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Introduction

With the increasing importance of regenerative medicine, the 
study of cellular proliferation, migration, and other processes 
in a 3D construct is critical for the rapid advancement of tissue 
engineering. Microscopy provides a key tool to monitor cellu-
lar activities as a function of matrix properties. Histological and 
immunohistochemical staining methods have been the stan-
dard in imaging cell and tissue samples in vitro. While yield-
ing detailed, high-quality images, and allowing visualization of 
specific cellular structures or proteins, histology and immunohis-
tochemistry generally necessitate sample fixation, which inhibits 
dynamic study over time. Fluorescence microscopy has thus been 
extensively used to image live cells and tissues with the devel-
opment of versatile probes. However, in light of the additional 
considerations required in fluorescence labeling, such as photo-
bleaching or processing time, it is intriguing to explore label-free 
imaging techniques that provide specific contrast between the 
cells and the supporting matrix to track the growth or changes of 
live samples over long periods of time.

Recent advances in CARS microscopy have realized high-speed 
bond-selective chemical imaging of biological samples.1-5 CARS is 
a nonlinear optical process related to Raman scattering. The reso-
nance CARS signal is generated when the frequency difference 
between a pump beam at ω

p
, and a Stokes beam at ω

s
, is tuned 

to match a Raman-active vibration.6 The coherent nature and the 
focus of excitation energy on a single vibrational band render the 
CARS signal orders of magnitude stronger than a spontaneous 
Raman signal. CARS microscopy was first reported in 1982 with 
a non-collinear beam geometry,7 and was revived in 1999 with a 
collinear beam geometry.8 Since the development of laser-scanning 
CARS microscopy with near infrared picosecond pulse excitation,9 
various applications have been demonstrated. Specifically, CARS 
microscopy has been employed for label-free imaging of biological 
and biomedical samples including single lipid bilayers,10-12 native 
drug molecules,13 axonal myelin sheath,14-16 lipid bodies,17-20 and 
lipid-related lesions.21-24 Furthermore, CARS microscopy has been 
employed for in vivo studies of skin,25 sciatic nerve,15 C. elegans26,27 
and small intestine.28 However, CARS imaging of cellular growth 
in a gel scaffold has not been explored to date.
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Cultured DRGs in different gel scaffolds were analyzed using CARS microscopy to determine its possible use as a label-free 
imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of 
CARS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, ωp-ωs, to 
match the vibration of C-H bonds in the cell membrane, the CARS signal yields detailed, high-quality images of neurites with 
single membrane detection sensitivity. The results demonstrate that CARS imaging allows monitoring of cellular growth 
in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard 
fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of 
organogenesis processes in a tissue scaffold.
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reduced the level of CARS intensity from the gel. Consequently, 
negative contrast was observed at each depth. We were able to 
obtain CARS contrast from the neurites as deep as 500 mm into 
the gel. Importantly, although the sample has a thickness of 2 
mm, we found the forward-detected CARS signal to be about 20 
times stronger than the epi-detected CARS signal, and we have 
used forward-detection for the following studies.

To observe progression of neurite growth, CARS images of 
cell outgrowth were taken daily at the same location. Figure 4 
shows representative images of neurite growth over time at an 
area near the DRG body in different hydrogel matrices. In one 
case, the distribution of the CARS signal from day 1 to day 3 
shows a fan-shaped outward cell growth (Fig. 4A–C). In other 
instances, an outgrowth pattern that appeared more linear (Fig. 
4D–F) was observed. With each time point, increases in both 
neurite length and density were observed in our samples.

In addition to monitoring in situ neurite growth with time, 
the relative density of neurites was determined according to the 
intensity of the CARS signal (Fig. 5). Both increased outgrowth 
and increased cell density were observed from day 1 through day 
3 (Fig. 5A–C). The linear trend observed in the CARS signal 
intensity over these three time points implied that neurite growth 
had not reached a plateau by day 3 (Fig. 5D). These results dem-
onstrate the possibility of using CARS for quantitative assess-
ment of neurite growth. It is important to note that, although 
we observed significant neurite growth and thus associated the 
signal increase with an increase in neurite density, it is uncertain 
how much of this signal increase may have potentially come from 
increases in the membrane thicknesses of individual neurites.

The morphological structure derived in CARS imaging was 
compared to those obtained with standard F-actin labeling. The 
confocal fluorescence image in Figure 6A and the CARS image 
in Figure 6B were acquired for comparison on a fixed, F-actin-

In this study, we demonstrate the applicability of CARS 
microscopy to label-free imaging of live neuronal cells in GAG 
hydrogels. By tuning the laser beating frequency, ω

p
-ω

s
, to match 

the vibration of C-H bonds in the cell membrane, the CARS 
signals yield detailed, high-quality images of neurites with sin-
gle membrane detection sensitivity. In addition, CARS imag-
ing enabled us to monitor cell growth in a tissue scaffold over 
time. These findings show the promise of CARS microscopy to 
assist in the understanding of organogenesis processes in a tissue 
scaffold.

Results

Twenty four unstained DRGs (12 in 0.5% HA gels and 12 in 
1% CS gels) were inspected by forward-detected CARS. Figure 
2 exemplifies the contrast and detail possible with the resonant 
CARS signal from CH

2
 stretch vibrations. Live neurites at the 

proximity to the DRG body (Fig. 2A) and at the growth cone 
(Fig. 2B) were observed with a signal to background ratio above 
4, as shown by the intensity profile in Figure 2C. We found that 
the gel background was largely contributed by the nonresonant 
CARS signal from water. Furthermore, the intensity profile shows 
that the lateral resolution, measured at full width at half maxi-
mum, was approximately 500 nm when the 40x objective was 
used (Fig. 2C). With this resolution and single membrane detec-
tion sensitivity,30,31 individual neurites were observed over time 
using CARS imaging.

The inherent 3D spatial resolution of CARS microscopy 
enabled us to examine the neurites at different depths, as shown 
in Figure 3. Using optical sectioning, the distribution of neurites 
was visualized by changing the focal plane. Notably, although 
the CARS signal is only produced at the focal center, scattering of 
the incident laser beam by the neurites right below the focal plane 

Figure 1. Experimental approaches. (A) Schematic drawing of a CARS microscope. The inset window shows the energy diagram of CARS. ωp: pump 
frequency; ωs: Stokes frequency; DM: dichroic mirror; PMT: photomultiplier tube. (B) Schematic of the composition of the gel scaffolds for the growth 
of DRG neurites. The figure is not to scale.
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labeled sample. The cell morphology in both images appears 
similar. Taking into consideration that the CARS imaging in the 
current study visualizes the cell membrane and/or lipid bodies, 
the similarity in overall morphology is likely due to the ubiqui-
tous distribution of actin in cells. A detailed comparison revealed 
small discrepancies in local areas, possibly because the two imag-
ing approaches target different molecules in the sample. The 
CARS contrast comes from lipid membranes and/or lipid bodies, 
while the phalloidin label targets F-actin that has been localized 
cytoplastically.

Discussion

The current study demonstrates the capability of CARS micros-
copy to image neuronal cell growth in a hydrogel. To visualize 
the cells, we tuned the laser beating frequency, ω

p
-ω

s
, to match 

the stretch vibration of C-H bonds. Because they are enriched in 
CH

2
 groups, the cell membranes largely contribute to the reso-

nant CARS signal. Meanwhile, we also observed a weaker CARS 
signal from the gel, contributed by the C-H bonds in the 0.5% 
or 1.0% GAG matrix, and we observed the non-resonant CARS 
signal, mainly from water. Despite the background noise, our 
method is able to produce a clear contrast between the cells and 
the gel, with a signal to background ratio as high as 4, as shown 

Figure 2. CARS images of unstained live neurites growing from the DRG body cultured in 1% CS gel matrix. CARS images of (A) live neurites at the 
proximity to the DRG body and (B) neurites and bulbs observed around the end of a neuronal growth cone. (C) Signal profile along a line indicated by 
the arrows in the inset image.

Figure 3. 3D structure of unstained neurites growing in a 1% CS gel 
matrix inspected by a laser-scanning CARS microscope. Representa-
tive images at different depths show the 3D distribution of the neurite 
growth. The number marked in each image indicates the depth relative 
to the bottom layer of neurite observed in the field of view.
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in Figure 2C. In the CARS image of a fixed sample (Fig. 6B) the 
contrast was a bit less than that obtained from live samples. There 
are two possible reasons for the reduced CARS contrast. One is due 
to sample fixation with 4% paraformaldehyde, which increased 
the background signal from the gel, and the other is due to per-
meabilization of membranes during the labeling procedure, which 
reduced the resonant CARS signal from the cell membrane.

Our study demonstrates CARS as a viable tool for imaging 3D 
matrix constructs without the use of labels. Label-free imaging is 

Figure 4. Monitoring growth of unstained neurites 
in hydrogels of 1% CS or 0.5% HA. (A–C) CARS 
images of the neurite growth in a 1% CS matrix on 
day 1 to day 3. (D–E) images of the neurite growth 
in a 0.5% HA matrix on day 1 to day 3. The images 
are z-stacks of 15 µm in depth comprised of 16 opti-
cal sections. Arrows represent the direction of the 
neurite growth.

Figure 5. Analysis of CARS signal of neurite growth: (A–C) In situ neurite growth in a 0.5% HA matrix on day 1 to day 3. (D) Relative density of 
neurites on day 1 through day 3. The analysis was performed according to the intensity in the 8-bit gray-scale 3-D images. Each data point represents 
the average number of the intensity results analyzed according to areas of three days (method).

especially advantageous for imaging cells in gel 
matrices, where permeability of labels through 
these matrices becomes a concern. In addition, 
extended, fixation, washing and staining steps 
need to be performed during labeling to ensure 
adequate penetration into the matrix. Such pro-
cedures can be sub-optimal if the matrix is not 
hydrolytically stable, and degrades significantly 
during the fixation and staining processes.

It is notable that label-free CARS imaging 
enables time-lapse monitoring of a sample over 

long periods of time without the problems of photobleaching 
and phototoxicity. In addition, because laser-scanning and wide-
field CARS microscopes allow fast imaging at 30 frames per sec-
ond,25,32 it is promising to use CARS microscopy to resolve rapid 
events on the scale of minutes or seconds. Relatively long-term 
real-time monitoring can be performed with a cell culture cham-
ber adapted with a common laser scanning microscope. From 
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CARS microscopy to be become a significant platform for tissue 
engineering research.

Materials and Methods

Polysaccharide-DTP conjugate synthesis. Chondroitin-6-
sulfate-3,3'-dithiobis(propanoic hydrazide) (CS-DTP) and 
hyaluronic acid-3,3'-dithiobis(propanoic hydrazide) (HA-DTP) 
conjugates were synthesized using the methods described by 
Shu and Prestwich.29 Briefly, CS (avg. MW = 19.9 kDa, Sigma-
Aldrich) or HA (avg. MW = 110 kDa, Genzyme Corp.,) were 
dissolved in Milli-Q water. DTP was added, and the pH was 
lowered to 4.75 through addition of 1 N HCl. After 90 minutes, 
the reaction was quenched by raising the pH to 7.0 by addition 
of 1 N NaOH. Dithiothreitol (Sigma-Aldrich) was added, the 
pH was raised to 8.5 by addition of 1 N NaOH, and the reac-
tion was stirred for 24 hours. pH was lowered to 3.5 by addi-
tion of 1 N HCl, and the reaction was dialyzed against 0.3 mM 
HCl containing 100 mM NaCl for 2 weeks, followed by dialysis 
against 0.3 mM HCl for several days. Reaction products were 
then lyophilized and stored at -80°C under nitrogen until use. 
The degree of GAG modification was determined through NMR 
and an Ellman’s assay, and found to be 60% for CS and 67% for 
HA.

Dorsal root ganglia culture. Fertilized White Leghorn eggs 
were obtained from the Purdue Animal Sciences Research Farm. 
DRGs were dissected from day 8 embryos and stored in Puck’s 
saline until use. DRGs were added using forceps to 100 µl of a 
solution of PEG-DA (MW = 3,400 Da, Sunbio Systems, Inc.,) 
crosslinker in Neurobasal medium (Invitrogen) modified with 
N2 supplement (100 µg/ml transferrin, 5 µg/ml insulin, 6.3 ng/
ml progesterone, 16.11 µg/ml putrescine, 5.2 ng/ml selenite, 
Invitrogen), 5 µg/ml fibronectin (Invitrogen), 20 ng/ml NGF 

such studies, important information such as growth rate and cell 
migration can be derived.

It is also notable that multiplex CARS (M-CARS) is able to 
provide spectral information by utilizing a narrowband and a 
broadband excitation field.33,34 In M-CARS microscopy, not only 
vibrational imaging, but also simultaneous acquisition of a vibra-
tional spectrum can be achieved. Raman line-shapes, hidden in 
the complex combination of spectrum contributions from dif-
ferent vibrational modes and non-resonant contribution, can be 
extracted with or without priori information of vibrational spec-
trum of each element.19,35-37 Recent advances in fiber-based light 
sources have provided alternative ways for M-CARS implemen-
tations.38-41 M-CARS microscopy is generally implemented with 
a sample-scanning scheme that hinders high-speed imaging. To 
achieve high-speed vibrational imaging and fulfill fast spectral 
analysis at a specific location in the meantime, the combination 
of coherent Raman scattering microscopy and confocal Raman 
microspectroscopy, named compound Raman, has been devel-
oped.27,42 By employing the above technological advances, dif-
ferent elements in the gel scaffolds and tissue reconstructs could 
thus be precisely resolved.

Finally we would note that multimodal nonlinear optical 
imaging can be readily implemented on a CARS microscope 
either with picosecond43,44 or femtosecond excitation.45,46 The 
coupling of CARS with second harmonic generation would 
greatly enhance the capability of visualizing cells grown in 
a collagen matrix, such as immune cells in a collagen-infused 
hydrogel.47 By coupling CARS with two-photon excited fluo-
rescence from green fluorescent proteins, one could monitor 
the expression of specific proteins in specific location of cells 
in a 3D culture. More importantly, a compact CARS micro-
scope is becoming available with the development of fiber laser 
sources.48-50 In consideration of these opportunities, we expect 

Figure 6. Phalloidin labeling of F-actin of neurites compared to CARS images. (A) Overlaid image of signals from phalloidin labeling and CARS. (B) 
CARS image of the location shown in (A). The image exhibited lower contrast due to the higher non-resonant CARS signal resulting from the fixation 
of the sample.
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stretch vibration for CARS imaging. The average powers of 
the pump and the Stokes beams were 40 mW and 20 mW, 
respectively, at the sample. External photomultiplier tube detec-
tors (PMT, H7422-40, Hamamatsu, Japan) were installed for 
receiving signals in forward and backward directions (Fig. 1).  
The forward signal was collected using a 0.55 NA condenser, 
while the backward signal was collected with the 40x objective. 
Bandpass filters (600/65 nm, Ealing Catalog, Rocklin, CA) were 
used to transmit the CARS signal at approximately 588 nm.

For confocal microscopy, a 488 nm Argon ion laser was used 
for fluorescent imaging of the stained samples. Two bandpass 
emission filters centered at 520 nm with a bandwidth of 40 nm 
were used to transmit the fluorescence signal from the Alexa 
Fluor 488 phalloidin.

Quantitative analysis of neurite growth. Relative density 
of neurites was measured according to the CARS signal. 3D 
images of 60 µm were taken on day 1 to day 3 of growth. The 
images were then transferred to an 8-bit (256) gray scale, and 
a value of 26, which was calculated to be the mean intensity of 
the nonresonant CARS signal and electronic background, was 
deducted from each image. This deducted value was calculated 
according to the nonresonant signal from water, at an off-reso-
nant frequency at around 2,840 cm-1. Three areas, designated 
according to the distribution of neurite growth for each of the 
three timepoints, were used for the signal analysis. Within these 
designated areas, the average total intensity of all pixels through 
all 60, 1-µm layers was obtained. The derived value represents 
the relative density of neuronal membrane mass within the 
entire 60-µm layer.
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