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Abstract
In this paper we propose a novel approach to the design and implementation of knowledge-based
decision support systems for translational research, specifically tailored to the analysis and
interpretation of data from high-throughput experiments. Our approach is based on a general
epistemological model of the scientific discovery process that provides a well-founded framework
for integrating experimental data with preexisting knowledge and with automated inference tools.

In order to demonstrate the usefulness and power of the proposed framework, we present its
application to Genome-Wide Association Studies, and we use it to reproduce a portion of the initial
analysis performed on the well-known WTCCC dataset. Finally, we describe a computational system
we are developing, aimed at assisting translational research. The system, based on the proposed
model, will be able to automatically plan and perform knowledge discovery steps, to keep track of
the inferences performed, and to explain the obtained results.
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1. Introduction
The rapid evolution of high-throughput experimental methods in the past decade has led to a
revolution in the way biomedical research is performed, opening the way to large-scale
translational approaches. The exponential increase of the amount of data produced by each
experiment, at all levels (from next-generation DNA sequencing to genotyping, to gene
expression analysis, to proteomics, to high-level observations on genotype/phenotype
correlations) and at a steadily decreasing cost, has opened up unprecedented new opportunities
for studying biological systems on a large scale, taking a holistic perspective that promises to
expand our understanding of biological processes and of their connections with clinically
relevant findings. “In-silico” experiments, that are becoming part of the standard process of
knowledge discovery, consist of a complex sequence of iterative data analysis steps, each of
which produces intermediate data and results that need to be properly stored and maintained.
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However, the availability of such high volumes of data, combined with the need to access large
amounts of heterogeneous information available on the World-Wide Web, poses major
challenges in terms of data management and data analysis. The need for improved
computational environments oriented to data and knowledge integration has been widely
recognized. Resources like SRS [1] and NCBI's Entrez [2] have been empowered with sessions
and query management capabilities; the adoption of Web Services technology has allowed the
creation of complex, distributed data analysis tools (e.g., Soaplab [3], BioMOBY [4,5] and
BioMart [6]); the application of workflow management technology to biomedical research has
led to the implementation of IT platforms able to coordinate interdependent analysis steps [7]
(e.g., stand-alone tools like Orange [8], the Taverna workbench [9,10], and client-server
systems, like Pegasys [11] and BioWMS [12]).

In this paper we propose and discuss the application of KB-DSS to the field of translational
bioinformatics. As recognized in a recent seminal paper by Aniba et al. [13], the availability
of technological solutions is not enough, in itself, to cope with the data management and
knowledge discovery challenges encountered in current biomedical research. Drawing on past
experiences in other areas of biomedical informatics [14], we propose an architecture for the
implementation of knowledge-based decision support systems (KB-DSS) specifically tailored
to translational research. Such systems should be able to select and perform the data gathering,
analysis, and interpretation “actions” that would be the most appropriate towards solving a
given task, to automatically plan and perform knowledge discovery steps, keeping track of the
inferences performed, and to explaining the obtained results. Moreover, they should be able to
formally represent and manage multiple alternative hypotheses at the same time, and to use
them for planning experiments, and to update them according to the experiment results.

A recent example of a complete running system for automated discovery in molecular biology
is represented by the Robot Scientist project [15], which developed an autonomous system able
to generate hypotheses explaining the available evidence, to plan experiments to test them, to
run the experiments in a fully automated laboratory, and to interpret their results, starting new
cycles if needed. The idea of an explicit, structured representation of hypotheses has been
explored in a recent work by Roos et al [16], but without a well-defined reasoning framework
to operate on them. Past examples include a wide variety of medical expert systems for
diagnosis [17,18], therapy planning [19], patient monitoring and critical care [20].

Although the basic principles are similar, the use of KB-DSS for translational bioinformatics
presents some significant differences compared to the above-described experiences. To start,
while the traditional use of KB-DSS is aimed at diagnostic and therapeutic reasoning, in the
translational bioinformatics field the goal is, instead, to support scientific discovery. Moreover,
the classical architecture of a KB-DSS consists of an integrated knowledge base and a general
inference mechanism able to reason on the available data and knowledge. In the context of
translational bioinformatics, this model needs to evolve to take into account both the very large
scale of the datasets being studied (while a traditional biomedical expert system normally
handles up to a few hundred variables at most, high-throughput experimental techniques can
sample millions of variables at once), and the availability of an extremely large corpus of
background knowledge, in essentially unstructured form, in online repositories. As a
consequence, we believe that in order for a KB-DSS to be successful in this context, it should
be based on a conceptual framework designed to support the reasoning processes specific to
translational research. In this scenario, the goal is not to perform complete inferential and
experimental cycles, but to provide researchers with more efficient tools to better structure and
organize the research process, and to more efficiently perform its repetitive aspects. The
conceptual model should therefore include meta-models of reasoning in scientific discovery,
specialized to molecular medicine, and a powerful and general information management
architecture [13].
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We address these requirements by proposing an automated reasoning model that accurately
describes the current practice of scientific discovery in molecular medicine. The model can be
used to guide the development of KB-DSS for translational research, specifically tailored to
the analysis and interpretation of data from high-throughput experiments. Our approach is
based on a general epistemological model of scientific discovery process that provides a well-
founded framework for integrating experimental data with preexisting knowledge and with
automated inference tools. The model, called Select and Test Model (ST-Model) [21,22], was
initially developed in the field of Artificial Intelligence in Medicine to support the design and
implementation of expert systems. We will show that the ST-Model can be instantiated to guide
the development of KB-DSS for high-throughput biomedical research. We will also describe
a computational system we are developing, which allows investigators to explicitly formulate
and represent hypotheses grounded in existing biomedical knowledge, to validate them against
the available experimental data, and to refine them in a structured, iterative process.

As a proof of concept we will focus, in particular, on Genome-Wide Association Studies
(GWAS), which aim at discovering relationships between one or more variables at the
molecular level and a phenotype. Case-control association studies attempt to find statistically
significant differences in the distribution of a set of markers between a group of individuals
showing a trait of interest (the cases) and a group of individuals who do not exhibit the trait
(the controls). GWAS rely on large-scale genotyping techniques to analyze a very large set of
genetic markers, in order to achieve a sufficiently good coverage of the entire genome, a
strategy that is appropriate when there is little or no a priori information about the location of
the genetic cause of the phenotype being studied. Because of their increasing importance in
the field of molecular medicine, of the constant advances in the technology they are based on,
and of the analytical challenges they pose, GWAS are an ideal example to demonstrate the
application of our proposed approach.

This paper is structured as follows: Section 2 describes the ST-Model in detail; Section 3
presents the application of the ST-Model to GWAS, Section 4 is devoted to an overview of the
design and implementation of the computational system we are developing, and Section 5
describes a case study in which the ST-Model is applied to a well-known GWAS. The paper
ends with some conclusions summarizing the methodology described in the article and
discussing its applicability to translational research.

2. The ST-Model
Cognitive science research shows that experts engaged in a problem-solving task typically
perform a fixed sequence of inferential steps that may be repeated cyclically. In our context,
the task consists in generating and evaluating new explanatory hypotheses, starting from a
definition of the research problem and a set of available data. Following the well-known
Generate-and-Test paradigm [23], those steps are: i) a hypotheses selection phase, in which
the initially available information is used to generate a set of candidate hypotheses, and ii) a
hypotheses testing phase, in which hypotheses selected in the previous step are used to predict
expected consequences, that are then matched with available or other (possibly new)
information in order to confirm or disprove them.

As reported in [21], this can be described as a process of abduction, interpreted as an inference
to the best explanation. Formally, abduction is a method of logical inference introduced by
Peirce [24], corresponding to the logical fallacy known as “affirming the consequent”: if it is
known that α implies β, and β is observed to be true, then it can be assumed that α is true. Since
β may be true because of other causes, this inference may be wrong. This kind of inference is
defeasible and thus non-monotonic (since its conclusions may be disproved by additional
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evidence), and is at the basis of scientific discovery, theory revision, and both selective and
creative reasoning [21].

The ST (Select and Test) Model is a general framework for automated reasoning that formalizes
the process of inference to the best explanation as an iterative sequence of elementary
inferential steps. Each step in the model is implemented by a specific inference type, as shown
in the schema in Figure 1. The first step of the process is an abstraction, through which a set
of high-level features are extracted from the initial data and information. This is followed by
an abduction step, in which the abstracted features are used to construct one or more
hypotheses, each of which is a potential explanation for the observed data. Indeed, part of the
power of the framework comes from its ability to handle multiple competing hypotheses at the
same time. Hypotheses are then ranked to define the order in which they will be examined in
the following steps, according to preference criteria which can be application-dependent, or
defined on the basis of prior knowledge. The purpose of ranking is to ensure that the “best”
hypotheses are examined first, a heuristic strategy aimed at accelerating convergence to the
optimal solution. Next, a deduction step examines the best-ranked hypotheses and derives a
set of consequences that are expected to be true from each one. The deductive step will, in
general, make use of background domain knowledge. Predictions are then matched against the
available data, in the induction phase: hypotheses whose consequences match the available
data are retained, while those that contradict the available data are discarded. The process can
then be repeated cyclically: existing hypotheses can be refined, or new ones generated, on the
basis of additional data, the resulting set of hypotheses is re-ranked, and their expected
consequences are compared against the available experimental data. The process terminates
when no hypotheses are left, or when a sufficiently small number of hypotheses is reached.

Although the ST-Model is a general epistemological model of scientific reasoning, it can be
directly translated into a set of concrete computational steps. We will illustrate this through a
simple example using propositional rules (representing implications of the form “IF the
antecedent is true, THEN the consequent is true”). Let us imagine a knowledge base containing
rules expressing the relationship between transcription factors and the genes they regulate (see
Table 1). Each rule expresses a know fact of the form: “If transcription factor T is expressed,
then gene G is upregulated.” Let us also imagine we have performed a gene expression
microarray experiment, and that analysis of its results allows claiming that genes G1 and G3
are up-regulated and that gene G2 is unchanged, while no information is available on T1 and
T2 (this is the outcome of the abstraction step, in which “raw” numerical values are converted
into domain-specific assertions about the behavior of one or more biological objects). Starting
from the observation that gene G1 is up-regulated, the abduction step uses rules 1 and 3 to
generate the two alternative hypotheses “T1” and “T2”, since both of them cause gene G1 to
be up-regulated. The ranking step now orders the hypotheses, for example on the basis of a
certainty factor associated with each rule. Let us imagine that according to the ranking function
used here, hypothesis “T1” should be tested before “T2”. The deductive step now uses rule 2
to derive the fact that gene G2 should be up-regulated as an expected consequence of hypothesis
“T1”. The next step consists in verifying whether this predicted consequence is actually
confirmed by the available data. Since in this example gene G2 is not up-regulated, the
eliminative induction step will rule out hypothesis “T1”. Hypothesis “T2” is tested next, and
rule 4 produces the expected consequence that gene G3 should be up-regulated. Since this is
verified against the experimental evidence, hypothesis “T2” is selected as the best explanation
for the available data.

In the following sections we show how the ST-Model can be used as the basis for the
implementation of KB-DSS in translational bioinformatics, providing a sound way to organize
complex workflows and experiments (both in silico and in vitro), and grounding the analysis
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process on a clear epistemological framework. We will substantiate our claim by applying the
ST-Model to the problem of defining a KB-DSS for supporting GWAS.

3. The ST-Model for Genome-Wide Association studies
The ultimate goal of GWAS is to unravel the molecular mechanisms underlying complex
phenotypic traits, by searching for statistically significant differences in the distribution of a
set of genetic markers between a set of cases and one of controls. Since GWAS normally assume
little or no a priori knowledge about the genetic cause of the trait under study, they need to
essay a very large set of genetic markers, in order to sample the entire genome with a sufficiently
high granularity.

Although the technology to perform GWAS has in recent years seen dramatic improvements,
thanks to the development of genotyping microarrays and deep sequencing, these studies still
suffer from limitations that reduce their ability to tackle complex diseases [25]. In GWAS, as
in all high-throughput molecular medicine contexts, the number of genetic markers tested is
much higher than what can be analyzed manually. While the ability to sample hundreds of
thousands of variables in parallel provides great benefits in terms of throughput and
experimental costs, it also makes it harder to ensure that the results obtained are statistically
significant. The number of available subjects is often too small to guarantee a statistical power
sufficient to detect small causal effects, which are likely to be present in the case of complex
genetic disorders. Variables are treated as being independent of each other, while it is well
known that genetic factors are often correlated with each other (for example, due to genetic
linkage), and that the majority of phenotypes are caused by the interplay of multiple genetic
factors. Finally, these studies provide limited explanation capabilities: even when the analysis
phase is able to identify one or more genetic factors that are significantly associated with the
phenotype, it does not necessarily provide an indication of the mechanism through which they
affect the phenotype, something that instead has to be worked out a posteriori by the
investigator.

A KB-DSS for GWAS would help properly design and perform each inferential step, including
formulating new hypotheses, comparing them with the existing evidence, and planning
confirmatory experiments. The ST-Model described in the previous section provides a
foundation for automated reasoning and a meta-architecture for computational environments,
since it represents a general epistemological model. In the following, we describe the
instantiation of the ST-Model for case-control GWAS.

A classical GWAS can be represented in the following way:

- Abstraction: the first step consists of selecting the clinical measurements that are needed to
properly define the phenotype, and an initial set of individuals sharing the defined phenotype.
Phenotype definition, data pre-processing, variable summarization, SNP selection,
subpopulation handling, and correction for stratification, may all be viewed as part of the
abstraction step, which allows moving from a generic definition of the study to a “computable”
problem [26].

- Abduction: hypotheses are generated by testing the SNPs in the available dataset for
association with the phenotype. The analysis tool used to perform the statistical association
test produces a set of candidate SNPs as result; each SNP in this set therefore represents an
independent hypothesis, of the form “the alleles of SNP x are significantly associated with the
phenotype”. This step involves a creative abduction: at the start of the process, all SNPs can
potentially be associated with the phenotype, just by virtue of being part of the genotyping
dataset, but none of these associations is supported by evidence. Only after statistical analysis
those SNPs that are potential “good statistical explanations” for the phenotype are selected,
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and the hypothesis space is populated. This creative step differs from the selective abduction
performed in diagnostic reasoning, where a set of already established hypotheses is present in
the knowledge-base, and the data are only used to select the ones that may be a good explanation
of the data.

- Ranking: candidate SNPs are ordered according to their biological or statistical significance.
For example, the ranking function could be based on the p-values measuring the statistical
significance of the association, or on the location of each SNP in the genome.

- Deduction: once the hypothesis space is populated, the validity of each hypothesis (i.e., of
the association of each individual SNP with the phenotype) is assessed, relying on the biological
knowledge available on that SNP. In this phase, additional information about each top-ranked
candidate SNP is derived, with the goal of establishing a biologically-founded relationship
between SNPs and the phenotype that may explain the observed statistical association. A
common strategy is to identify genes located close to the SNPs, and to study the metabolic
pathways or GeneOntology classes they belong to, under the assumption that SNPs act as
markers for candidate genes. In the translational bioinformatics context, this step can rely on
the extremely extensive collections of biomedical information that are available in online
repositories, in order to identify possible consequences of the hypothesis under consideration.
Although the volume and depth of such information is constantly increasing, it is in general
formalized and represented in different, possibly incompatible ways in different sources.
Moreover, these information repositories are dynamic: their contents may change often as a
consequence of research advances, and the results of the deductive step are therefore non-
monotonic. For this reason, it will be increasingly important to develop data integration tools,
able to provide a uniform, consistent, and dynamically updated view of a collection of related
data elements, possibly coming from disparate sources.

- Induction: If an over-representation of consequences matching the phenotype is found, this
provides evidence that the hypotheses under consideration are correct; otherwise, the
hypotheses just tested are discarded. Eliminative induction allows reduction of the hypothesis
space by evaluating if any of the results of the abduction step are ruled out by the currently
available knowledge.

After the first run of the model, a list of candidate SNPs is retained. These SNPs can be then
tested in confirmatory studies, or can be validated through meta-analysis, by running a new
deduction / eliminative induction cycle. Alternatively, the researcher may want to refine the
phenotype definition and repeat the entire analysis on a different set of subjects.

Analysis at the SNP level is usually followed by analysis at the gene level, whereby SNPs are
treated as markers for the genes they belong to (and that are assumed to be the real causal
factors for the phenotype). This suggests that the reasoning process involved in modern
biological research proceeds not just through cyclic tasks, but also by changing the space in
which hypotheses are formulated.

Let us consider again the problem of finding a relationship between the genotype and a disease
phenotype. In general terms, this problem is intractable since the overall hypotheses space is
extraordinarily large (every possible combination of all genetic factors) and for the most part
unobservable. In practice, the hypothesis space is reduced to the set of markers (e.g., SNPs)
that current technologies can sample; this allows abduction to be performed as a “creative”
step, searching through a finite space of potential hypotheses, in which experiments are feasible
and the problem is, at least in theory, solvable. Alternatively, the abstraction step can create
new hypotheses involving genes rather than SNPs. Again, this can be modeled through the ST-
Model: the problem is restated, becoming “are the genes containing the associated SNPs related
to the phenotype?”, and the reasoning process then proceeds at this higher level of abstraction.
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Gene expression analysis or knock-out experiments can be used in the inductive phase to
confirm or disprove the new hypotheses, now expressed in terms of genes instead of SNPs. In
the same way, individual genes can be abstracted again into pathways or functional classes,
leading to another run of the ST-Model at an even higher level of abstraction (Figure 3). This
is indeed the process through which complex experiments fill the gap between the “punctual”
analytical approach and the “global” solution of the overall problem being studied. This
reasoning path reflects the requirement, necessary for the proper interpretation of GWAS, to
relate a statistically significant association with a causal, biological explanation.

While the large-scale model depicted in Figure 3 is general enough to represent the overall
reasoning process and to guide the implementation of an actual computational system, this step
is in general quite complex, because of the need to integrate a variety of different analytical
methods specific for different domains and the ability to manage different hypotheses spaces
at the same time, and is therefore outside the scope of this work. In this paper we concentrate
on the implementation of the portion of the model that handles the selection of candidate SNPs,
as described in Figure 2. The next section will describe the current state of this work, and
Section 5 will present its application to a case study.

4. A computational infrastructure for Genome-Wide Association Studies
based on the ST-Model

We are developing a distributed, modular computational environment, based on the ST-Model,
to support the above described style of research. The purpose of our system is to facilitate the
analysis and interpretation of experimental results by automating the most common data
management and integration tasks, as well as the required reasoning steps. In this section we
briefly describe the system components and their role in the overall development of the
discovery process.

The main components of the system in its current version are:

1. The Phenotype Miner, a module for phenotypic data management and inspection. We
previously proposed the application of data warehouse concepts to facilitate the
investigation of biomedical data by researchers lacking technical expertise and
database skills. The Phenotype Miner provides a simple and effective tool to organize,
represent and explore phenotypic data along multiple dimensions, and to easily create
sets of subjects based on one or more phenotypes of interest [27,28].

2. The GWAS assistant, a module that helps perform the GWAS quality-control phase
[29]. The GWAS assistant implements formal methods, based on Multi-Criteria
Decision Making theory, for setting appropriate genotyping rate thresholds for
GWAS.

3. Genephony, a knowledge management tool for genomic datasets, designed to support
large-scale, exploratory research at the genome-wide level by assisting researchers in
manipulating and exploring large datasets of genomic information. Genephony offers
researchers a set of integrated and automated tools to easily create new datasets
containing both experimental data and background knowledge from public resources,
to annotate them and to export them in a variety of common formats [30]. The main
functionalities provided by the platform are: the ability to easily define and handle
very large, integrated datasets of genomic information; a simple, consistent and easy-
to-use interface; and high interoperability with other commonly used software tools,
achieved through the use of standard data exchange formats and communication
protocols.
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4. A high-level module to support the analysis and interpretation of results. This module,
still under development, will provide hypothesis generation and management
capabilities, will coordinate the interactions between the system components, and will
facilitate access to biomedical data and knowledge repositories.

The components, which were initially developed as independent, stand-alone systems, are now
being integrated into a comprehensive decision support system. While at the practical level
integration is accomplished using Web Services protocols such as SOAP [28], at the conceptual
level the coordination and interplay between these modules is guided by the ST-Model
framework, as described in the following paragraphs:

Abstraction
A first, required step in the computational investigation of the genetic bases of diseases is an
accurate definition of the phenotype under study. This is necessary to guide both the selection
of the subjects to be studied and the choice of the experimental strategy to be followed (e.g.,
whether to perform a genome-wide scan or a more targeted analysis). The first component of
the system, the Phenotype Miner, fulfills these requirements by providing a data collection
infrastructure, a data warehouse system for phenotypic data, and a tool to formally define the
phenotypes of interest. Phenotypes are defined by specifying a set of variables and the ranges
of values they may take. Our system provides a tool to automatically select a set of subjects
whose clinical data satisfy the definition of the phenotype of interest, without requiring the
user to write database queries (that are instead automatically generated by the system).
Phenotypes are formalized as a set of conditions in the form of attribute/value pairs, combined
using logical operators (AND, OR) to define more and more complex phenotypes. In particular,
the AND operator allows the specialization of a defined phenotype, while the OR operator is
used to merge different phenotypes into a single more comprehensive one. A graphical wizard
facilitates the creation of the rules that define a phenotype. Once these rules are defined, they
are stored in the phenotype definition tables, and the SQL statement to select the subgroup of
individuals satisfying them is automatically generated. Once the genotypes for the selected
subjects are retrieved, the GWAS assistant can be used to perform the necessary quality control
and pre-processing steps, including setting the genotyping rate and correcting for stratification.

Abduction and ranking
Performing a “classical” SNP-based association study on all SNPs in the dataset (using an
appropriate analysis program such as PLINK [31]), the high-level module identifies those that
show the strongest statistical association with the phenotype, and uses them to populate the
hypothesis space. Candidate SNPs can then be ranked according to different criteria; for
example their p-value, or their functional and biological properties, determined through the
use of a large-scale annotation tool such as Genephony.

Deduction
After selecting the set of genomic markers that are thought to be related to the phenotype and
generating a corresponding set of hypotheses, the system exploits the data integration and
manipulation features offered by Genephony to derive their expected consequences. Using the
annotation functions provided by Genephony, it is easy to determine, for example, the set of
genes that contain the SNPs found in the previous step. A hypothesis based on SNPs can thus
be transformed into a hypothesis based on genes, on the assumption that SNPs may be used as
genetic markers for genes. The user may now work towards verifying the gene-level
hypotheses, or proceed to generate new hypotheses at a different abstraction level, for example
by retrieving the pathways that the genes belong to, and analyzing all SNPs belonging to the
genes in the pathways.
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Induction and hypothesis space maintenance
The high-level module will provide a “controller” interface by which the user can generate,
test and select hypotheses according to the conceptual framework described by the ST-Model.
The controller communicates with the other components of the system through appropriate
Web Services interfaces, and uses their functionalities to implement the inferential steps that
constitute the model. The controller will also provide a function to rule out hypothesis that,
after the deduction step, appear to be, irrelevant or trivial. Since the eliminative induction step
is strongly dependent on the users' preferences, we plan to leave this feature under their direct
control.

The current version of the integrated module interface consists of three main components
(snapshots are shown in Figure 4): i) a section for dataset uploading, ii) a hypotheses workspace,
dynamically populated by the sets of hypotheses generated at each step of the analysis, and iii)
a central interactive section, used both to display the contents of each hypothesis and to provide
commands to operate on it. Commands are customized on the basis of the hypotheses contents,
so that the possible next steps of the analysis are automatically generated by the system, leaving
to the user the choice of which specific reasoning path to explore.

4. The ST-Model in Genome-Wide Association Studies: a case study
In order to show that the ST-Model can be useful to model molecular medicine research in
general, and GWAS in particular, here we apply it to the well-known Wellcome Trust Case-
Control Consortium (WTCCC) study, a large scale association study that has collected and
genotyped samples on 14,000 subjects, affected by one of seven common diseases, and on
3,000 controls [32]. In this section, we will detail each phase of this study using the conceptual
framework provided by the ST-Model.

Abstraction
As previously described, the initial phase of a GWAS analysis consists in abstracting the raw
data into a set of “usable” problem variables. This requires a precise definition of the phenotype,
and a thorough data collection and validation process. In the WTCCC study, quality control
analysis was performed on the overall data set (17,000 subjects and 3,000 controls), leading
to the exclusion of approximately 8% of the available SNPs and of around 800 patients. The
control groups, population structures and substructures, and effects of geographical variation
were also analyzed to avoid confounders.

Abduction
The hypothesis space was generated by running a set of statistical association tests. Both
standard statistical analysis (trend and genotype test) and Bayesian approaches (Bayes factor
calculation) were applied. The result is a collection of SNPs that are determined to be
significantly associated with membership in the case or control groups.

Ranking
It is interesting to note that different ranking strategies were applied to the hypotheses. SNPs
were initially ranked on the basis of their p-values (or of their Bayes Factor), also taking the
statistical power of the association tests into consideration. In a second stage, a higher ranking
was assigned to SNPs belonging to clusters of correlated, statistically significant SNPs.

Deduction/Induction
To start, other published studies were searched to confirm or rule-out the hypotheses so far
generated. In particular, the first search was aimed at determining whether the top-ranked SNPs
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were already known to be associated with the diseases under study. The following steps are
described as follows in the WTCCC report: “…assessments on the basis of positional candidacy
carry considerable weight, and, as we show, these already allow us, for selected diseases, to
highlight pathways and mechanisms of particular interest. Naturally, extensive re-sequencing
and fine-mapping work, followed by functional studies will be required before such inferences
can be translated into robust statements about the molecular and physiological mechanisms
involved” [32]. In other words, in this case the reasoning process proceeds by identifying the
potential functional implications of each candidate SNP, on the basis of background knowledge
retrieved from the available repositories. The induction phase then uses evidence from the
literature and the data available in knowledge-bases to affect the ranking of the hypotheses or
even, when sufficient knowledge is available, to rule some of them out entirely.

To better exemplify the application of the ST-Model to the WTCCC study, we focus here on
the results obtained for Type 2 Diabetes Mellitus (T2D). We will concentrate in particular on
the ranking, deduction, and induction steps, which require knowledge-based analysis (see
Figure 5).

The first task in the analysis consisted in checking whether the selected SNPs were related to
three gene variants known to be diabetes-related: PPARG (Peroxisomal Proliferative Activated
Receptor Gamma; P12A102), KCNJ11 (the inwardly-rectifying Kir6.2 component of the
pancreatic beta-cell KATP channel) and TCF7L2 (transcription factor 7-like 2). In this case,
a cluster of SNPs related to TCF7L2 gave the strongest association signal for T2D. The
hypothesis set was also found to contain SNPs in close proximity with a SNP that had
previously been shown to be highly associated with diabetes, but that was not present on the
microarray platform used in the study. This shows how hypothesis ranking can be affected by
the available domain knowledge.

The analysis then proceeded by considering the remaining highly associated SNPs, following
a line of reasoning which involves searching for clusters of associated SNPs, linking them with
genes, and analyzing their functional properties, role in pathways, shared protein domains, etc.
As reported in the previous section, this perfectly corresponds to iterating the deduction and
induction phases by invoking full cycles of the ST-Model in which the hypotheses are
formulated at different abstraction levels (genes, proteins, pathways, etc). In order to provide
a further example of this, we carried out an additional analysis step following the ST-Model
framework. Given the discovery, resulting from the previous stage, that SNPs in the TCF7L2
gene are significantly associated with the presence of Type 2 Diabetes, we wanted to generate
new hypotheses at the metabolic pathways level. TCF7L2 is known to be a critical component
of the Wnt signaling pathway, that has recently been linked to Type 2 Diabetes [33,34], and
therefore represents a plausible candidate for a new hypothesis. Once again, we have performed
an abstraction (generalizing from a single gene to one of the pathways that contain it) followed
by an abduction (formulating the hypothesis that this pathway explains the available
phenotype). We then performed the deduction step, in which we derive expected consequences
from our hypothesis and check them against the available data, to confirm or disprove the
hypothesis. To this end, we generated a set of 659 representative SNPs, using the annotation
tools described in the previous section: after generating the set of all SNPs belonging to the
genes in the Wnt signaling pathway, we extracted those for which genotype data is available
in the WTCCC study, and we further selected a “prioritized” subset, giving preference to non-
synonymous coding SNPs and to SNPs in promoter regions, and ensuring an equal number of
SNPs from each gene. Finally, we removed SNP “rs4506565” from this set, since this is the
SNP that was found to be significantly associated with T2D in the WTCCC study, and therefore
represents a hypothesis that was already tested. We then assigned a score to each individual in
the T2D cohort, calculated on the basis of his/her genotypes for all the SNPs in the set, and we
performed the same operation on the two control groups (NBS and 58C). By applying the
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Wilcoxon test (p < 0.01) we found a significant difference between the scores obtained on the
T2D cohort and the scores obtained in either one of the control groups. In other words, we were
able to prove the hypothesis that there is a relationship between Type 2 Diabetes and the Wnt
signaling pathway using the available genotype data, rediscovering a known finding through
the proposed automated reasoning framework. A similar result was found for a similar-sized
group of individuals in the T1D (Type 1 Diabetes) cohort, using the same set of SNPs,
something that could indicate that the involvement of the Wnt pathway is common to both
types of diabetes. Table 2 summarizes the results of this experiment.

Note that the purpose of this experiment was to test whether the system would be able to
reproduce an already known result, starting from a hypothesis (deduction step). We have not
yet validated the overall induction / deduction mechanism, but we assume that its errors (false
positives, false negatives) will be determined by the properties and performance of the
algorithm applied in each separate step (for example, relying on association study p-values in
the induction phase). To “globally” assess the performance of our system we would need to
perform a study involving real users (data analysts / biologists / physicians), something that is
outside the scope of this paper.

6. Discussion and conclusions
In this paper we have shown how the ST-Model, an epistemological model of the knowledge
discovery process, can be used to formally describe the reasoning processes performed by
researchers in the context of high throughput molecular research in general, and of GWAS in
particular. Our main claims are that the ST-Model is able to describe the reasoning processes
underlying current practice in large-scale molecular medicine studies, and that this model is
amenable to be turned into a general computational architecture for decision support in
translational bioinformatics.

The first claim is supported by the observation that creative abduction, as reported by Magnani
[21] and Peirce [24], is the fundamental step in the inference to the best explanation. In this
approach, the hypothesis space is dynamically created, starting from a phenotype of interest,
and progressively refined on the basis of the available knowledge, through a series of deduction/
induction cycles, possibly at different abstraction levels, and/or through additional
experiments.

The second claim directly addresses the usefulness of the ST-Model for translational
bioinformatics. The availability of large-scale datasets generated by high-throughput methods
and of easily accessible repositories of background knowledge makes it now possible to
combine the advantages of hypothesis-free research with those of hypothesis-driven research.
We believe that a clear, formal definition of the conceptual steps that compose the discovery
process can greatly benefit the design of computational systems supporting high-throughput
research, thus moving beyond the typical “pipeline” model in which successive analysis steps
are concatenated in a fixed, uni-directional sequence. A system based on the ST-Model
explicitly distinguishes the hypothesis definition, hypothesis ranking, and hypothesis
validation phases, and organizes them in a cyclical exploratory process. Moreover, access to
the literature, to databases and to knowledge bases can be made “intentional”, i.e. the activity
can be recorded as part of the intention of the user to find a particular type of evidence which
may confirm or rule out a hypothesis.

We therefore believe that the ST-Model can be used as a well-founded framework to design
Knowledge-Based Decision Support Systems,able to perform complete reasoning cycles,
going through the abstraction, abduction, ranking, deduction, and induction steps as necessary,
and keeping track of the inferences performed and of the intermediate hypotheses generated.
Our experience shows that it is feasible and practical to build computational systems, such as
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the one we are developing, based on the ST-Model. However, it is important to remark that,
although the ST-Model is an effective approach for descriptive and computational purposes,
it is not necessarily the best possible choice for all different applications. Its purpose is to
provide a general schema that fits the most common patterns of scientific discovery, but we
recognize that there will always be cases that are not appropriately captured by this model.

Turning the steps of the conceptual model into actual software tools requires a significant
design and implementation effort, and in this respect our work is still in its preliminary stage.
Although the epistemological model we described lends itself well to the development of “plug-
and-play” software architectures, in which each different component implements a specific
reasoning task independently of the rest of the system, our goal at this stage is to provide
researchers with a tool to effectively support their discovery process, rather than a fully-
automated system. We envision that this experience will allow us to use the ST-Model as a
design principle to build a new generation of KB-DSS for translational research in medicine,
able to effectively integrate existing knowledge and experimental data in an architecture for
automated discovery.
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Figure 1.
The ST-Model.
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Figure 2.
The ST-Model for abductive inference in GWAS studies.
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Figure 3.
A GWAS represented by multiple instances at the ST-Model at different levels of abstraction.
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Figure 4.
A schematic representation of an analysis tasks that may be performed using the system. PM
indicates the Phenotype Miner, while arrows labeled GP represent remote calls to Genephony.
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Figure 5.
The ranking/deduction/induction steps of GWAS as implemented in the WTCCC study.
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Table 1

Knowledge base of propositional rules.

1. T1 (transcription factor T1 is expressed) →G1 (gene G1 is upregulated)

2. T1 (transcription factor T1 is expressed) →G2 (gene G2 is upregulated)

3. T2 (transcription factor T2 is expressed) →G1 (gene G1 is upregulated)

4. T2 (transcription factor T2 is expressed) →G3 (gene G3 is upregulated)
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Table 2

Results of the comparison between two diabetes datasets (T2D and T1D) and two control datasets (NBS and
58C).

Datasets p-value

T2D NBS 0.00116

T2D 58C 0.00778

T1D NBS 0.00050

T1D 58C 0.00418

T2D T1D 0.41520

NBS 58C 0.25004

Each dataset contains genotype data for 659 SNPs in 1,400 subjects. Each subject received a score based on his/her genotypes, and the numbers in
the third column indicate the significance of the difference of the average score for subjects in the two compared groups. Numbers in bold represent
differences that are significant at the 0.01 level.
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