (a;+b;). This
phenomenology describes a smooth transition in ion accessi-
bility from O to 1 is suggested in other studies,* ™ the basis
of which is fluctuating positions of the fixed and mobile ions,
as well as the continuous profile of electron density around a
given ion. The mean displacement of an ion from an equi-
librium position was considered to be >0.1(a;+b;) A.* This
displacement decides the choice of transition width param-
eter A;. In this way, the charge density around the fixed ions
is taken to be Gaussian in form. The half-width of the Gauss-
ian is the atomic radius of the fixed ion.

The continuous charge density is expressed as a Taylor
expansion of f. in o about o=0.
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f, 1 &f,
= ZE (D =D+ L] (D - D)
fc fcl‘i)0+ oD q;o( 0)+2 &2(1) q,O( O)
+ ..
afe
= felo, + 9D q)O(U‘I’l"‘Ochz"‘"')
Ff,
*5 e (D(JCD1+02<I>2+ )+
0
af.
fc|®0+0l oD ®]®1
0
1, &f af.
72 _@2 4 P, <&
i {2 LR, ad %]

=feo)t ofeyt 0

Nondimensionalizing the above implied
fe=feoy +ofey+ -

Thus Fof e =2t vz FCY e~ Fa®oksT and
=—®, 31, vi(zF)* kyTCl e aiPolksT,

Dropping “~”, the above expressions for fc(O) and ﬁ»(l)
were used in Egs. (3.2) and (3.6). Unlike methods where the
partitioning of charges is according to their spatial
locations,'” in our method it is according to the order in o to
which they contributed to charge density. Developing an al-
gorithm with spatial partitioning might lead to more efficient
computation as fewer grid points can be considered for solv-
ing the linear equations, although this was not attempted in

fifen

this study. The mobile ion charge densities ]75(0) and fc( 1) are
multiscale in nature, i.e., they simultaneously account for
rapidly varying short-scale fluctuations and a slowly varying
background potential.

The dielectric constant distribution & (7,A;) is calcu-
lated using the formula

<
Eatom> T = l

) 2 2
Min {g,, + (&40m — sm)e_Ail(T_ DY r>1
i=1, N

S(T’Ail) =

(4.6)

where ¢g,, and g, are the dielectric constants of the host
medium and an nanosystem atom, respectively, and a, being
the solvent atom radius 7=|r—7ry|/ (a;+a,)."

V. MULTISCALE COMPUTATIONS

The algorithm of the previous sections was implemented
as a software package denoted PBms. The utility of our mul-
tiscale PB approach depended on the computational require-
ments for determining b, 6, i, and ®*. The quantities b, 6,
and ¢ satisfied linear equations with Dirichlet conditions,

i.e., b, 6, and ¢ were zero at the boundary of the simulation
domain, assumed far from the nanosystem. Thus, solving for
these variables did not require the costly iteration needed to
solve the original nonlinear PB problem. However, solving
the interscale equations to simultaneously calculate ®* and
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0"‘

(a) (b)

FIG. 2. (a) A nanostructure (nanosystem) of size of O(¢™") containing mil-
lions of atoms is shown. A multiscale approach that accounts for the distinct
length scales involved is developed for solving the PB problem. (b) Sche-
matic discretization showing the coarse grid on which the coarse-grained

potential profile ®* is solved, and the fine grid on which 1;, 6, and ¢ are
solved.

was found to require some iteration. Additional overhead

arose from the computation of » and 6. In our workflow, the
solution to the linear PB equation was used as a guess for @
to initialize the multiscale iterations. Though reasonable for
biomolecular systems,so’51 this slightly added to the time
overhead.

The two-grid method used to implement the interscale
iteration is suggested in Fig. 2. The coarse-grained PB equa-
tion for @ involves a characteristic length, i.e., the nanosys-
tem size, and not the atomic scale. For a small virus [e.g.,
cowpea chlorotic mottle virus (CCMV), human rhinovirus,
poliovirus, and human papillomavirus], the large scale is
roughly 100 times larger in length than the size of an atom.
Thus, one could simulate the system with a factor of roughly
10° fewer grid points when using the coarse-grained equation
for @* than for the full PB equation. It is shown below that
the central processing unit time for our multiscale method
increased more slowly with the number of grid points than
did current PB approaches.

In Fig. 3, a schematic flowchart of our multiscale PB
simulation approach is presented. To implement this work-
flow, we used the MUDPACK software to solve the linear

equations for b, 6, and ¢ and to initialize the multiscale
iteration using Gauss—Seidel pointwise relaxation followed
by the deferred correction scheme.’” Modules were written
to use b to construct the coarse-grained dielectric constant
tensor &" and set up the nonlinear coarse-grained PB equa-
tion, solved with the alternating direction implicit (ADI)
method."" A list of parameters used in the course of the simu-
lation is shown in Table I. There are universal parameters
that are applicable over a large array of nanosystems. In
addition, there are system-specific parameters that must be
tailored to the system of interest. In this study, nanosystem

atom radius ¢; and partial charge were assigned using the
CHARMM22 force field.

VI. RESULTS AND DISCUSSIONS

We have demonstrated the accuracy of PBms via nu-
merical experiments, comparison with analytical solution,
and results from another solver. Analytical solution is avail-
able for the case of a charged planer electrode in 1:1 electro-
lyte. Here,



174112-6

Singharoy, Yesnik, and Ortoleva

(;) Compute
ms C, ms
1 MUDPACK
Construct
*
& aa’ |
ms Construct
*
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FIG. 3. Flow chart showing steps involved in the multiscale computational
algorithm.

~|ul
1 + tanh({/4)exp } 6.1)

Plu)=2 ln{ 1 — tanh(¢/4)exp ™"
{ is the surface potential on the plate and u=kx, where x is
the distance along the normal to the plate and k™' is the
Debye length. The plate is located at x=0. Since Eq. (6.1)
holds for an infinite plate and the simulation was carried out
for a finite one, the comparison was made along a normal in
the X-direction emanating from the center of the plate to
avoid edge effects. Figure 4 shows the PBms generated po-
tential profile along with the analytical solution at ¢
=10KT/e, C;=0.125 M and grid spacing of 0.5 A for a
square plate with sides of 100 A. The PBms generated profile
is in excellent agreement with the analytical solution. How-
ever, one expects deviations from observed near surface pro-
files because the model used does not account for the Stern
layer.

A uniformly charged solid spherical particle of 100 A
radius and a total charge of +750e was considered immersed
in a 0.125 M 1: 1 electrolyte. To validate our algorithm, we
compared our results for this simple system with that of
APBS."? To minimize differences from numerical schemes in
solving the linear equations, APBS was used as a linear
solver instead of MUDPACK. Similarly to maintain consis-
tency in the underlying physical model, the dielectric con-
stant & (using pdie: 4; sdie: 80; and srfm: smol) and nano-
system charge distribution f; (using chgm: spl2) were also
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FIG. 4. The PBms generated potential profile (4 ) along with the analytical
solution (M) for a 100X 100 A? charged plate in 0.125 M 1:1 electrolyte,
{=10KT/e and with 0.5 A grid spacing.

taken from APBS for both calculations. The ion accessibility
was considered smoothly transitional as in Eq. (4.5) for both
programs due to reasons mentioned later in this section. The
multiscale modified charge density arrays for [V,-(eV,6)
+V1-(eVo0) +fo0)(Py,R,7)] appearing in Eq. (3.4) were
read back into APBS via the OpenDX format (using “read”
and “usemap” options). However, our ADI software was
used to solve Eq. (3.7) in PBms. Finally the potential was
taken to be zero at the boundary of the domain for both the
programs. The root mean square deviation (RMSD) between
potentials from direct and multiscale methods is shown in
Fig. 5. It is small and decreases with grid spacing. The PBms
and APBS-generated potential profiles across the ions acces-
sible region where y;#0 (about 25 A wide) at 0.6 A grid
spacing (4493 grid size) is shown in Fig. 6(a). The profiles
are in good agreement. The ions accessible region (in Fig. 6)
begins at a distance of 1.8 A from the sphere surface due to
reasons mentioned below. The boundaries were set at a dis-
tance of about 25 A from the sphere and the potential at the
boundary was set to zero since the latter was much greater
than the Debye length from the edge of the sphere. The po-
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0 05 1 15 2 5 3
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FIG. 5. rms deviations between the PBms and APBS calculated potential
distributions for a spherical particle of 100 A radius and +750e charge in
0.125 M 1:1 electrolyte at different grid spacings.
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FIG. 6. (a) Potential profile from the surface of the spherical particle (zero on X-axis) to the boundary of the domain (~25 A form the surface) using APBS
(#) and PBms (H) at 0.6 A grid spacing along a ray through the center of the sphere. (b) Profile of In(®) along the ray as in frame (a) within the same ions

accessible region using APBS (4) and PBms (H).

tential showed a continuous transition across the sphere-
solution interphase even without imposing continuity there.
This is attributable to the second-order differential nature of
the PB equation and the smooth nature of the ions accessi-
bility transition (Sec. IV) used for the comparison.” The
model, and hence the comparison, therefore, does not ac-
count for the counter-ions in the Stern (tight bound) layer,
i.e., the Stern Layer (of thickness equal to the bare ion
radius™ 1.81 A for CI- ion) is considered ion excluded with
71:0.53’54 In fact, as discussed later, under conditions where
counter-ion concentration in Stern layer becomes important
the perturbation series tend to diverge. The formalism is ap-
plicable to diffusive counter-ions. However, negligible tight
binding is expected under conditions chosen for the compari-
son (a relatively low stationary charge density and 1:1
electrolyte).47 Our software can be implemented for nonzero
surface boundary conditions with minimal alteration. To
magnify differences, the potential profiles in Fig. 6(a) are
replotted on a logarithmic scale in Fig. 6(b). Even on the
latter scale, PBms and APBS-generated profiles are seen to
be in excellent agreement.

Another important aspect of our algorithm is the rapid
convergence of multiscale iterations. This is because ®*(R),
being a coarse-grained potential, is smoother in nature than
fine-scale potentials like 6 or . This facilitated the conver-
gence of solutions to the coupled Egs. (3.4) and (3.7), avoid-
ing cascade error. The long-scale character of ®*(R) is also
attributable to the “low frequency” global coupling of the
elliptic problem and hence, solving for ®*(R) can be accom-
plished on a coarse grid.43 To illustrate this, define the error
in Eq. (3.4) from the nth iteration as E(y,)=Piy,
+Vo-(eV0)+V,-(eVy0) +f,0).(Po.R,7). The equation is
solved if E(4,)=0. ¢, and f,(), are potential and modified
continuous charge density at the nth iteration, respectively. In
Fig. 7, we plot RMSD of ¢, from successive multiscale it-
erations for the solid sphere in solution at 0.6 A resolution
under physical conditions same as those in the previous para-

graph. The RMSD after the 15th loop was on the order of
1073KT/e with E(is,) on the order of 107, The average 5
was many orders of magnitude higher, reaching a maximum
value of approximately 10*KT/e in regions close to the cen-
ter. Thus, after 15 iterations, the solution was extremely well
converged for this system. Numerical error in solving the

equation f’CI)O +f4=0 is plotted as a function of grid spacing
in Fig. 8. Errors decreased with reduction in grid spacing.
The convergence test of the perturbation series was done to
the second-order and it was found that ®,> o ®,> o?d,,
validating our approach. Like all perturbation schemes, glo-
bal convergence is not guaranteed. Only under suitable con-
ditions the series converges. However, the limits of conver-
gence are found to be within the limits of applicability of the
physical model (as shown below).

Our multiscale numerical algorithm yielded a highly ef-
ficient approach for solving the PB equation. The speed-up
over APBS obtained for our algorithm is shown as a function
of grid spacing in Fig. 9(a). Comparisons of calculation time
for the spherical particle with that of APBS was done on a
single Xeon processor using a Dell Power edge system. For
5133 grids, the PBms solver was found to be approximately
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0.6
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0.1

RMSD of Potential (X77%)

0 2 4 6 8 10 12 14 16 18 20
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number of iterations ()

FIG. 7. rms deviation of ¢ between consecutive multiscale iterations (n and
n+1) as a function of n for the sphere in solution.
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FIG. 8. Numerical error in solving the O(c”) equation vs grid spacing.

seven times faster than APBS. Figure 9(b) shows the abso-
lute difference in computational times between APBS and
PBms as a function of grid spacing. The numbers were fitted
to an exponential trend line y=1122¢753'% This shows the
PBms efficiency increases nonlinearly with decrease in grid
spacing. A comparison of memory consumption is shown in
Fig. 10. This implies that our PBms implementation requires
much lesser memory than APBS and is attributable to differ-
ences in numerical schemes (i.e., our integration of MUD-
PACK solver into the multiscale algorithm). Figures 9 and 10
show that as grid spacing decreases, PBms performance rela-
tive to APBS increases. This is realized because a great deal
of iterative nonlinear PBms computations occurs at the
coarse-grained level. This is somewhat offset by our need for
interscale iterations. However, there is a net improvement in
performance relative to carrying out nonlinear iterations at
the fine grid level only. Another advantage is discussed be-
low in the context of parameter studies.

PBms with MUDPACK and ADI was used to determine the
electrostatic potential of CCMV capsid with its 432 210 at-
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FIG. 10. Memory footprint comparison for Fig. 9(a).

oms. Figures 11 and 12 show the +1K7/e and —1KT/e elec-
trostatic potential isosurfaces for native and swollen CCMV
capsid in 0.125 M NaCl solution at 0.7 A resolution. These
isosurfaces were essentially identical to their APBS-
generated counterparts shown in the same figure. To obtain
an unambiguous comparison, the nanosystem charge and di-
electric distribution were obtained from APBS (as before),
and boundary values of the potential in both cases were set to
zero. The electrostatic potential isosurface residing near the
outer surface of the capsid was predominantly negative ex-
cept for positive zones concentrated at the margins of hex-
americ and pentameric subunits, and clearly showed the
icosahedral symmetry of the capsid. Cut-away views of the
swollen and native states showed the inner surface is prima-
rily positive in nature. This is due to basic amino acid resi-
dues that facilitate complexing to the negatively charged
RNA. However, in the swollen state, negative patches ap-
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FIG. 9. (a) Plot of computation time vs grid spacing for a spherical particle of 100 A radius and +750e charge in 0.125 M 1:1 electrolyte using APBS (#)
and PBms (H). (b) Absolute difference in computation time vs grid spacing (<1.5 A) for computations as in frame (a).



174112-9
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FIG. 11. +1KT/e (blue) —1KT/e (red) potential isosurfaces for the native
and swollen state of the 432 120 atom CCMYV capsid immersed in 0.125 M
NaCl at 0.7 A resolution, computed via rigorous multiscaling; external view
native [(a) PBms; (b) APBS] and swollen [(c) PBms; (d) APBS].

Multiscale electrostatics

peared on the inner surface. This latter electrostatic distribu-
tion promotes RNA release from the capsid core. The physi-
cal picture is in agreement with previous results on
CCMV,” but PBms took less computation time. The
APBS-generated isosurfaces shown in this paper, though
similar, are not identical to those reported by Konecny et
al.”® This is attributable to differences in grid size, boundary
conditions, ions accessibility, and ionic strength used for our
APBS calculations. However, such differences did not affect
the comparison shown in Figs. 11 and 12.

(a) (b)
() (d)

FIG. 12. As in Fig. 11, except for cut-away view.

J. Chem. Phys. 132, 174112 (2010)

To illustrate how the multiscale perturbation technique
worked, the contributions to the potential of various orders in
o were considered. Two-dimensional potential profiles on an
equatorial slice through CCMV for o, ®*, and (O +0D,)
constructed by first multiplying these variables with y; to
remove fixed ion core variations for illustrative purposes are
shown in Fig. 13. o, and ®* are plotted on the same scale
in Figs. 13(a) and 13(b), respectively, to identify the smooth-
ness in variation in the latter. It is seen that @, dresses the
coarse-grained potential ®* variation with atomic scale de-
tails to yield a full multiscale counter-ion potential [Fig.
13(c)].

A quantitative analysis of the above results is shown in
Table II. The rms deviations between PBms and APBS cal-
culated potentials observed for native and swollen CCMV
were an order of magnitude smaller then the corresponding
(P, showing the PBms calculated results are close to those
of APBS. The rms deviations were found to become even
smaller, about 1072K7T/e, when the APBS linear solver was
used with multiscaling. This RMSD was smaller than that of
the spherical particle at the same grid size validating that the
multiscale ansatz worked better as the system grew in size,
making the two scales more distinct, as one might have ex-
pected. In accordance with results for the simple case of a
sphere in solution, differences were expected to further di-
minish at finer grid spacing.

Table II shows that for CCMV [(®g)|> (D))
> o2[(®,)|, demonstrating the rapid convergence of the mul-
tiscale perturbation series. PBms was also used to calculate
the electrostatic potential for ubiquitin. Being small, in this
system the two scales were less widely separated, making
o=0.1. Under such conditions, the multiscale ansatz failed
as expected, i.e., (Py) is comparable to the RMSD between
PBms and APBS. In addition, the rate of convergence also
decreased relative to that for the CCMYV results. In summary,
the multiscale algorithm is ideal for accurate, efficient simu-
lation of large, complex systems. Only to allow a fare com-
parison for all the above examples, APBS-generated dielec-
tric distribution was used. Henceforth all calculations are
done using the continuous dielectric model in Eq. (4.6) as
suggested in Refs. 8, 11, and 56.

Consider the effect of ions accessibility y, on the behav-
ior of the method. Omnipresent fluctuations in the atomic
configuration imply that -, should be transitional, and nota-
bly should involve a transition width, as mentioned in
Sec. IV. However, to assess the robustness of our method, we
explored varying the transition width from 0 to 2.5 A, find-
ing that the method did not converge when the transition
width is less than a cut-off value, roughly 0.5 A. It did con-
verge for a transition width of 1 A, the value used in all the
above simulations, and certainly for higher transition widths.
This issue is closely related to the tight binding of counter-
ions and becomes more relevant in regions of high fixed ion
charge density, e.g., in nucleic acids or ribosomal electrostat-
ics. Accurate description of such tightly binding counter-ions
(Stern layer) is beyond the scope of PB or other mean field
theory.” However, previous studies showed nucleic acids in
dilute NaCl solution did not display tight binding of
counter-ions.”” Thus, the entire counter-ion charge density
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FIG. 13. Potential profiles on an equatorial slice through CCMV for (a) o, (b) ®* (plotted on the same scale as o), and (c) (®*+0®P;) under same

conditions as Figs. 11 and 12.

was diffusive, even for such systems. This diffusive nature of
mobile ions permitted incorporation of a transition width in
ions accessibility and allowed application of the perturbative
approach to nucleic acid electrostatics in dilute 1:1 electro-
Iyte. In a 2:1 electrolyte, tight binding of counter-ions to
nucleic acid was significant; hence, application of PB theory
was not appropriate. PB theory was also known to fail in
accurately describing the electrostatics of triplex DNA in 1:1
electrolyte for similar reasons.”’

To investigate this idea, the RNA part of satellite tobacco
mosaic virus (STMV)-RNA complex was chosen. Figure 14
shows the different modes of ions accessibility transition and
their corresponding effect on the convergence of the pertur-
bation series calculated to third order for 0.125 M NaCl so-
lution at 0.3 A grid spacing. Convergence failed when the

transition width was less than 0.5 A. As 0(?,15) is indepen-

dent of vy, and ®*(R) is insensitive to small scale changes in
transition width, the zeroth order solution @ varied negligi-
bly with ;. Hence, it is not incorporated in Fig. 14. Since the
fluctuations in ions occurred over a length scale of >0.1(g;
+b;) A (>0.7 A in the present case), a transition width of

1 A could safely characterize the diffusive counter-ion
charge distribution for STMV-RNA electrostatics. To illus-
trate this, we calculated the total diffusive counter-ion charge
per nucleotide over a solvent accessible volume defined by
Chen et al.®’ using 1 A transition width, 0.125 M NaCl so-
lution, and 0.3 A grid spacing. We found a net Na* charge of
+0.82¢. This was in fair agreement with the reported value of
0.76¢.* Inclusion of higher order terms will enhance the
agreement. This number became +0.46¢ per nucleotide when
the potential for the entire complex was calculated, signify-
ing partial neutralization of the negatively charged RNA by
the positively charged capsid core. The maximum counter-
ion concentration reached 23.7 M which lies within the re-
ported cut-off of 20-30 M for RNA simulation.™
Comparison of predictions of our methodology on large
protein assemblies (i.e., viral capsids), as discussed above,
illustrated the viability of the approach in a given range of
the ions accessibility transition width. However, to explore
the potential breakdown of our approach, reformulating our
results as the Padé approximants was considered.” Padé ap-
proximants have been used to detect anomalous behavior in

TABLE II. Quantitative comparison showing RMSD of PBms results with those of APBS, along with the
absolute value of arithmetic mean (|( )|) of O(a?), O(a), and O(o?) PBms solutions for three different systems.

System RMSD(KT/e) (D (KT e) [{o®)|(KT/e) [{o?®,)|(KT/e)
CCMV (Swollen) 0.387 6.773 0.0341 5.077%x1073
CCMV (Native) 0.457 10.04 0.0901 7.439x 1073
Ubiquitin 0.371 0.528 0.0613 4.072x 1073
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perturbation series implied by changes in [(a®,)

B

perturbative solutions of various problems (e.g., phase tran-
sitions and nonlinear reaction-diffusion phenomena). Padé
approximants were traditionally ratios of polynomials, but
other analytical forms have been used."® In the present
context, we used information from the small o perturbative

analysis to seek anomalies in ®(7,R, 7).
For example, we constructed @ in the form

apg+a,o (6 2)
bo+b10' '

for factors ay, a;, by, and b;. However, examination of the
multiscale PB equation for large o showed that @ must van-
ish as 07! as o—o0; this implied a; is 0. Without loss of
generality, we took by=1. Comparison with the o expansion
from the perturbation series of Sec. II, we obtained

-d
ag =D, b,:qTO‘. (6.3)
With this, we found that the Padé approximant had no
anomalous behavior for the physical regime of small o,
when 0@, <®, implying ob; <1.
More general approximants should be examined in the
search for possible anomalous behavior. Consider the ap-
proximant

ag+a,o
o Drao (6.4)
1 +b,0+b,y0°
which has the correct large o behavior as o—
To compute the four a, b coefficients, the o perturbation
series was carried out to third order. This yielded

_ PP -, P,

=d,, =b®,+d,, b=
ag 0, 4 1990 1 1 q’%—q)oq)z

bl

(6.5)
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, where [(®)|=21.92KT/e.

D+ 0P,
2= @, .

Setting the denominator of Eq. (6.4) to zero, one find poles at
locations o given by o.=-b; = \b%—4b2/ 2b,. We exam-
ined this result for RNA in the STMV-RNA complex. Ex-
pressions from Eq. (6.5) were used with our computed nu-
merical values of ®,, ®,, ®,, and ®; for the RNA. The
location of the poles in the complex o plane for two different
transition widths and all grid nodes in the simulation domain
are summarized in Figs. 15 and 16. For a transition width of
1 A, the nearest pole residing on the positive real o axis was
at 0+=0.128. For zero transition width, the nearest real posi-
tive pole was shifted to about 107°. Thus, for the former case,
poles were absent in the range 0=0 to o— \. This validated
analytic continuation of ® over the chosen range of o which
was further implied by convergence of the perturbation
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FIG. 15. Location of poles o in the complex o plane using 1 A ions
accessibility transition width to determine ®.
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series. Whereas for zero width, poles existed around o=A,
implying @ could not be analytically continued over the
same o range. Physically, this means counter-ion overcrowd-
ing due to a zero transition width in ion accessibility lead to
perturbative corrections as large as the zeroth order potential,
suggesting a divergence.

Padé approximants also set a range for the choice of
electrolyte concentrations over which the methodology can
be applied. The real positive pole nearest to the origin limits
the maximum value of C;" to C; ... For C;">C} .. one find
poles along the real positive o axis to the left of N so that
analytic continuation from the complex o origin breaks
down. Using 0. =0.128 (from the RNA simulation with ions
accessibility transition width 1 A), Clmax=2-42 M. At this
high concentration neither PB theory nor analytic continua-
tion are applicable. The present multiscale methodology di-
rectly couples the choice of length scales with the choice of
salinity. Extent of local averaging is correlated with salinity
via the o dependence of W. Thus physical conditions (e.g.,
salinity and temperature) fix the coarse-grained dielectric
distribution and interscale feed-back, so that the multiscale
PB analysis is carried out self-consistently with automated
implementation. Single PBms calculation efficiency at fixed
grid spacing facilitates parameter study (e.g., salinity depen-
dence of nanosystem electrostatics). For comparable compu-
tational cost of one APBS calculation, multiple PBms runs is
possible over a permissible range of salinity. This is achiev-
able due to the advantages of a multiscale algorithm over
that of a single scale.

To demonstrate the viability of PBms on an even bigger
system, we calculated the electrostatic potential isosurfaces
of Simian virus 40 (SV40). It had 1908 060 atoms and a
diameter of about 500 A. Isosurfaces of =1KT/e obtained at
a 0.9 A resolution for this virus are shown in Fig. 17. In
experimental studies, it was found SV40 has seven pentam-
ers forming a cluster with a hexavalent one surrounded by
six others.®" This symmetry was reflected in the location of
Glu330 and Glul60 at the Ca** binding sites. Figure 17(c)
shows the —35KT/e isosurface of SV40. This electrostatic
potential distribution is consistent with the observed distri-
bution of Ca?* binding sites shown in Fig. 17(d).®" The

J. Chem. Phys. 132, 174112 (2010)

(c) (d)

FIG. 17. +1KT/e (blue) —1KT/e (red) potential isosurfaces for SV40 capsid
immersed in 0.125 M NaCl computed using PBms; (a) external view; (b)
cut-away view; (c) the =35KT/e (pink) isosurface, black dots are used to
represent the hexavalent symmetry of the potential distribution; and (d) Ca**
binding sites on the SV40 surface.

highly negative electrostatic potential in these sites supports
strong cation binding there, which suggests that PBms facili-
tated the discovery of electrostatic interaction sites.

VIl. CONCLUSIONS

An efficient numerical method for calculating the elec-
trostatic potential based on multiscale analysis was validated.
Our methodology enabled the simulation of large supramo-
lecular assemblies, making electrostatic simulation of com-
plex systems such as nucleic acids and viruses possible in
reasonable time and using limited computational resources.
The accuracy of our results to O(o?) justified the multiscale
ansatz and the decomposition of the charge density. We dem-
onstrated convergence and probed conditions under which
the theory breaks down using a Padé approximant analysis to
reveal anomalies in the complex length scale ratio (o) plane.
The approach was demostrated on CCMV, STMYV, and SV40.
As with other field theoretic approaches, the method is ex-
pected to break down for tight binding problems such as
involving complexes of divalent ions and RNA. However,
the scaling approach could be applied to extended PB models
which incorporate corrections for tight binding (Stern
layer)49 and finite ion size.*? Accuracy and efficiency of the
method are realized for systems with well separated charac-
teristic lengths (e.g., the average nearest-neighbor atom dis-
tance versus the overall size of a nanostructure). One of the
advantages of the approach is that it automatically generates
the o (and hence salinity) dependence of the potential,
thereby allowing for efficient parameter studies. The theory
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revealed biologically relevant details on structural features
such as the location of calcium binding sites on SV40 pen-
tamers.

Even though the theory was developed and implemented
for two scales, it can be generalized to account for additional
scales. We believe our PBms solver is a valuable asset for
solving a variety of bionanosystem electrostatics problems.
For example, it could be used to solve Poisson’s equation
coupled to reaction transport laws for the mobile ions to
simulate time-dependent phenomena. The speed-up of PBms
could be improved via use of other linear solvers™ to com-
pute b, 6, and ¢ and by optimizing various aspect of the
PBms workflow (notably parallelization). PBms will be com-
patible with standard graphics and molecular manipulation
codes.
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APPENDIX A: DERIVATION OF THE MULTISCALE
PB EQUATION

For simplicity, first consider the PB equation in one di-
mension. Equation (2.1) in one dimension becomes

d{ d
—le—® + =0. Al

dx(de (X)) fx) (A1)
In light of the argument given in Sec. II, the dependence of

@ is assumed to be ®(X,x), where X=ox. Therefore

oD(X, IP(X,
dp(x.x) = SPED IOXY) | e
X X X
dd(X,x) IP(X,x) IP(X,x) | dX
= + —.
dx ax |y X |,dx
As X=ox,
dd(X, oD (X, dD(X,
(Xx)_ 00| | 0(XY) a0
dx ax |y X |,

Making similar calculations for the PB equation, one obtains
the multiscale PB equation in one dimension

(%+o§>{s<i+0£{><b()€)] +f(X,x)=0. (A3)

Since the total charge density f can be written as a sum of
discrete f,; and continuous f, densities, Eq. (A3) becomes

J. Chem. Phys. 132, 174112 (2010)

d d d d

(a + U;{) [8<E + a’a>q)(x)} + f.(X,x, D)
+f4(X,x)=0. (A4)

Extending Eq. (A4) in three dimensions yields Eq. (2.2)
(Vo+0V)) - [ &(Vo+ oV)D)]+ £u(R.A.D) + fulR.) =0,
(AS)

where

Vom it s j okl V=i 4 j sk
dx “dy 9z oxX “9Y 9z

for R=07, where rF=ix+jy+kz and R=iX+]Y+kZ.

APPENDIX B: ANALYSIS OF THE FIRST ORDER
EQUATIONS

To O(o) in the perturbation series, one obtains

PD,+V,- (sV,Dp) + V, - (£V,Dy) +fc(0)(q)0,§f) =0.
(B1)

To solve this equation, define a variable b as in Eq. (3.3) that
is the solution of

Pb,+ deldr,=0, a=1,.2,3. (B2)

Here, « designates the direction x, y, or z.
Since Eq. (B1) is linear in @, ®; can be written as a
sum of two terms. Define ¢ such that

D, =b-V, 0"+ if. (B3)
This implies
P®, =Pb -V, " + Py (B4)
Since ®* is independent of 7, V}@*:ﬁ. Therefore,
PD, =V ,®" Pb+ Py (B5)
Inserting Eq. (BS) in Eq. (B1) implies
V0% Pb+ P+ V- (8V,Dg) + ¥, - (VD)
+ fu)(®g,R,7) = 0. (B6)
That CI)0=CI)*(I€)+ 0(15,;7) and €0¢*=6 implies
V1<IJ* Pb+ 13¢/+ V} . (sﬁ[@* +6]) + ﬁ . (8600)
+fc(0)(¢o»§f) =0. (B7)
Collecting the above results implies
V1<IJ* . (131;+ V}s) + f’z,/;+ 60 . (sﬁl 0) + V. (8500)
+fc(0)(q)0»§’;) =0. (B8)
Using Eq. (B2) yields
P+ V- (6V,0)+ V, - (8Vo0) + fo(0) (P, R.7) =0. (BI)

This justifies Eq. (3.4).
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Let b,=c,—r,. With Eq. (B2), this implies
P(c,—ry) + deldr,=0.

As Pr,=de/dr,, this yields Pc,=0, justifying Eq. (3.5).

APPENDIX C: PROPERTIES OF SAMPLING
FUNCTION W

A motivation for the properties of the weighting function
W is as follows. Define an averaging (...)

(A)EfcﬁrW(?S—?)A. (C1)

When A is of the form V}-Ji e.g., for j=s§0¢2, A
=V (eVo®D,),

(A) = f &Prwv,-J. (C2)
Using WVAO-JﬂzVAO-(JAW)—JA-VAOW implies
(A) = J Br{Vy- (JW) =T - VW (C3)

Using the divergence theorem, the first term becomes

[dS(JW) -7, where 7 is a unit vector normal to the surface of
integration S, taken at infinity when considering nanosystem
to be immersed in a virtually infinite medium. Since the in-
tegrand is zero far from the nanosystem, the integral is zero.

The second term is of the form [d*rJ-V,W. We choose
W to be nonzero in a zone of diameter O(0™!?) and to only
have spatial variations on a scale of O(o™!?) within this
zone, allowing W to mediate local averaging. For example,
one may choose

W(7.R) = N exp — {o(F — NYA% (C4)

to sample 7 space in the vicinity of a point 75=0"'R. With
this VoW is O(o). When written in this way, W enables av-
eraging over a zone of intermediate size, i.e., much greater
than O (¢”) and much less than O(c™}).

Thus multiplying both sides of Eq. (3.6) with W and
integrating over 7 imply that all the integrands being O(d?),
their volume of integration is O(¢™?) yielding contributions
of the O(c~3). However, in accordance with the previous
set of arguments, (V,-(eVy®,)) is reduced to
Jd&r(eVy®,)-VoW. VoW being O(0),(Vy (eVyP,)) be-
comes O(072) and therefore can be neglected in comparison
to the other terms as o— 0. This justifies Eq. (3.7). A par-
ticular choice of A is nearest-neighbor distance between at-
oms in the nanosystem, i.e., a few angstrom. This makes the
averaging distance o~?A to be a few nanometers and medi-
ates local averaging.
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