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Abstract
Recent studies in rodents have suggested a role for the central endocannabinoid system in the
regulation of mood and alcohol related behaviors. Alcohol use disorder is often associated with
suicidal behavior. In the present study, we examined whether abnormalities in the endocannabinoid
system in the ventral striatum are associated with alcohol dependence and suicide. The levels of CB1
receptors, receptor-mediated G-protein signaling, and activity and level of the fatty acid amide
hydrolase (FAAH) were analyzed postmortem in the ventral striatum of alcohol-dependent
nonsuicides (CA, n=9), alcohol-dependent suicides (AS, n=9) and nonpsychiatric controls (C, n=9).
All subjects underwent a psychological autopsy, and toxicological and neuropathological
examinations. The levels of the CB1 receptors and the CB1 receptor-mediated G-protein signaling
were significantly lower in the ventral striatum of CA compared to the control group. However, these
parameters were elevated in AS when compared to CA group. The activity of FAAH enzyme was
lower in CA compared to the control group while it was found to be significantly higher in AS
compared with CA group. These findings suggest that alcohol dependence is associated with the
downregulation of the CB1 receptors, while suicide is linked to the upregulation of these receptors
in the ventral striatum. Alteration in the activity of FAAH enzyme that regulates the anandamide
(AEA) content might in turn explain differences in the CB1 receptor function in alcohol dependence
and suicide. These findings may have etiological and therapeutic implications for the treatment of
alcohol addiction and suicidal behavior.
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1. Introduction
Research carried out during the past decade has demonstrated existence of an endogenous
cannabinoid (endocannabinoid) system in the CNS, which consists of G-protein coupled
receptors (GPCR), CB1 and CB2, endocannabinoid agonists and proteins that are involved in
the metabolism of the endocannabinoids. This novel system modulates functions in several
neurobiological processes (Howlett AC). The CB1 receptors, localized primarily in the neural
tissue, are coupled to adenylyl cyclase (AC) via Gi-protein and to several other effector
molecules (Howlett, 2005). These receptors are one of the most abundant neuromodulatory
GPCRs in the mammalian brain and are expressed densely in the cerebral cortex, hippocampus,
cerebellum and striatum (Herkenham et al, 1991; Glass et al., 1997; Childers and Breivogel
1998; Howlett 2005). The endocannabinoids, N-arachidonoyl ethanolamide (AEA/
anandamide) and 2-arachidonoyl glycerol (2-AG) are present in the CNS and in non-neural
organs (Devane et al., 1992; Di Marzo et al., 1999). Several other lipid molecules have been
identified recently as putative endocannabinoids and their pharmacological and physiological
functions are under investigation. The endocannabinoids are synthesized within neurons and
released into the synaptic cleft by stimulus-dependent cleavage of membrane phospholipids
(Wilson and Nicoll 2001; Kreitzer and Regehr 2001). A membrane bound serine hydrolase, a
fatty acid amide hydrolase (FAAH) is involved in the degradation of AEA (Di Marzo et al.,
1999; Deutsch et al., 2001) while 2-AG is hydrolyzed mainly by monoglyceride lipase (MGL)
(Di Marzo et al., 1999).

The dysfunction in the monoamine neurotransmitter systems has long been implicated in the
pathophysiology of alcohol dependence and suicidal behavior (Callado et al., 1998; Arango et
al., 2002; Gonzalez-Maeso et al., 2002; Pandey et al., 2002, Mann 2003; Underwood et al.,
2008). In addition, recent studies have revealed a critical role for the endocannabinoid system
in alcohol addiction and mood disorders (Schmidt et al., 2003; Wang et al., 2003; Vinod et al.,
2005; Steiner et al., 2008). Moreover, alcoholism is related to more aggression and impulsivity,
which are part of the diathesis for suicide (Rich et al., 1998; Potash et al., 2000; Ray et al.,
2000; Koller et al., 2002; Preuss et al., 2002; Makhija and Sher 2007). A dysfunction of the
frontocortico-striatal circuit has been postulated in the pathophysiology of drug addiction and
mood disorders (Eisch et al., 2003), raising the question of whether the endocannabinoid system
in the ventral striatum plays a role in alcohol addiction and suicide. In the present study we
sought to determine the levels of CB1 receptors, CB1 receptor-mediated G-protein signaling,
and levels and activity of the FAAH enzyme in the ventral striatum of alcohol-dependent
nonsuicides (CA) and alcohol-dependent suicides (AS), compared to psychiatrically normal
controls (C). This study was focused on the CB1 receptor as it is highly expressed in the CNS
compared to the CB2 receptor and it regulates mood and drug reward (Childers and Breivogel
1998; Howlett, 2005; Steiner et al., 2008). In addition, we selected the ventral striatum because
of its critical role in drug reward and impulsivity; both are risk factors for alcohol addiction
and suicide. Using three comparison groups enabled us to identify the biochemical alterations
associated with alcoholism and suicide with a greater specificity.

2. Methods and Materials
2.1. Subjects

Brain tissue from the right hemisphere was obtained from the brain tissue collection of the
Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute,
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New York, USA. All samples used in this study were collected at the Allegheny County
Coroner Office in accordance with protocols approved by the Institutional Review Board of
the University of Pittsburgh. Consent to use brain tissue was obtained from the next-of-kin.
The ventral striatum from CA (n=9) and AS (n=9) were studied along with normal controls
(n=9). All groups were matched for sex, and as closely as possible, for age, postmortem interval
(PMI), brain pH and race. The brain pH was within neutral range. Peripheral toxicology was
carried out by the Coroner’s office in urine, blood or vitreal samples. Brain pH determination
and toxicological analyses (over 30 drugs) were performed on cerebellar tissue, ruling out the
presence of psychoactive substances (except alcohol in the alcohol-dependent groups). The
demographic variables and clinical characteristics of subjects are summarized in Table 1.
Multiple regions of the left hemisphere were fixed and examined for neuropathology and only
cases free of neuropathology were included in the study. All subjects had data from a
psychological autopsy including previously validated structured clinical interview for Axis I
and Axis II diagnoses based on DSM-IV criteria (Kelly and Mann 1996). These interviews
were carried out with family members and/or close friends and confirmed that all the subjects
in the alcohol groups (CA and AS) had a diagnosis of alcohol dependence, while subjects in
the control group were free of psychopathology. The brain samples were coded to mask the
investigators to the diagnostic groups.

2.2. Brain dissection
The right hemisphere was sectioned fresh into 10-12 coronal slabs, rapidly frozen in Freon and
stored at −80°C. Frozen sections (20μm) were taken from the coronal slab containing the
anterior, precommissural and commissural striatum and the nucleus accumbens and stained
for Nissl. In order to aid in the identification of the boundaries of the ventral striatum,
autoradiography to the serotonin transporter was carried out using [3H]Cyanoimipramine
(Figure 1). Tissue from the ventral striatum was then carefully dissected from the coronal slab
and frozen at −80°C until assay.

2.3. [3H]Cyanoimipramine autoradiography
Briefly, the brain sections were pre-incubated in Tris-NaCl buffer (pH 7.4) for 30 minutes at
23°C followed by incubation with Tris-NaCl buffer containing 0.4 nM [3H]cyanoimipramine
for 24 hour at 4°C. Non-specific binding was determined in the presence of 10 μM sertraline
HCl. Sections were then washed for 60 min (3 × 20) in Tris-NaCl buffer at 4°C followed with
a dip in cold distilled water to remove the buffer salts. Sections were then dried under a stream
of desiccated cold air, and then exposed to Kodak Biomax MS film for 17-18 weeks.

2.4. Sample preparation
The brain tissue (~1 g) was homogenized in 20 vol. of ice-cold TME buffer (50 mM Tris-HCl,
3 mM MgCl2 and 1 mM EDTA, pH 7.4) containing 0.32 M sucrose, protease and phosphatase
inhibitors. The homogenate was centrifuged at 1,000g for 10 min at 4°C and resulting
supernatant was then centrifuged at 22,000g for 20 min. The membrane pellet was dissolved
in TME buffer and re-centrifuged at 22,000g for 20 min. Aliquots of supernatant (for the
analysis of FAAH) and membrane fractions (for the analysis of CB1 receptor and G-protein
activation) were made and stored at −80°C until further assay. The protein contents of isolated
fractions were determined by Lowry’s method (Lowry et al 1951).

2.5. Immunoblot analysis of the CB1 receptor and the FAAH enzyme
Aliquots (30μg protein) of crude synaptic membrane and post-synaptic membrane supernatant
of all the samples were separated on 12% polyacrylamide gel, and electrophoretically
transferred (wet method) to nitrocellulose membrane (Idea Scientific Company, Minneapolis,
MN). All the samples were loaded in the same gel to avoid the gel and lane inter-assay
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variability. The membranes were treated with blocking buffer (TTBS [10 mM Tris, 0.9% NaCl;
0.1% Tween 20 containing 5% milk powder] of pH 7.4) for 1 hr at room temperature. The
membranes were incubated either with the CB1 receptor antibody (1:1000, Biosource
International, Camarillo, CA) or FAAH antibody (1:1000, Abnova, Walnut, CA) overnight at
4°C. The blots were washed three times with TTBS and then incubated with HRP conjugated
IgG antibody (1:5000, Santa Cruz Biotech, Santa Cruz, CA) for 1 hr at room temperature. After
washing the blot for three times with TTBS, the immunoreactive bands were visualized using
ECL chemiluminescence reagent (GE Healthcare, Piscataway, NJ). The blots were stripped
and then reprobed with α-tubulin antibody (1:1000, Santa Cruz Biotech, Santa Cruz, CA) to
ensure equal protein loading.

2.6. Agonist-stimulated [35S]GTP S binding assay
The CB1 receptor-mediated [35S]GTPγS binding assay was performed as described previously
with minor modifications (Vinod et al., 2005). Briefly, an aliquot of membrane (50 μg protein)
was pre-incubated in assay buffer (TME buffer, 0.1% fatty acid free BSA and 100 mM NaCl)
containing GDP (30 μM) in silicone-treated test tubes for 15 min. Later [35S]GTP S (0.05 nM)
was added to the reaction mixture and incubated for 1 hr at 37°C. The CB1 receptor agonist,
CP-55,940 (1 μM) was used to examine the CB1 receptor-mediated [35S]GTPγS binding. The
basal activity was estimated in absence of CP-55,940. The non-specific binding of the
radioligand was determined in presence of 10 μM GTPγS. The reaction was terminated by
addition of ice-cold Tris-HCl buffer containing 0.1% BSA followed by rapid filtration. The
radioactivity was then measured using liquid scintillation spectroscopy.

2.7. Measurement of the FAAH activity
The FAAH activity was determined as described previously with minor modification (Vinod
et al., 2006). Briefly, post-synaptic membrane supernatant (30 μg protein) was incubated with
a reaction mixture (500 μl volume) containing 50 mM Tris-HCl (pH 8.0), 0.05% fatty acid free
BSA, 5 nM [3H]AEA and 5 μM of cold AEA for 30 min at 37°C. The reaction was then
terminated and samples were extracted with 2 vol. of chloroform/methanol (1:1 v/v). The
radioactivity of hydrolyzed product, [3H]ethanolamine in the aqueous layer was measured
using liquid scintillation spectroscopy.

2.8. Statistical analyses
The differences in covariates (Age, PMI and Brain pH) among subject groups were analyzed
using one-way ANOVA (GraphPad, San Diego, CA). The dependent variables (CB1 receptor,
G-protein activation, activity and level of FAAH) with the main effect, subject groups and
covariates were analyzed in a multiple analysis of covariance (MANCOVA) model using SAS
program (version 9.1). In the presence of a significant MANCOVA, univariate analysis of
covariance (ANCOVA) was performed for each dependent variable. Immunoblots were
analyzed using the ImageJ software program (NIH, Bethesda, USA). Data are presented as
mean ± SEM and are considered to be statistically significant at p<0.05.

3. Results
The demographic and clinical characteristics of control, CA and AS subjects are provided in
table 1. One-way ANOVA revealed no significant differences in age (p<0.97), PMI (p<0.22)
and brain pH (p<0.13) across the groups. MANCOVA showed an effect of age on the dependent
variables across the groups. The covariates, brain pH and PMI were not significant in the
MANCOVA and in any of the ANCOVAs and were excluded in the reported analyses.
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3.1. Quantification of CB1 receptor and G-protein activation
The western blot analysis demonstrated a single immunoreactive band corresponding to the
relative molecular weight (~58 kDa) of the CB1 receptor. There was a significant group effect
on the levels of CB1 receptor (F=21.07; df=2,23; p<0.0001) and G-protein activation (F=10.05;
df=2,23; p=0.0007). However, there was no overall effect of age on the levels of CB1 receptor
(F=1.77; df=1,23; p=0.197) and G-protein activation (F=3.10; df=1,23; p=0.092) among the
subject groups. Multiple comparison analysis revealed a significant lower level of the CB1
receptors in the ventral striatum of CA (74%, p<0.0001) and AS (48%, p=0.0003) compared
to normal controls (Figure 2). However, a marked higher level of the CB1 receptors was evident
in AS (98%, p=0.045) compared to CA group (Figure 2). A representative immunoblot of the
CB1 receptor is provided in figure 2 (Upper panel).

The CB1 receptor agonist-stimulated [35S]GTP S binding assay was conducted in membranes
isolated from the ventral striatum to determine the functional coupling between the CB1
receptor and the Gi/o-protein. The CB1 receptor-mediated [35S]GTPγS binding was
significantly lower in CA (35%, p=0.008) compared to normal controls (Figure 3). However,
G-protein activation was found to be higher in AS (32%, p=0.0002) compared to CA group
(Figure 3). There was no significant difference in the G-protein activation between As and
normal control (p=0.143).

3.2. Activity and level of FAAH enzyme
The western blot analysis demonstrated a single immunoreactive band corresponding to a
relative molecular weight (~64 kDa) of the FAAH. Age showed an effect on the FAAH activity
(F=8.98; df=1,23; p=0.006) and FAAH levels (F=7.37; df=1,23; p=0.012) across the subject
groups. There was a significant group effect on the FAAH activity (F=22.10; df=2,23;
p<0.0001) and FAAH levels (F=8.86; df=2,23; p=0.001) after controlling for the effect of age.
Multiple comparison analysis revealed a lower activity of the FAAH in the ventral striatum of
CA (50%, p<0.0001) and AS (23%, p=0.005) compared to normal controls (Figure 4).
However, the FAAH activity was found to be higher in AS (56%, p=0.0017) than CA group
(Figure 4). Similarly, a marked lower level of the FAAH immunoreactivity was evident in CA
(68%, p=0.0004) compared to normal controls, whereas it was found to be higher in AS (51%,
p=0.013) compared to CA group (Figure 5). A representative immunoblot of the FAAH is
shown in the figure 5 (Upper panel).

4. Discussion
The present study revealed a lower level of the CB1 receptors in the ventral striatum of alcohol
dependents while they found to be higher in alcohol-dependent subjects who died by suicide.
This is the first study to report alterations in the endocannabinoid system in the ventral striatum
of alcoholics who died by suicide and other means. The CB1 receptor-mediated G-protein
signaling was lower in the CA compared with normal controls whereas it was greater in AS
compared with CA. These alterations were consistent with changes in the level of CB1
receptors in both CA and AS. The consequence of alterations in the CB1 receptor levels
observed in this study is unknown. The lower level of CB1 receptors in CA is in agreement
with the previous observations that chronic alcohol exposure leads to downregulation of the
CB1 receptor and G-protein activation in the brain of rodents (Basavarajappa et al., 1998; Ortiz
et al., 2004; Vinod et al., 2006; Matrirattanakul et al., 2007).

The FAAH activity was lower in the ventral striatum of CA compared to normal controls. Since
FAAH is a major degrading enzyme of the AEA, decrease in its activity could increase the
level of AEA in CA and vice-versa. Indeed, animal studies have reported increase in the AEA
content in the striatum and “limbic” brain by chronic alcohol exposure (Gonzalez et al.,
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2002; Gonzalez et al., 2002; Vinod et al., 2006) by reducing the FAAH activity (Vinod et al.,
2006). Thus, repeated alcohol consumption could desensitize the CB1 receptor function in the
ventral striatum of alcoholic dependent patients as a consequence of a compensatory response
to increased AEA. Most notably, an association of impaired FAAH activity with alcohol reward
is supported by an increased alcohol self-administration in rats, which were given intra-PFC
injection of URB597 (Hansson et al., 2007). The genetic deletion and pharmacological
inhibition of FAAH have also been shown to enhance alcohol drinking behavior in mice
(Blednov et al., 2007; Vinod et al., 2008). In addition, an increased vulnerability to drug and
alcohol abuse in humans has recently been suggested to be due to polymorphism in the FAAH
gene and reduced FAAH expression and activity (Sipe et al., 2002; Chiang et al., 2004). An
administration of AEA alone or URB597 is further shown to increase the DA levels in NAc
shell suggesting a critical role for the AEA in producing a reward effect through the activation
of the mesolimbic dopaminergic system (Solinas et al., 2006). An association between
polymorphism in the CB1 receptor gene and alcohol dependence has been also reported
(Schmidt et al., 2003; Zuo et al., 2007). It remains to be established whether this polymorphism
is related to the changes in the level or function of the CB1 receptor. Importantly, alcohol
related behaviors have been shown to be mediated through the CB1 receptor. For example,
blockade of the CB1 receptor is shown to reduce alcohol drinking behavior (Hungund et al.,
2003; Wang et al., 2003; Malinen and Hyytia 2008; Vinod et al., 2008) and to inhibit alcohol-
induced DA release in the nucleus accumbens (Hungund et al., 2003; Cheer et al., 2007)
indicating an important role for the nucleus accumbal endocannabinoid system in alcohol
addiction.

In AS, the upregulation of the CB1 receptor and the CB1 receptor-mediated G-protein signaling
in the ventral striatum compared to CA appears to be due to feedback mechanism in response
to reduced level of the AEA. This hypothesis is based on the observed higher expression and
activity of the FAAH in AS compared to CA. Our previous study, however, showed elevated
levels of both the CB1 receptor and endocannabinoids (AEA and 2-AG) in the prefrontal cortex
of AS (Vinod et al., 2005), indicating the possibility of higher level of endocannabinoids in
the ventral striatum of AS. The question is how does elevation in the CB1 receptors be related
to suicide when both CA and AS groups show decreased levels compared to normal controls?
We believe that increase in CB1 receptor levels is associated with suicide since AS show
markedly higher CB1 receptors compared to CA (alcohol abuse is a common factor in both
groups). As discussed previously, chronic alcohol exposure significantly decreases the levels
of central CB1 receptor binding sites (Basavarajappa et al., 1998; Ortiz et al., 2004; Vinod et
al., 2006; Matrirattanakul et al., 2007), which might be partly associated with decreased levels
of CB1 receptors in both CA and AS groups compared to normal controls.

Alteration in the CB1 function seems to be region-specific because the previous study revealed
elevation in the CB1 receptor-mediated G-protein signaling in the prefrontal cortex but not in
occipital cortex of AS (Vinod et al., 2005). Whether the present findings are directly associated
with suicidal behavior or they are part of neuroadaptative changes in response to alteration in
other neuronal substrate/s remain uncertain. Nevertheless, the exogenous cannabinoid, THC,
that exerts its effect mainly through the CB1 receptor, appears to modulate impulsive behavior
(McDonald et al., 2003; Vinod and Hungund 2006; Pattij and Vanderschuren 2008). The AEA
is also shown to exert THC-like discriminative and neurochemical effects (Solinas et al.,
2007). Therefore, the impulsive behavior that is one of the contributing factors for suicidal
behavior (Mann et al., 1999; Koller et al., 2002) might be associated with the dysfunction of
the striatal CB1 receptor signaling. The ventral striatum has been shown to mediate anhedonia
and impulsive behavior (Eisch et al., 2003; Tremblay et al., 2005; Juckel et al., 2006; Kumar
et al., 2008). Considering the reported abnormalities in the CB1 receptor function in the frontal
cortex of suicide victims (Hungund et al., 2004; Vinod et al., 2005), the findings of this study
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suggest that the dysfunction of the endocannabinoid system in the frontocortico-striatal
circuitry is likely to produce behavioral deficits associated with suicidal behavior.

The comorbidity of suicidal behavior with several psychiatric disorders and drugs of abuse
(Suominen et al., 1996; Rich et al., 1998; Kessler et al., 1999; Potash et al., 2000) might also
be associated with observed alterations. However, there were no psychoactive drugs (other
than alcohol) detected postmortem in CA and AS subjects who had a diagnosis of alcohol
dependence and all controls had clear toxicology. The observed changes in the
endocannabinoid system in CA subjects, which are consistent with previous animal studies,
appear to be mainly associated with alcohol dependence. Although the mood of AS subjects
at the time of death is unknown, the alterations in the CB1 receptor function might also be due
to stress or anxiety related disorders (Kamprath et al., 2009; Mangieri and Piomelli, 2007;
Patel et al., 2004; Patel et al., 2008; Steiner et al., 2008a; Vinod and Hungund, 2006). Indeed,
there were five AS subjects who had comorbid Axis I psychiatric disorders; major depressive
disorder in three and schizophrenia in two cases. In addition, there were five CA and four AS
subjects who had comorbid Axis II personality disorders. Although this study includes a modest
sample size, future studies in larger samples are needed to confirm these observations. It is also
necessary to examine other components of the endocannabinoid system (CB2 receptor,
endocannabinoids, MGL etc) to better understand the pathophysiology of alcohol addiction
and suicide.

Whether the endocannabinoid system directly associated with the pathophysiology of alcohol
dependence and suicide or does so via modulating the functions of neurotransmitter systems
remain to be elucidated. Importantly, the abnormalities in many neurotransmitter systems and
other neuronal substrates might also underlie these psychiatric disorders. For instance, previous
studies have suggested that dysfunction in the activity of hypothalamic-pituitary-adrenal
(HPA) axis is associated with the development of alcohol addiction, depression and suicidal
behavior (Sher 2007; Richardson et al., 2008; Steiner et al., 2008b). In addition, the
serotonergic, glutamatergic and dopaminergic systems, which are involved in the regulation
of mood, fear, reward and impulsive behaviors, functionally interact with the endocannabinoid
system (Patel et al., 2003; Vinod and Hungund 2006; Mangieri and Piomelli 2007; Kamprath
et al., 2009). Importantly, the animal studies have shown the modulation of the function of
HPA axis by the endocannabinoid system (Patel et al., 2004; Vinod and Hungund 2006; Steiner
et al., 2008b; Kamprath et al., 2009). Therefore, an abnormal interaction of the
endocannabinoid system with the HPA axis and other neurotransmitter systems might
constitute at least in part the underlying mechanism of alcohol addiction and suicidal behavior.
In addition, the cAMP-CREB pathway is a target for several monoamine and neuromodulatory
systems, and has been shown to play a pivotal role in neuronal plasticity associated with stress,
drug addiction and suicidal behavior (Self and Nestler 1998; Reiach et al., 1999; Dwivedi et
al., 2002; Dwivedi et al., 2003). The dysfunction of CB1 receptors in the ventral striatum of
CA and AS might lead to alterations in the cAMP content as CB1 receptors are coupled to
adenylyl cyclase. This impact on the cAMP pathway and gene regulation may in turn affect
the normal physiology and behavior. The pharmacological agents that modulate the
endocannabinoid tone or CB1 receptor function might have therapeutic potential in the
treatment of alcohol addiction and prevention of suicidal behavior.
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Figure 1.
The autoradiogram of [3H]Cyanoimipramine shows the distribution of serotonin transporters
in the human postmortem brain. The serotonin transporters are highly expressed in the ventral
striatum compared to dorsal striatum. This assisted in delineating the ventral striatum from the
dorsal striatum.
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Figure 2.
The CB1 receptor levels were found to be lower in the ventral striatum of CA (74, p<0.0001)
and AS (48%, p<0.001) compared to normal controls (Figure 1). However, a marked increase
in level of the CB1 receptors was evident in the AS (98%, p<0.05) compared with CA. A
representative immunoblot of the CB1 receptor is provided in the upper panel.
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Figure 3.
The CB1 receptor-mediated [35S]GTP S binding was significantly lower in the membranes
isolated from the ventral striatum of CA (35%, p<0.01) compared to normal controls. However,
G-protein activation was higher in AS (32%, p<0.001) compared to CA group. Data is
presented as percentage of stimulation over the basal binding.
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Figure 4.
The activity of FAAH was markedly reduced in the ventral striatum of CA (50%, p<0.0001)
and AS (23%, p<0.01) compared to normal controls. However, there was a significant higher
activity of the FAAH in AS (56%, p<0.01) compared to CA group.
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Figure 5.
A marked reduction in the level of FAAH was observed in CA (68%, p<0.001) compared to
normal controls, whereas the FAAH immunoreactivity was found to be higher in AS (51%,
p<0.05) than CA group. A representative immunoblot of the FAAH is shown in the upper
panel.
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