
Acidification-dependent activation of CD1d-restricted natural killer
T cells is intact in cystic fibrosis

Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder

caused by mutations in the CF transmembrane conduc-

tance regulator (CFTR) gene which encodes a cAMP-regu-

lated chloride channel. There is currently no cure for CF

and the median life expectancy for CF patients is

37 years.1–3 Lung disease is the primary cause of morbidity

and mortality in CF. Soon after birth, infection with bac-

terial pathogens begins, triggering an intense neutrophilic

response localized to the peribronchial and endobronchial

spaces. Intriguingly, only a limited number of bacterial

pathogens colonize the airway in CF, with the most clini-

cally relevant being Pseudomonas aeruginosa.4 Although a

number of hypotheses have been proposed (reviewed in

refs2,4), there is still no clear consensus linking mutations

in CFTR to development of chronic infection with

P. aeruginosa. In this study we explore the link between

CFTR deficiency and lung infection with P. aeruginosa by

examining the capacity of CFTR-deficient dendritic cells

(DCs) to stimulate natural killer T (NKT) cells.

Natural killer T cells, a specialized type of T cell, are

emerging as critical regulators of the immune response to

infectious agents.5,6 The NKT cells may be particularly

important in CF as evidence suggests that NKT cells play

a central role in clearing P. aeruginosa from the lung7 and

gastrointestinal tract.8 In contrast to conventional major

histocompatibility complex-restricted T cells, NKT cells

express a semi-invariant T-cell receptor (iTCR) that rec-

ognizes glycolipid antigens presented by CD1d molecules

on the surface of antigen-presenting cells, such as DCs

and macrophages.5,9 Current knowledge of the glycolipid

antigens that activate NKT cells for antimicrobial defence

is incomplete, although these glycolipids appear to include
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Summary

CD1d-restricted natural killer T (NKT) cells are emerging as critical regu-

lators of the immune response to infectious agents, including Pseudomo-

nas aeruginosa; and therapies to augment NKT-cell activation may

represent a novel approach to treat chronic, antibiotic-resistant bacterial

infections. We examined the capacity of dendritic cells (DCs) from people

with cystic fibrosis (CF) to activate NKT cells. Our study was motivated

by three lines of evidence: (i) NKT cells play a critical role in clearing

P. aeruginosa infection; (ii) activation of NKT cells requires acidification-

dependent processing of glycolipid antigens within the endolysosomal

compartment; and (iii) endolysosomal acidification may be reduced in

CF. We demonstrated that NKT-cell activation was dependent upon intact

organelle acidification as inhibitors of the vacuolar (H+)-ATPases pre-

vented DCs from activating NKT cells with two glycolipid antigens,

a-galactosylceramide and galactose-galactosylceramide. In contrast, cystic

fibrosis transmembrane conductance regulator (CFTR) chloride channel

dysfunction had no significant biological impact on the capacity of DCs

to activate NKT cells. Dendritic cells from subjects with CF and DCs trea-

ted with the thiazolidinone CFTRinh-172 inhibitor showed no reduction in

their ability to activate NKT cells. Based on these data, we find no evi-

dence for an inherent defect in glycolipid antigen presentation to NKT

cells in CF subjects.

Keywords: acidification; cystic fibrosis; natural killer T cell; Pseudomonas

aeruginosa
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both pathogen-derived and host-derived lipids.10–12 For

experimental purposes most groups utilize a-galactosyl-

ceramide (a-GalCer) and galactose-galactosylceramide

(GalGalCer), two well-characterized glycolipids that bind

to CD1d and are recognized by the iNKT-cell TCR.

Optimal lipid antigen presentation by CD1d, leading to

activation of NKT cells, is dependent on endosomal

acidification.13–16

Natural killer T-cell biology has been the focus of much

recent attention as therapeutic augmentation of NKT-cell

activity through the administration of lipid antigens is

being trialled as a cancer therapy and may also play a role

in managing human infections, such as CF.17,18 Moreover,

boosting innate immune responses is particularly attrac-

tive in CF as this may allow the eradication of pathogens

that are resistant to multiple antibiotics.19

The fact that NKT-cell activation appears to be depen-

dent on endosomal acidification, combined with the

observation that NKT cells contribute to clearance of

P. aeruginosa from the lung, provides an intriguing (and

testable) link between CFTR deficiency and chronic air-

way infection with P. aeruginosa. For many years it has

been suggested that endolysosomal acidification is defec-

tive in CF. In what has been coined the ‘defective orga-

nelle acidification’ hypothesis, it has been proposed that

CFTR provides a conductive pathway for chloride trans-

port across intracellular organelles promoting H+ influx

via a counter-ion effect.20–23 Hence in CF, endosomal

acidification may be inadequate as H+ pumping is electri-

cally limited by defective CFTR-mediated chloride trans-

port. Although we appreciate that evidence supporting an

endosomal acidification defect in CF is far from unani-

mous,24–29 given that there is potential to develop thera-

pies to boost NKT-cell activity and enhance clearance of

infectious agents, in this study we examined endosomal

acidification-dependent NKT-cell activation by DCs from

patients with CF. Specifically, we hypothesized that DCs

with dysfunctional CFTR would be less potent activators

of CD1d-restricted NKT cells than DCs with intact

CFTR-mediated chloride conductance.

Materials and methods

Dendritic cell preparation

Blood samples from healthy volunteers and patients diag-

nosed with CF were obtained at BC Children’s Hospital,

Vancouver, Canada. The diagnosis of CF was established

by classic clinical features including increased sweat chlo-

ride concentrations (> 60 mmol/l). The CF subjects

enrolled in this study had the following CFTR mutations:

DF508/DF508 = 4, DF508/621 + 1G> T = 1, DF508/

G85E = 1, DF508/unknown = 1, unknown/unknown = 1.

Patients receiving systemic immunosuppressive medica-

tions such as oral corticosteroids and azithromycin were

excluded from the study. All samples were obtained with

informed consent with the approval of the University of

British Columbia Clinical Research Ethics Board. Periph-

eral whole blood was collected in sodium heparin Vacu-

tainer� tubes (BD Biosciences, Mississauga, ON, Canada)

and peripheral blood mononuclear cells (PBMCs) were

isolated by density gradient centrifugation as previously

described.30 Monocytes were purified from PBMCs by

magnetic bead separation using a CD14-positive selection

kit and an autoMACS� Pro Separator (Miltenyi Biotec,

Auburn, CA) following the manufacturer’s protocols. The

CD14-positive cells were resuspended in R10 consisting of

RPMI-1640 medium supplemented with 10% (v/v) fetal

calf serum (HyClone, Ottawa, ON, Canada), 2 mM L-glu-

tamine, 1 mM sodium pyruvate, 100 U penicillin, 100 lg

streptomycin (Invitrogen, Burlington, ON, Canada),

100 ng/ml granulocyte–macrophage colony-stimulating

factor and 100 ng/ml interleukin-4 (IL-4; Fitzgerald

Industries, Acton, MA). The cells were incubated in six-

well plates at 37� and 5% CO2 for 96 hr to allow the cells

to differentiate into immature DCs (iDCs).

Quantification of CFTR messenger RNA expression in
human cells

Expression of CFTR messenger RNA (mRNA) in charac-

terized cell populations was quantified by real-time poly-

merase chain reaction (PCR). The PBMCs from healthy

volunteers were prepared as described above, stained with

CD14-PECy7 antibody for monocyte isolation and sorted

using a FACSAria flow cytometer (BD Biosciences) into

CD14-positive populations. Immature DCs were prepared

from a fraction of sorted monocytes and differentiated

for 96 hr as described above. A bronchial epithelial cell

line (NuLi) was used as a positive control for CFTR

expression. Messenger RNA was harvested from the cell

populations using an RNeasy Plus kit (QIAGEN, Missis-

sauga, ON, Canada) and transcribed to complementary

DNA using a SuperScript cDNA synthesis kit (Invitro-

gen). Expression of CFTR was calculated relative to

b-actin and was quantified by SYBR GreenER (Invitrogen)

chemistry using a 7300 Real Time PCR System (Applied

Biosystems, Foster City, CA). The primers used were,

CFTR-forward 50-ACACGTTGAAAGCAGGTGGGATTC-30,

CFTR-reverse 50-ACTGCGACAACTGCTATAGCTCCA-30,

ACTB-forward 50-GTTGCGTTACACCCTTTCTT-30 and

ACTB-reverse 50-ACCTTCACCGTTCCAGTTT-30 under

standard cycling conditions. The expression of the CFTR

gene was calculated relative to iDCs by the 2)DDCT method.

NKT-cell preparation

Human NKT-cell clone BM2a.331 was thawed and mixed

in a 1 : 2 ratio with irradiated PBMCs plus 5 lg/ml phy-

tohaemagglutinin (PHA) and allowed to proliferate for a
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minimum of 14 days in T-cell medium [R10 supple-

mented with 1% non-essential amino acids (Invitrogen),

2% heat-inactivated human AB serum (Mediatech,

Manassas, VA) and 200 U/ml IL-2] at 37� and 5% CO2.

NKT-cell activation assay

The iDCs and NKT cells were harvested by gentle pipett-

ing, then washed and resuspended in R10. Both iDCs and

NKT cells were mixed in a 1 : 1 ratio and incubated in a

96-well plate (5 · 105 each cell type/well). In select exper-

iments the iDCs were pre-treated with the vacuolar-type

H+-adenosine triphosphatase (ATPase) inhibitors con-

canamycin A (2�5 or 12�5 nM) or bafilomycin (100 mM)

or the thiazolidinone CFTR inhibitor CFTRinh-172

(10 lM) (Sigma, Oakville, ON, Canada) diluted in dim-

ethylsulphoxide (DMSO). The cells were pre-treated for

30 min at room temperature before addition of NKT cells

and glycolipid antigens. CD1d glycolipid antigens a-Gal-

Cer or GalGalCer were prepared as described previously.32

Controls consisted of untreated NKT cells alone, NKT

cells incubated with 5 lg/ml PHA and NKT cells treated
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Figure 1. Quantification of CFTR messenger RNA (mRNA) expres-

sion by human dendritic cells (iDCs), monocytes and airway epithe-

lial cells. Expression of CFTR mRNA was quantified by real-time

polymerase chain reaction and the data were expressed relative to

iDCs using the 2)DDCT method. Values represent mean ± SEM of

iDCs and monocytes isolated from three healthy donors. The bron-

chial epithelial cell line (NuLi) was used as a positive control for

CFTR expression (n = 3 separate experiments).
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Figure 2. Endosomal acidification blockade

using V-type H+ adenosine triphosphatase

(ATPase) inhibitor concanamycin A prevents

natural killer T (NKT) -cell activation. The

human NKT-cell BM2a.3 clone was stimulated

with GalGalCer (a, b) or a-GalCer (c, d) at

varying concentrations presented by either

untreated healthy adult control dendritic cells

(DCs) or healthy adult control DCs treated

with concanamycin A (2�5 nm and 12�5 nm).

Enzyme-linked immunosorbent assays were

used to quantify NKT-cell secretion of the

cytokines interleukin-4 (IL-4; a, c) or inter-

feron-c (IFN-c; b, d). In control experiments,

concanamycin A (12�5 nm) did not prevent the

activation of NKT cells when stimulated with

phytohaemagglutinin (PHA; e, f ). Values

represent mean ± SEM of 3–11 samples per

group. *** signifies P < 0�001 and ns signifies

no significant difference.
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with PHA plus inhibitor or vehicle (DMSO). The cells

were incubated at 37� and 5% CO2 and the culture super-

natants were harvested after 24 hr. Concentrations of IL-4

and interferon-c (IFN-c) were measured by enzyme-linked

immunosorbent assay (eBioscience, San Diego, CA).

Statistical analysis

Cytokine production between groups was compared by

analysis of variance with Bonferroni post-test for

multiple comparisons. P-values < 0�05 were considered

significant.

Results

CFTR mRNA is expressed by DCs and other
peripheral blood cells

As a first step we examined CFTR mRNA expression in

DCs, monocytes and airway epithelial cells. Using quanti-

tative reverse transcription-PCR we demonstrated that

immature DCs, monocytes and airway epithelial cells all

expressed similar detectable levels of CFTR mRNA

(Fig. 1).

Inhibiting DC organelle acidification prevents
NKT-cell activation by glycolipid antigens

To validate the critical role that organelle acidification

plays in the activation of NKT cells by DCs, we treated

the DCs with inhibitors of the vacuolar (H+)-ATPases

(V-ATPases). The pH within many intracellular com-

partments is regulated by V-ATPases and inhibition of

V-ATPases prevents endosomal acification.33 For these

studies, V-ATPases were blocked with the well-character-

ized and potent inhibitors concanamycin A and bafilo-

mycin.34

Blockade of V-ATPases with either concanamycin-A or

bafilomycin abrogated the ability of the DCs to activate

NKT cells with two prototypical glycolipid antigens,

a-GalCer and GalGalCer (Figs 2 and 3). Specifically,

pre-treatment of DCs with concanamycin A inhibited

a-GalCer- and GalGalCer-triggered NKT-cell secretion of

IL-4 and IFN-c by > 97% (P < 0�001) (Fig. 2a–d).

Similarly, bafilomycin pre-treatment of DCs inhibited

glycolipid-dependent NKT-cell activation by > 73%

(P < 0�001) (Fig. 3a–d). Importantly, control experiments

demonstrated that V-ATPase inhibition did not directly

influence the capacity of NKT cells to secrete IL-4 and
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Figure 3. Endosomal acidification blockade

using V-type H+ adenosine triphosphatase

(ATPase) inhibitor bafilomycin prevents natu-

ral killer T (NKT) -cell activation. The human

NKT-cell BM2a.3 clone was stimulated with

GalGalCer (a, b) or a-GalCer (c, d) at varying

concentrations presented by either untreated

healthy adult control dendritic cells (DCs) or

healthy adult control DCs treated with bafilo-

mycin (100 nm). Enzyme-linked immunosor-

bent assays were used to quantify NKT-cell

secretion of the cytokines interleukin-4 (IL-4;

a, c) or interferon-c (IFN-c; b, d). In control

experiments, bafilomycin (100 nm) had a mini-

mal biological effect on the activation of NKT

cells when stimulated with phytohaemaggluti-

nin (PHA; e, f ). Values represent mean ± SEM

of three samples per group. *** signifies

P < 0�001 and ns signifies no significant differ-

ence.
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IFN-c. The NKT-cell responses to PHA were not altered

significantly by the addition of concanamycin A whereas

the addition of bafilomycin only decreased the cytokine

output by approximately 20% (Figs 2e,f and 3e,f).

CFTR inhibition does not alter glycolipid-dependent
activation of NKT cells by DCs

Having established that activation of NKT cells by DCs in

our experimental system was sensitive to blockade of

organelle acidification, we next examined if NKT-cell acti-

vation was influenced by inhibition of CFTR function.

The well-characterized thiazolidinone CFTRinh-172 inhibi-

tor was used to block CFTR chloride conductance with

high affinity and selectivity.35 Importantly, two indepen-

dent groups have demonstrated that 10 lM CFTRinh-172

prevented complete endosomal acidification21,22, although

a third group failed to reproduce these data.25 Therefore,

we hypothesized that CFTR blockade by CFTRinh-172

would decrease the ability of DCs to activate NKT cells

following stimulation with glycolipid antigens. However,

pre-treatment of DCs from healthy donors with CFTRinh-

172 did not alter the NKT-cell responses triggered by Gal-

GalCer (Fig. 4a,b) whereas a-GalCer stimulated cytokine

output was statistically significantly reduced, although this

biological effect was small compared with the V-ATPase

inhibitors (Fig. 4c,d). Importantly, the responsiveness of

NKT cells alone to PHA stimulation was unaltered by

CFTRinh-172 (Fig. 4e,f).

DCs from CF patients are able to activate NKT cells

To model the human situation, we isolated DCs from

patients with CF and healthy age-matched controls and

assessed the capacity of these DCs to activate NKT cells

following exposure to glycolipid antigens. Consistent with

the lack of impact of CFTRinh-172 on NKT-cell activation

(Fig. 4), DCs from CF patients and controls were indis-

tinguishable in their ability to activate NKT cells follow-

ing stimulation with GalGalCer and a-GalCer (Fig. 5a–d).

We also examined the capacity of CF and control DCs to

present self-antigens to NKT cells. It has been demon-

strated previously that NKT cells will generate weak

responses to CD1d-presented endogenous self-antigens in

the absence of added antigen or microbial products.31

However, the baseline cytokine secretion of NKT cells co-

cultured with DCs without glycolipid was not significantly

altered if DCs were from CF patients or healthy controls
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Figure 4. Cystic fibrosis transmembrane con-

ductance regulator (CFTR) inhibition does not

alter natural killer T (NKT) -cell activation.

The human NKT cell BM2a.3 clone was stimu-

lated with GalGalCer (a, b) or a-GalCer (c, d)

at varying concentrations presented by either

untreated healthy adult control DCs or healthy

adult control DCs treated with CFTR-172inh

inhibitor (2�5 lm and 10 lm). Enzyme-linked

immunosorbent assays were used to quantify

NKT-cell secretion of the cytokines interleu-

kin-4 (IL-4; a, c) or interferon-c (IFN-c; b, d).

In control experiments, CFTR-172inh (10 lm)

had no impact on the activation of NKT cells

when stimulated with phytohaemagglutinin

(PHA; e, f ). Values represent mean ± SEM of

three to five samples per group. **P < 0�01,

***P < 0�001 and ns signifies no significant dif-

ference.

292 � 2010 Blackwell Publishing Ltd, Immunology, 130, 288–295

S. E. Rzemieniak et al.



(IL-4: control = 185 ± 41 pg/ml versus CF = 135 ± 22

pg/ml; IFN-c: control = 215 ± 49 pg/ml versus CF = 321

± 138 pg/ml).

Discussion

Pseudomonas aeruginosa is the predominant and most

clinically relevant respiratory pathogen infecting patients

with CF.36 The unique tropism of P. aeruginosa for the

CF respiratory tract has not been adequately explained

and although a variety of hypotheses have been proposed,

there is still no widely accepted unifying explanation for

the peculiar propensity of P. aeruginosa to infect the CF

airway (reviewed in refs2,4). Understanding the immune

mechanisms that facilitate chronic P. aeruginosa infection

of the CF lung may lead to the development of novel

therapies. The ability to boost dysfunctional immune

responses may be particularly effective in combating

P. aeruginosa as this organism frequently develops resis-

tance to multiple antimicrobial agents.

The aim of this study was to assess a possible link

between CFTR dysfunction and P. aeruginosa infection

through an examination of acidification-dependent

NKT-cell immune function in patients with CF. Our

study was motivated by three lines of evidence: (i) NKT

cells play a critical role in clearing P. aeruginosa infec-

tion;7,8 (ii) activation of NKT cells by antigen-presenting

cells requires acidification-dependent processing of glyco-

lipid antigens within the endolysosomal compartment;13–16

and (iii) endolysosomal acidification may be reduced in

CF.20–23 Combined, these previous studies raise the test-

able possibility that acidification-dependent NKT-cell acti-

vation might be deficient in patients with CF, helping to

explain the tropism of P. aeruginosa for the CF airway.

Testing this hypothesis was particularly timely beause

therapeutic activation of NKT cells with the exogenous

glycolipids is currently being tested as a cancer treatment;

and if NKT-cell activation were found to be deficient in

patients with CF, a similar immunotherapy approach

might be useful to help clear P. aeruginosa from the CF

airway.17

We have specifically documented CFTR expression in

human monocytes and DCs (Fig. 1), consistent with pre-

vious reports from studies in humans and mice that some

monocytes/macrophages express CFTR at the mRNA and

protein level.21,37 In addition, recent work by Xu and col-

leagues confirmed CFTR mRNA and protein expression

in mouse DCs.38
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Figure 5. Cystic fibrosis dendritic cells (CF

DCs) are able to activate natural killer T

(NKT) cells. The human NKT cell BM2a.3

clone was stimulated with GalGalCer (a, b) or

a-GalCer (c, d) at varying concentrations pre-

sented by either DCs derived from CF patients

(n = 5) or healthy child controls (n = 4–5).

Enzyme-linked immunosorbent assays were

used to quantify NKT-cell secretion of the

cytokines interleukin-4 (IL-4; a, c) or inter-

feron-c (IFN-c; b, d). Values represent mean ±

SEM of four or five samples per group.
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In our model system we confirmed that glycolipid-

mediated activation of NKT cells by DCs was dependent

on organelle acidification. Pre-treatment of DCs with the

well-characterized V-ATPase inhibitors, concanamycin A

and bafilomycin, almost completely abolished NKT-cell

responses to glycolipid antigens (Figs 2 and 3), as

reported by other groups.13–16 In contrast, CFTR chloride

channel dysfunction had no significant biological effect

on the capacity of DCs to activate NKT cells following

exposure to the classic glycolipid antigens, a-GalCer and

GalGalCer (Figs 4 and 5). Although we found that the

highest concentrations of CFTRinh-172 decreased NKT-

cell activation by 10–30% (Fig. 4), these small changes are

unlikely to be immunologically significant in vivo. Most

importantly, we validated these findings in the human

system and showed that DCs from patients with CF had

no defects in their ability to activate NKT cells.

Why did we fail to support our original hypothesis?

Why did functional CFTR deficiency fail to reduce the

capacity of DCs to activate NKT cells following exposure

to glycolipid antigens? The most likely answer is that CF

is not associated with an immunologically relevant defect

in organelle acidification. There is long-standing interest

concerning the possibility of defective organellar acidifi-

cation in CF cells (as recently reviewed in ref.39).

Defective acidification of the trans-Golgi, endosomes and

pre-lysosomes in CF was initially reported in 1991 by

al-Awqati’s group.20 Since this initial provocative observa-

tion, multiple groups using an array of experimental

approaches have both supported20–23 and refuted24–29 the

observation that organelle acidification is defective in CF,

and the debate continues. Rather than join in this divided

biochemical debate, we investigated a clinically relevant

immunological function that is dependent on endolysoso-

mal acidification – namely, glycolipid-dependent activa-

tion of NKT cells by DCs. Our data demonstrate that the

ability of DCs to activate NKT cells with glycolipid

antigens was not dependent on CFTR function. Impor-

tantly, the results were similar regardless of whether

CFTR dysfunction was achieved pharmacologically, using

CFTRinh-172, or naturally, using DCs from CF patients

with pathological CFTR mutations.

In conclusion, we have shown that DCs from patients

with CF have no defect in their ability to activate NKT

cells in response to classic glycolipid antigens. Therefore,

it is unlikely that a failure to fully activate NKT cells

contributes to the susceptibility of CF patients to develop

chronic pulmonary infection with P. aeruginosa, and

people living with CF are unlikely to benefit from thera-

pies designed to augment NKT-cell activation.
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