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Abstract
Characterizing the biomolecular systems’ properties underpinning prognosis signatures derived from
gene expression profiles remains a key clinical and biological challenge. In breast cancer, while
different “poor-prognosis” sets of genes have predicted patient survival outcome equally well in
independent cohorts, these prognostic signatures have surprisingly little genetic overlap. We examine
ten such published expression-based signatures that are predictors or distinct breast cancer
phenotypes, uncover their mechanistic interconnectivity through a protein-protein interaction
network, and introduce a novel cross-“gene expression signature” analysis method using (i) domain
knowledge to constrain multiple comparisons in a mechanistically relevant single-gene network
interactions, and (ii) scale-free permutation resampling to statistically control for hubness (SPAN -
Single Protein Analysis of Network with constant node degree per protein). At adjusted p-values <
5%, 54 genes thus identified have a significantly greater connectivity than those through meticulous
permutation resampling of the context-constrained network. More importantly, eight of ten
genetically non-overlapping signatures are connected through well-established mechanisms of breast
cancer oncogenesis and progression. Gene Ontology enrichment studies demonstrate common
markers of cell cycle regulation. Kaplan-Meier analysis of three independent historical gene
expression sets confirms this network-signature’s inherent ability to identify “poor outcome” in ER
(+) patients without the requirement of machine learning. We provide a novel demonstration that
genetically distinct prognosis signatures, developed from independent clinical datasets, occupy
overlapping prognostic space of breast cancer via shared mechanisms that are mediated by genetically
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different yet mechanistically comparable interactions among proteins of differentially expressed
genes in the signatures. This is the first study employing a networks’ approach to aggregate
established gene expression signatures in order to develop a phenotype/pathway-based cancer
roadmap with the potential for (i) novel drug development applications and for (ii) facilitating the
clinical deployment of prognostic gene signatures with improved mechanistic understanding of
biological processes and functions associated with gene expression changes.
http://www.lussierlab.org/publication/networksignature/
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Introduction
Since their conceptual inception in 2002 [1,2], clinical outcome-tied molecular signatures in
breast cancer have become a central topic of research. Signatures for poor prognosis [2],
recurrence [3], invasiveness [4], and metastasis [5,6] have been experimentally derived from
patient groups and biological hypotheses. Despite the proliferation of signatures, genes
constituting distinct signatures exhibit poor genetic overlap (share few genes), even though
they paradoxically occupy a common prognosis space. They are similarly efficient in predicting
bad clinical outcome in new cohorts “raising questions about their biologic relevance,
significance and clinical implication” [7,8]. A critical problem to solve for cancer biologists
and oncologists is whether these disjoint genetic signatures can “jointly” provide a unified
mechanistic insight on their respective scales of biology between gene expression and clinical
outcome.

Clearly, the complexity of heterogeneity becomes a chief consideration when trying to compare
across signatures. As varied as these gene signatures are, so too are the tissues and methods in
which they were derived. A sampling of tissue types evaluated have included ER+ tissue[3],
ER+/ER− tumor specimens [6], inflammatory breast carcinoma tissue [9], to cell lines [5].
Detection of gene expression changes have utilized standard commercial gene chip platforms,
to commercial customizable chips to in-house cDNA spotted nylon microarrays[10] and RT-
PCR assays [3]. Besides the heterogeneity of probe designs, many of the legacy and custom
platform provide partial genome assessments in contrast to the contemporary genome-wide
arrays.

Aside from differences in molecular derivation, several hypotheses have been postulated to
explain the lack of overlap in the genetic makeup of the signature. Arguments have included
a case made for inadequate patient sample size in developing the signature, or incomplete
genome coverage, and secondly that although the genes are different, they are merely separate
aspects of the same groups of molecular pathways or mechanisms. To overcome the sample
size restraint to a given original study, investigators have demonstrated that pooling breast
cancer data can enhance classification performance in 73% of the cases in one study or generate
a signature that was comparable or superior to the prognostic performance of the original
signatures [11,12]. Examination of the hypothesis of common molecular pathways hypothesis
underlying the genetic heterogeneity of gene signatures has been attempted using
straightforward Gene Ontology enrichment and failed to demonstrate the functional overlap.
For example, Van Vliet et al., note that there was less than 1% mean overlap of Gene Ontology
enrichment in their selection of breast cancer signatures [12]. More recent efforts of pathway
analysis have gone beyond the assessment of Gene Ontology concordance. For instance, Pujana
et al. implemented a systems biology approach that does not rely on gene expression data,. By
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selecting four key biologically validated breast cancer genes of distinct cancer-associated
pathways, they generated a network of 118 genes and 866 functional associations capable of
predicting the association of the hyaluronan-mediated motility receptor gene (HMMR) with
an increased risk of breast cancer [13]. The success of this systems biology approach is seen,
too, in other methods such as that of genome-scale reverse engineering of direct gene regulatory
mechanisms which have been developed using network modeling and successfully applied to
mammalian cells [14,15].

Meanwhile, we and other groups have developed comprehensive protein-protein interaction
(PPI) networks that have effectively been used by our group and others to analyze protein
interactions underpinning share sub-phenotypes among otherwise seemingly disparate diseases
[16,17,18], and to characterize the function of a novel tumor suppressor microRNA [17]. In
the context of an individual expression signature in breast cancer, PPI networks have been
effectively used to reanalyze gene expression data to detect a subnetwork signature of
metastatic disease [4] and more recently used to predict prognosis [19]. Such studies
demonstrate the power of PPI networks to better understand complex molecular disease
processes at a systems level in single studies.

Further, experts in cancer network analyses have also recognized the need to incorporate
cancer-domain knowledge (context-constraints) to network modeling [20,21]. We therefore
hypothesize that a context-constrained PPI network may be capable of connecting
mechanistically heterogeneous signatures. As most of the signatures were designed, in general,
to distinguish good versus bad prognosis of clinical outcome or more specifically to predict
more aggressive disease progression, we posit that essential pathways such that of cell cycle
regulation that is required for oncogenesis as well as progression will correlate with a poorer
outcome. Bearing this in mind, in this paper we focus on developing a mechanistically
transparent meta-signature of breast cancer. We evaluate ten breast cancer signatures published
in leading journals (e.g. New England Journal of Medicine, Table 1) and find their
interconnectivity in a cancer-context constrained PPI network, which we hope, could shed light
on the underlying shared molecular mechanisms of prognosis to the understanding of
genetically distinct gene expression signatures.

Results
Evaluation of breast cancer signatures overlap

Consistent with findings of previous analyses reported in the literature, we found a slight
overlap among various signatures. Out of the systematic evaluation of each pair-wised
combination of signature among the ten signatures of this study (45 combinations in total),
seven were found to share a few statistically significant genes after adjustment accounting for
multiple comparisons [Panel A of Figure 1, Supplemental Figure S1]. However, none of the
genes overlapped across all signatures. Thus, as expected, we failed to identify the
straightforward genetic overlap to connect different signatures. Additionally, three signatures
of metastasis (bone and lung metastasis signature, respectively) formed a separate network
aside from that of a tightly nested web of cell cycle regulators, but were not statistically
overlapping with the sparsely linked network of 6 other signatures (8 inferred links between
signatures in the inset).

Taking a pure network approach, we previously generated a vast protein-protein interaction
(PPI) network with 44,695 protein-protein interactions and 7,321 proteins based on an
integration of published databases [17]. The single protein analysis of network (SPAN) [17]
of breast cancer signatures were examined based on direct interactions between two expression
signatures for each pair of signatures. Although some genes in the signatures did interact
directly among signatures, few of these associations reached statistical significance and only
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four signatures could be directly related significantly after adjustment with false discovery rate
for multiple comparisons (data not shown). As expected, when indirect interactions were
considered using every intermediary node in the network, only few indirect interactions among
signatures reached significance due to the vast number of required adjustments for multiple
comparisons. Noteworthy, during our permutation resampling of the network, we maintained
the number of partners each protein had consistently in each iteration such that our statistical
analysis for the multiple comparisons was particularly stringent for hubs, while it allowed for
higher sensitivity in poorly connected nodes than a bootstrap method. In other words, the node
degree of each protein is equal to that of the observed distribution in each simulated network.
However, while some significant genes were shown to interact more than expected by chance
between less than half the breast cancer signatures, this type of analysis was not constrained
with biological contexts thus molecular mechanisms derived from such modeling might not
be relevant to cancer biology.

Hypothesizing that non-cancer related nodes in our PPI network were generating background
interaction noise or simply reducing the power of the statistical analysis due to the multiplicity
of comparisons, we improved our network model by developing a “breast cancer context”-
constrained PPI network using known literature knowledge about breast cancer. As described
in the Methods section, we used, as inter-signature nodes, 250 cancer-related genes curated
from the literature that were previously identified by Paik et al [3] in the New England Journal
of Medicine. The biological and pathophysiological causal mechanistic role of these 250 breast
cancer genes were selected by traditional in vitro and in vivo biological studies. Examining
SPAN networks between each mechanistically derived breast cancer gene and each signature,
and after correcting for multiplicity and for node degree (Methods on the permutation
resampling [17]), 54 genes (what we are defining as the network-signature) were found to be
significantly more connected than by empirical distribution (adjusted p < 5%) and were
inherently mechanistically anchored (Table 2). Each single protein connectivity of the deduced
molecular mechanisms of breast cancer signature was independently tested within each
signature and corrected for multiple comparisons. Thus, the observed interconnectivity among
signatures arose from shared intrinsic molecular mechanisms rather than from inherent
computational/statistical design to connect signatures. In particular, seven breast cancer
context genes effectively anchored the inter-signature connections: CCNB1, APC, CDC20,
MCM3, CDKN1A, COL1A1, and NEK2 (Panel B of Figure 1, red nodes), and were highly
enriched for cell cycle- and cellular movement-dependent involvement in G2/M DNA damage
checkpoint regulation along with ATM signaling based on Ingenuity Pathway Analysis [26].
16 significant inter-signature relationships were identified between eight of the ten signatures,
including the two-metastasis signatures that could not be connected using simple statistical
enrichment (Panel B of Figure 1). 15 of the 54 network-signature genes were found to connect
at least three gene signatures. Consistent with our prior gene overlap method, lung and bone
metastasis were connected to one another; but, this time, they also connected to other signatures
via their significant interaction with the node(+) disease recurrence signature. Moreover, five
signatures were each independently connected to five other signatures demonstrating an
extremely tight, intertwined web of interconnectivity (Panel B of Figure 1). Noteworthy, genes
of the inflammatory breast cancer signatures IBC-1 and IBC-2 were the only genes that did
not interact significantly with the 250 breast cancer-related genes.

Gene Ontology enrichment studies identified these genes to be predominantly regulators of the
cell cycle pathway (Table 3). For example, cell cycle (GO: 0007049) was annotated with 25
of the 54-genes (adjusted p = 0.4 × 10−11). Similarly, cell division (GO:0051301) and mitosis
(GO:0007067) ranked highly. Corroborating these observations using separate software, the
Ingenuity Pathway Analysis also revealed enrichment of the 54 genes in the network signature
represented in multiple canonical pathways involved in cell cycle regulation. In particular, the
top 6 Ingenuity pathways identified included: mitotic roles of polo-like kinase, cell cycle G2/
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M DNA damage regulation, molecular mechanisms of cancer, CHK proteins in cell cycle
regulation, G1/S checkpoint regulation, and cell cycle control by BTG family protein.

Network properties of the 54-genes
To establish whether these 54-genes coded for proteins that indeed contained distinct network
properties, we identified “hub” proteins versus “bottleneck” proteins as described by the
Gerstein research group [27] over the entire PPI. Gerstein et al. defined hubs as proteins that
have the 20% highest number of neighbors and bottlenecks as the proteins that are in the top
20% in terms of betweenness (connecting groups of proteins). Hub and bottleneck can occur
independently of one another. In contrast, of the 54 genes that we selected, 37 (69%) were hub
proteins among which 11 (30%) were also bottleneck proteins. This is far in excess of the
baseline, thus indicates the central interacting role that these genes may play in the context of
breast cancer networks.

As a separate “signature” validation of our approach, we examined the direct overlap of our
54-gene network-signature with an independent 168-gene “signature of proliferation” based
on a cluster of gene associated with in vitro oncogenesis [28]. This cluster of genes centered
around p53 and INK4A signaling pathways that had been demonstrated in historic datasets to
be associated with poor prognosis – similar to that of the evaluated signatures. Interestingly,
in total, 14 out of 168 genes significantly overlapped with the 54-gene network-signature (p
value<5%).

Validation of the prognostic potential of the 54-gene from the network-
signature

We tested the network-signature in three separate genome-wide microarray datasets comparing
breast cancer patients outcome: GSE7390 (198 patients), GSE4922 (249 patients) and
GSE2990 (189 patients), were downloaded from NCBI GEO database and analyzed in the
same way for independent validation [23,24,29]. Two datasets were used in the generation of
the original expression signatures (histologic grade and node-negative recurrence) along with
a third independent dataset that had been used as a separate validation for the node-negative
signature. The third dataset thus could be used to confirm the validity of the network-signature.
Time to recurrence was used for GSE7390 data analysis. Time to distant metastasis was used
for the analysis of the remaining two datasets, as the original gene signatures derived from
GSE4922 and GSE2290 did not assess this clinical endpoint.

We first explored the relationship between the network-signature genes and pathologic
parameters using hierarchical clustering and GSEA. The 198 patients in GSE7390 were
classified into two clusters. Via chi-square testing, one cluster was found to be enriched with
disease advanced and more aggressive tumors including pathological features of ER−
(p<0.0001), pathological grade 3 (p<0.0001), and lymph node infiltration stage 3 (p=0.0405).
However, there was no significant difference in time to recurrence between the two clusters
(Supplemental Figure S2 Logrank p = 0.394). The majority of the network-signature genes
demonstrated higher expression levels in ER− than in ER+ samples (Supplemental figures
S3, S4, S5). 29 out of the 54 network-signature genes were expressed consistently and
significantly (Student’s T-test p-value < 0.05) higher in ER− than ER+ samples across all of
the 3 microarray datasets (Supplemental Table S1).

We then examined a GSEA comparison between ER+ versus ER− samples, high versus low
grade, poor versus good prognostic samples defined by conventional prognostic tools:
Adjuvant!Online, St. Gallen and Nottingham Prognostic Index (NPI). Again, as observed in
the datasets described above, GSEA showed that only the network-signature demonstrated an

Chen et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



overall upregulation of signature gene expression in ER(−) samples (FDR =0), while none of
the conservatively selected control gene sets demonstrated significant upregulation in ER(−)
samples. Similarly, in the GSE7390 dataset, overexpression of the network-signature genes
was found in the poor prognostic samples predicted by the aforementioned conventional tools
(FDR =0) and also the high-grade samples.

These prognostic scores were not available in GSE4922 and GSE2290, and thus cannot be
verified in these two datasets. Kaplan-Meier plot revealed that the high and low risk groups
determined by network-signature did not show strong significant different outcome in the three
datasets (Supplemental Figure S2).

After gaining a better understanding of the clinical correlations, we then examined the utility
of the signature for prognostication. We noted that the network-signature alone was not
predictive for the clinical outcome in the datasets tested (Logrank p-value 0.22 for GSE7390,
0.05 for GSE4922 and 0.07 for GSE2290). However, multivariate analysis demonstrated that
the network-signature with ER status as a covariate, successfully predicted two risk groups
that displayed significant different outcome in all of the three datasets (Figures 2, Panels A,
B, C). The Logrank p-value was 0.02 for GSE7390, 0.02 for GSE4922 and 0.03 for GSE2290.
In contrast, ER status alone failed to provide an independent prediction of clinical outcome (p
= 0.22 for GSE7390, p= 0.53 for GSE4922 and p = 0.20 for GSE2990) consistent with clinical
observations demonstrating the insufficiency of ER status alone to provide accurate prognosis.
However, pathological grade as a covariate with the network-signature failed to predict the
outcome (data not shown).

Therefore, multivariate analysis of the network-signature with ER status, but not the network-
signature or ER status alone accurately predicted the clinical outcome of the heterogeneous
population of breast cancer patients without the requirement of extensive machine learning.

The network-signature was also evaluated for its prognosis of ER+ stratified samples by
univariate analysis. The Logrank p-value of the ER+ samples was 0.02 for GSE7390, 0.02 for
GSE4922 and 0.03 for GSE2990 (Kaplan-Meier curve shown in Figures 2, Panels D, E and
F). Thus, the prognostic power of the network-signature maintained among ER+ patients.
Therefore, the network-signature demonstrated the potential to stratify the therapeutically
responsive ER positive patients into high and low risk groups that will have distinct clinical
outcomes measured by survival. This prognostic stratification potential of the network
signature has significant clinical implications since it could help to identify the high-risk
patients for additional and more aggressive therapeutic intervention prior to disease
progression.

Overlay of the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways
To understand the interplay and biology of the 54-gene network-signature, we calculated the
statistical significance of protein-protein interaction (PPI) among these 54 genes using SPAN
(Methods and [17]) and organized the interactions according to their connectivity relationship
with the respective prognostic signature (Figure 3, Methods and [30]). Thereafter, we
conducted functional enrichment analysis of KEGG pathways [31] and overlaid the statistically
prioritized four KEGG functions (Cell cycle, p53 signaling, ErbB2 signaling and focal
adhesion) onto the PPI gene interaction map (Figure 3, color coding for different KEGG
pathway function). The resultant visualization in Cytoscape facilitated more readily an
appreciation of the mechanistic underpinning associated with each signature and the overlap
we identified via PPI modeling. For example, “focal adhesion” KEGG pathway linked “bone
metastasis”, “lung metastasis” signature and “Node(−) disease recurrence” signatures via
COL1A1, which is one of the seven inter-signature genes identified via context-driven gene
analysis (Figure 1, Panel B). Another example is CDKN1A (p21), which was also identified
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by context-driven gene analysis and a negative regulator of cell cycle. It was a multifunctional
node (cell cycle/ErbB2/focal adhesion, Figure 3) that connected the cluster of three metastasis
gene signatures anchored by COL1A1 to the “histologic grade” signature and the
“invasiveness” signature. Additionally, we observed a strong overlap of PPI-genes shared
between the “poor prognosis” signature and “histologic grade” signature. Such observed
molecular pathway overlaps in PPI network provided a mechanistic explanation of a well-
documented histologic observation of high incidence of metastasis and poor prognosis
associated with high-grade tumors. Therefore, COL1A1, CDKN1A and MCM3 and their direct
interacting genes could be further tested and characterized for their potential as functional
prognostic markers that can be used for patient stratification for more personalized treatment.
Collectively, these observations have demonstrated the significant functional overlaps among
the 54 mechanistic network-signature genes and the molecular underpinning of the association
between high histologic grade and high incidence of invasiveness or/and with poor prognosis.

Discussion
In this study, 10 breast cancer signatures are essentially mapped onto a protein-protein
interaction network of known cancer molecules. Although previous papers have noted that
these breast cancer signatures appear to be genetically “disjoint” – we have found a significant
degree of mathematical overlap among signatures which nonetheless failed to provide
mechanistic understanding (Figure 1, Panel A). In contrast, we employed a networks approach
in which we regard different signatures not in isolation, but in totality, as a vast interconnected
array of causal and non-causal molecules associated with breast cancer state and interrelating
through canonical molecular pathways (Figure 1, Panel B; Table 1; Figure 3). The 54 genes
are in essence prioritized genes via statistical enrichment of shared biomolecular systems
properties of the aggregate molecular signatures that also have phenotypic/prognostic
associations. Indeed, we propose that a mechanistic overlap vis-à-vis pathway allows the
researcher to “do more with less”. Whereas in the simple statistical overlap method yields only
seven gene-mediated significant inter-signature relationships (Figure 1, inset of Panel A), our
context-constrained pathway overlap methodology is able to find twice the number of
significant relationships between signatures using far fewer genes (Figure 1, inset of Panel
B). Also biologically interesting are the gene signatures that did not connect in our SPAN.
Inflammatory breast cancer (IBC) histologically, clinically and molecularly behave different
than traditional ductal adenocarcinomas [32]. Researchers are beginning to develop targeted
treatments for this subtype and our results – given the lack of connectivity of either IBC-1 or
IBC-2 signatures to the PPI network – are consistent with the belief that mechanisms of IBC
progression are different (Table 1, Figure 1 Panel B).

From an informatics perspective, traversing the generated PPI network deeper than the first
interactor generates noise and reduces the ability to find significance. In contrast, a carefully
selected first interactor causally associated to breast cancer in the network provides
computational relevance and consequently statistical power beyond first interactors between
breast cancer signatures. In other words, connecting the gene of a first signature to that of
second signature via an intermediate breast cancer interactor corresponds to connecting a
second level interactor in the network with a constrained intermediating layer of genes causally
associated with breast cancer. As a result, signature genes statistically connected to causal
breast cancer genes more than expected by conservative statistical controls thus become
explicit interactors of a known breast cancer mechanism. We also recapitulate a well-
established issue by bioinformaticians involved in the analysis of protein interaction networks:
cellular context matters; unexpressed proteins contribute to noise in a context-independent PPI.

The ability of the 54-gene signature to predict poor outcome in breast cancer reassures the
validity of our network approach in understanding gene signatures. Moreover, its significant
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overlap with 168 mechanistically selected genes in a model of tumorigenesis confirms that
indeed that we are capturing underlying pathway deregulation associated with oncogenesis
[28]. This prediction is obtained from 54 genes of the signatures that can comprise as many as
250 genes and are often derived from intensive machine learning algorithms in the absence of
conducting machine learning of outcome datasets.

However, the network signature required ER status to assist in predicting clinical outcome in
the heterogeneous breast cancer populations. It is possible that the published gene signatures
are intrinsically biased toward ER(+) tumors because they were generated using heterogeneous
patient data which was primarily ER(+). Indeed, ER(+) breast cancer comprises 70 percent of
breast cancer patients [33] and ER status alone is known incapable of predicting survival in
these populations. Although ER status provides a useful treatment target, ER specific gene
markers can be equally found in signatures that correlate with both good and poor prognosis
[34].

Another possibility is that this 54-gene network signature and the ER status lacked the statistical
power alone to show survival prediction and requires their joint utilization to reach significance
in non-stratified heterogeneous populations we analyzed. However, in a stratified population
of ER positivity, the mechanistic network-signature has the independent prognostic power to
further stratify patients into the high and low risk groups that have distinct clinical outcomes.

Clinically, the proposed 54-gene network-signature and the resulting PPI subnetwork are
invaluable for understanding the role of existing gene signatures. In particular, the van’t Veer
et al. 70-gene signature (MammaPrint, see “poor prognosis” in Table 1 and Figures 1 and 3)
[1] which has been validated in clinical trials as an excellent independent marker of prognosis
[35] is more closely related (Figure 3) to the gene signatures of histological grade and
invasiveness. While highly enriched in cell cycle genes, MammaPrint (poor prognosis) did not
connect to the bone or lung metastasis signatures that appear to be mediated by cellular adhesion
as noted by the KEGG pathway enrichment. The conclusion we may draw is that although
Mammaprint and these other signatures (some of which have been validated in other tumor
types) map to the same prognostic space, they are in part mechanistically complimentary as
they poorly overlapped with the genes in our network. Prospective clinical studies are required
whether network signature, such as the one we report will be more effective at providing
stratified molecular diagnosis or/and prognosis.

From a practical clinical practice standpoint, our methodology elucidates similarities and
differences among signatures and points us toward potential biomarkers that may help us
determine the choice of treatment. Tantalizing are highly- connected highly genes such as
COL1A1 that sits on the intersection of bone metastasis, lung metastasis, and node(−)
recurrence. Unsurprisingly, it is tagged with the KEGG pathway as being part of focal adhesion.
Previous researchers have noted that this gene is highly overexpressed in a meta-analysis of
13 publications [36]. However, no further research has been performed to evaluate its utility
as a prognostic marker. With our network, the KEGG mechanism associated with COL1A1
and its placement in our network makes for a clearer picture of the gene’s phenotype and
prevents a convincing case for its potential as a functional biomarker. One may speculate that
alteration of the focal adhesion pathway as evidenced by an alteration in COL1A1 expression
leads to detachment of the breast cancer cells from the host environment and increase the
possibility of distant metastasis. Targeting this gene then, may ultimately maintain regional
control.

In essence, interaction networks, such as Figure 3, provide the clinicians with a more synthetic
and mechanistic visualization to understand gene expression changes associated with breast
cancer prognostication, and to facilitate the design of most appropriate combinations for
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personalized cancer treatment. We view contemporary clinical stratification of patients using
ER, PR, and HER2 status as the beginnings of a rudimentary road map, a preamble for
individualized drug selection.

In 2007, Massague et al. commented on the necessity to explore the mechanisms of the shared
prognosis space between disjoint signatures [8]. Based on our computational modeling and
validation using clinical datasets, we propose a model (summarized in Figure 4) that provides,
the first systems-based explanation for a subset of signature genes that determines the
mechanistic makeup of genetically diverse gene signatures. These observations suggest that
each network-based molecular signature is likely associated with one or more aspects of a large
protein-protein network. First, they may recapitulate known portions of canonical pathways or
identify new significant relationships augmenting the known pathways. The second portion of
the signature, that we have been deeming the “noise” may very well contain vital oncogenic
pathways that remain to be characterized for their roles in cancer and their relationships with
the canonical pathways. And the third aspect is that naturally there may be intermediary/
interacting molecules that have yet to be characterized rounding out the “unknown” portion of
the molecular signature.

Limitations
We are beholden to the data we use as our SPAN constraint as much as we are beholden to the
databases we used to generate the SPAN which consisted of both eukaryotic and prokaryotic
data. However, our goal was to put forth an extensible method that could grow with increasing
data and knowledge. We intend to rerun our analyses at a future time points with more carefully
selected gene signatures and a more informed constraint. Indeed, because of the constraint we
selected, a clinical limitation of our analysis was that we were not able to include the 21-gene
signature that has been commercialized as OncotypeDX [37] which is a popular test available
in the United States. These genes 21 genes were not derived from expression analysis but rather
from the 250 Paik genes that we used as our contextual genes with causal associations to breast
cancer. Consequently, our statistical analysis would have been inherently biased. Future studies
using a different context-constraint will be required to evaluate the OncotypeDX and
MammaPrint overlap.

A computational limitation of our approach is that there may be other valuable intermediaries,
but the multiplicity of comparisons required to evaluate every single protein of the PPI reduces
the greatly the statistical power. An alternate approach could have used a metanalysis of
expression arrays of breast cancer and normal tissue to identify on a genome-wide basis, which
subset of the network should be explored rather than relying on a well-acknowledged set of
genes from the review of literature. More complex methods for aggregation of nodes in protein
interaction networks can identify patterns beyond the immediate interactor and should be
explored in future studies.

Conclusion—We provide a novel demonstration that genetically distinct prognosis
signatures, developed from independent clinical datasets, inherently occupy overlapping
prognostic space of breast cancer via shared mechanisms that are mediated by genetically
different yet mechanistically comparable interactions among proteins of differentially
expressed genes in the signatures. This is the first application of a network-based approach to
aggregate established gene signatures in developing a phenotype/pathway-based cancer
roadmap with a potential (i) for prospective applications in drug development and (ii) for
elucidating molecular mechanisms underpinning dissimilar molecular profiles sharing
interchangeable prognostic capabilities.
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Methods
Signatures

A total of ten gene expression signatures were examined in this study. This included signatures
from Minn, et al.[5], Liu, et al.[22], Wang, et al. [6], Bertucci, et al. [9], Ivshina, et al. [24],
Kang, et al. [25], Saal, et al. [8], Sotiriou, et al. [9], Van de Vijver, et al. [10], and Van Laere,
et al. [11]. Genes comprising each of the signatures were taken from each of the papers or their
supplementary materials and translated into a representative set of SwissProt identifiers using
the DAVID tool [12]. The original genes, translation tables (where needed), and results are
available on http://www.lussierlab.org/publication/networksignature/.

Gene Overlap Analysis Between Two Signatures
The SwissProt translated signatures were analyzed for overlap using a Perl script comparing
the accession numbers of the genes in each signature. A similar technique was used to test for
connectivity through the combined interaction network. Accession numbers from pairs of
signatures were matched to the proteins in the network and analyzed to determine connectivity
between proteins.

Equation 1 allows us to formally calculate the statistical significance of overlapping genes
between two expression signatures. Variable ‘N’, the common background genes, represents
the total number of genes overlapping between the total probes of chips used in two studies.
Variables M and n are the number of genes of the two compared expression signatures. Variable
m corresponds to the number of genes that are found to overlap between the two compared
expression signature (M ∩n). Genes of each array were translated in standard HUGO gene
identifiers. Translation of non-standard arrays of the older studies required manual revision of
hundred of probes with non-standard probes.

(Equaton 1)

Results are adjusted to account for multiple testing using the Dunn-Sidak adjustment, a
Bonferroni-like method. In Equation 2, p’ and p represent the corrected and uncorrected p-
values, respectively, and n represents the number of independent comparisons in the study.
The resulting statistically significant connections were drawn using Cytoscape [30].

(Equaton 2)

Generation of the protein-protein interaction (PPI) network from multiple databases
As we described in a previous publication, the protein-protein interaction network was
generated by integrating six protein interactions and signaling datasets[16,17,18]. In brief,
protein interactions from each dataset were standardized to a two-column list of pairwise
interactions and merged into a non-redundant interaction network. Identifiers were converted
to a common SwissProt standard coding using translation tables from HUGO and the data
sources’ own cross-mappings. We only included interacting pairs that were generated from
physical experiments using methods other than the yeast two-hybrid or dosage rescue. Imputed
interactions were not used. Datasets included BioGRID 1 [38], Reactome [39] DIP data [40],
MINT [41] Human Proteome Reference Database 6 (HPRD) [42],BIND [43].
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Single Protein Analysis of Networks (SPAN [17]), a conservative permutation re-sampling of
the PPI

Permuted PPI networks were generated using a link randomization approach[44]. Proteins are
considered as nodes and interactions between proteins are links. Since biological networks are
scale-free rather than random [45], link randomization can create conservative “permuted
networks” as controls, from which we can derive an empirical distribution of interactions
between a subset of proteins. Furthermore, our implementation of a link-randomization
conserves the number of “connections” of each specific protein (node-degree) [45]. Thus the
scale free properties of the original distribution are preserved in every permutation as well as
the node degree of each specific protein, a distinctive and highly conservative approach that
we previously published [17], while the interactions (links) between these proteins vary. Self-
interactions, such as those formed by homomultimers, were ignored to avoid introducing bias
into the network. Duplicate protein interaction pairs were also excluded in the permutation.
10,000 of these permuted networks were generated from the original amalgamated interaction
network consisting of real datasets.

Direct Gene Interaction Between Connectivity between Two Signatures
This previous network was used for calculating the false discovery rate (FDR) of direct
connectivity between each genes of each pair of signatures (based on the number of direct
protein interactors between the two signatures). FDR was calculated based on the median
number of direct interactions between the two signatures in the empirical distribution divided
with the observed number of interactors. First direct interactions were compiled and analyzed,
then indirect interactions with one intermediary node as a separate analysis.

Gene Interaction Between an Expression Signatures Genes and Breast Cancer Genes to infer
Interaction (Mechanistic Overlap) between Signatures. Context-knowledge constrained PPI
network: Single Protein Network Modeling and Prioritized PPI in Cancer

Additionally, we developed a model that estimates the probability of occurrence of an observed
Single Protein Network arising from the connectivity of a protein to a list of known proteins
derived from a well-established list of 250 breast cancer genes manually curated from the
literature and published in the New England Journal of Medicine [3]. The observed number of
interactions between the breast cancer signatures and the breast cancer genes can thus be
derived and compared to expected distribution from the previously described permutation
resampling. The unadjusted p-value of each signature gene connectivity is further adjusted for
multiplicity using Bonferroni-type adjustments (the number of genes in each breast cancer
signature = the total number of comparisons). A similar procedure was developed to calculate
the converse: each single gene in the breast cancer genes was analyzed for its number of
interactions with the total lists of genes in each of the breast cancer signatures independently
and assigned an adjusted p-value (in this case, controlled for 250 analyses in the gene list).
Since breast cancer signatures were independently generated by different authors from distinct
cohorts of patients – there were no additional adjustments of p-values for multiplicity between
studies of each signature as each signature analysis was considered independent from one
another. Thereafter, each breast cancer signature gene that met an adjusted p-value<5% was
retained as well as its connected genes from the set of 250 and the converse (since there were
two single protein network analyses). The statistically significant single gene networks were
simply assembled in a joint network to show shared mechanisms (breast cancer genes known
mechanistically to affect the biology of breast cancer). The resulting network was drawn using
Cytoscape[30]. It is important to note that in each meticulous permutation we perform, each
protein retains a constant node degree. To attain a significant p-value, highly connected proteins
are thus required to surpass an equally well-connected protein in the permutation. This non-

Chen et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



trivial permutation thus controls well for hubs – and is more sensitive to detect increased
connectivity of poorly connected proteins than a straightforward bootstrap.

Permutation Resampling of Networks
Permuted networks were generated with a Perl script that shuffled the connectivity of the nodes
in the network while maintaining their node degree as well as the distribution of node degree
in the network. 10,000 of these permuted networks were generated from the original
amalgamated interaction network. These networks were then used to connect the proteins of
the molecular signatures in a permutation resampling. This procedure yielded connectivity
distributions at two scales. First, we derived a total connectivity distribution for each signature
as a whole when repeatedly reconnected to the set of poor-prognosis candidates. At a smaller,
more granular scale, we derived a distribution for each protein in the signatures considered in
the study.

Gene expression datasets
Microarray Data source for validation of protein-protein interactions and all breast cancer
microarray datasets using the same genome-wide platform (Affymetrix U133A chip) with
available .cel files and clinical parameters in NCBI GEO database were downloaded and cell
lines were downloaded as referenced prior.

Gene Expression Software
Bioconductor GCRMA package[46], dChip [47], BRB-ArrayTools [48] and GSEA [49]
software were used for microarray data analysis. GraphPad prism 4.03 for Windows [50] was
used for Chi-square test, Kaplan-Meier plotting and Logrank test. Onto-Express [51] was used
for Gene Ontology (GO) analysis.

Identification of biological processes and canonical pathways enriched with the network-
signature

The functional profiles of the PPI-signature genes were represented by the biological processes
in the Gene Ontology (GO) database [52] or signaling pathways with the number of PPI-
signature genes in each GO category or pathway compared to that in the Affymetrix U133A
chip to determine the significance function. The analysis of biological processes was performed
using Onto-Express, with the default selection of statistical method (hypergeometric
distribution followed by Benjamini-Hochberg false discovery rate correction). The lists of the
network-signature genes were uploaded into Onto-Express to identify significant biological
process (corrected p-value <0.01).

Disregulated genes were uploaded into the Ingenuity Pathway Analysis (IPA) tool from
Ingenuity Systems. The genes mapped to corresponding gene objects in the IPA tool are called
“focus genes.” The significance of a canonical pathway is controlled by p-value, which is
calculated using the right-tailed (referring to the overrepresented pathway) Fisher Exact Test
for 2×2 contingency tables. This is done by comparing the number of ‘Focus’ genes that
participate in a given pathway, relative to the total number of occurrences of those genes in all
pathways stored in the IPKB. The significance threshold of a canonical pathway is set to 2,
which is derived by −log10 [adjusted p-value], with the Benjamini-Hochberg corrected p-value
≤ 0.01.

Hierarchical clustering
Unsupervised 2-way hierarchical clustering was performed to associate the expression pattern
of the network-signature with clinical parameters, such as ER status, lymph node infiltration,
and pathological grade. The default parameter and Pearson correlation in dChip software was
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used to for hierarchical clustering. Chi-square test was performed to evaluate whether patients
with different clinical phenotypes can be classified into different cluster based on the
expression pattern of network-signature.

Gene set enrichment analysis (GSEA)
GSEA software was used to quantitatively characterize the expression pattern of network-
signature between binary clinical status, such as ER(−) vs. ER(+), high vs. low grade, poor vs.
good prognosis. The a priori established gene sets contains the network-signature and 99 gene
sets randomly selected from U133A chip, each with the equal number of genes of the network-
signature. GSEA is a supervised analysis, which uses the modified nonparametric
Kolmogorov-Smirnov test to calculate an enrichment score and thus determine whether a
specific gene set is differentially expressed between the binary status of a phenotype. The
randomly selected gene sets are used here as controls to determine whether any potential
phenotypic association is unique to network-signature.

Survival analysis
BRB-Array Tools were used for time-to-event data analysis, which is referred here as “survival
analysis”. The survival data most relevant to the prognosis of BC patients is the time of
recurrence or distant metastasis. Two survival analysis tools in the BRB-Array software
implemented with Cox’s proportional hazards model were used [53]. The ‘Survival Analysis
Prediction Tool’ develops a gene expression based predictor of survival risk group. The
survival risk groups were constructed using the supervised principal component method [53].
This method used a Cox proportional hazards model to relate survival time to k “super-gene”
expression levels, where k = 2 in the current analysis. The “supergene” expression levels are
the first k principal component linear combinations of expression levels of the subset of genes
that are univariately correlated with survival. the p value criterion for gene selection is set at
0.999, so that all of the genes in network-signature are used in computing the principle
component. To compute a prognostic index for a patient whose expression profile is described
by a vector x of log expression level, the following steps were performed. First the components
of the vector x corresponding to the genes that were selected for use in computing the principal
components are identified. Then the k principal components are computed. These are linear
combinations of the components of x, with the weights of each linear combination having been
determined from the principal component analysis described above. Finally, the weighted
average of these k principal component values is computed, using as weights the regression
coefficients derived from the k-variable Cox regression described above. This computation
provides a prognostic index for a patient with a log expression profile given by a vector x. A
high value of the prognostic index corresponds to a high value of hazard of death, and
consequently a relatively poor predicted survival. Two-risk groups are predicted and leave-
out-one method was used for cross validation. The prognostic index for the omitted patient
was ranked relative to the prognostic index for the patients included in the cross-validated
training set. The left-out patient is placed into a risk group based her percentile ranking, and
the cut-off percentile is set at 50% for current analysis. This leave-one out analysis was repeated
n times (n = sample size), leaving out a different patient each time. It is important to note that
the risk group for each case was determined based on a predictor that did not use that case in
any way in its construction. Finally, Kaplan-Meier survival curve is plotted for the cases
predicted to have above or below average risk. Log rank test is performed by 100 permutations
and the criterion for significance is set at p<0.05.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis of breast cancer signature overlap using two different methodologies. Panel A.
Direct statistical gene signature overlap with no inherent mechanistic meaning
8 statistically significant inter-signature connections were identified relating 6 of the ten
signatures [inset] based on genetic overlap (common genes between signatures) after adjusting
for the varying background of genes of the different expression platforms (adjusted p<5%;
cumulative hypergeometric distribution). The maximum number of inter-signature
connections for a single signature was 3. Signatures for lung and bone metastasis formed a
separate unconnected network. Genetic overlap network did not provide inherent mechanistic
information. Gene Ontology enrichment identified proliferation pathway markers were
strongly associated with increased histologic grade as well as a worsened prognosis. Panel B.
Inherent mechanistic and statistical overlap of genetic signature based on “breast cancer
context”-constrained molecular interaction networks: 16 statistically significant inter-
signature connections were identified relating 8 of the ten signatures [inset] based on “breast
cancer context”-driven network genes that mechanistically anchor the signature overlap (red
shapes). The Bonferroni adjusted pvalue for the number of relationships to a single gene-
network ≤ 0.05 (for the entire network p<0.01). The maximum number of inter-signature
connections for a single signature was 5. Noteworthy, the inflammatory breast cancer did not
significantly interact or overlap with the rest of the network. Legend: Red circles indicate
genes derived from the expression signatures. Triangles represent genes derived from the breast
cancer context-driven network. Red hexagons are genes common to both expression signatures
and the breast cancer context-driven network. Squares indicate phenotype of gene signatures.
Thin grey edges related genes to their respective gene signature (squares, Panels A and B) and
indentify any protein interactions in Panel A (no statistics), and only significant gene
interactions in Panel B (adjusted pvalues<5%, Methods, SPAN[16,17,18]). Thick blue edges
of insets represent “inferred” statistical relationships between genes signatures. Colors
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represent the following: red indicate genes from the breast cancer context-driven gene set;
black indicates genes significantly associated with more than one gene signature (more than
one phenotype); the remaining colors indicate separate signatures. Thus, a red hexagon
indicates a gene found both in a signature as well as in a breast cancer mechanism gene. Insets
contain graphic representations of statistically significant inter-signature connections.
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Figure 2. Kaplan-Meier analysis of the 54-gene network signature in three historical GEO datasets
Endpoints: time to recurrence was used for breast cancer microarray GSE7390[23], time to
distant metastasis was used for GSE4922 [24] and GSE2290 [29]. Multivariate analysis with
ER status as a covariate successfully predicted two risk groups that displayed significant
different outcome in all of the three datasets (Figures 2, Panels A, B, C). The Logrank p-value
was 0.02 for GSE7390, 0.02 for GSE4922 and 0.03 for GSE2290. Univariate analysis of ER
(+) samples demonstrated a logrank p-value of the ER+ samples was 0.02 for GSE7390, 0.02
for GSE4922 and 0.03 for GSE2990 (Figures 2, Panels D, E and F).
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Figure 3. 54-gene breast cancer network signature overlaid with KEGG pathway
We evaluated the connectivity of the 54-gene breast cancer network signature to itself through
permutation resampling of the PPI controlling for hubness. Nodes which had an empiric p-
value of <0.05 were retained. KEGG pathways cell cycle, p53 signaling, ErbB2 signaling and
focal adhesion were then overlaid onto the network facilitating a visual “roadmap” among
signatures (squares), breast cancer signatures (circles), and breast cancer background genes
(triangles). Breast cancer signature genes that were also included in the breast cancer
background gene list are represented by hexagons. For example, multifunctional node
CDKN1A (cell cycle/ErbB2/focal adhesion) connects the cluster of three metastasis gene
signatures anchored by COL1A1 to the “histologic grade” and “invasiveness” signatures.
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Figure 4. Model for Understanding Molecular Signatures
Illustrated in this figure is the derivation of the 54-gene network-signature that can be conceived
as a subset of the “known mechanisms” of context-constrained networks (top orange
component). Molecular signatures can be thought as mapping to different portions of a network.
The “known mechanisms” portion overlay well on top of experimentally determined
proteininteractions in the laboratory. The “imputed pathways” corresponds to poorly described
associations in the PPI network and due to their lack of characterization can be mistaken for
background noise of the network. The “unknown pathways” portion of the gene signature refers
to molecular interactions that may not be in the network.
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Table 1
Ten Breast Cancer Expression Array Signatures Evaluated

Phenotype Measured by
the Signature

Tissue used for derivation No. of
genes

Authors

Invasiveness [22] CD44+CD24-/low cell lines vs
normal breast epithelium

186 Liu R, Wang X et al.

Poor prognosis [1]
(Mammaprint)

Primary breast tumors 70 van ’t Veer LJ, Dai H et al.

Metastasis [6] Primary breast tumors 76 Wang Y, Klijn JG et al.

PTEN/PIK3 pathway [10] Primary breast tumors 246 Saal LH, Johansson P et al

Node (-) disease
recurrence [23]

Primary breast tumors 16 Sotiriou C, Wirapati P et al.

Lung metastasis [5] Cell lines 54 Minn AJ, Gupta GP et al.

Inflammatory breast
cancer [9] (IBC_1)

Primary breast tumors 109 Bertucci F, Finetti P et al

Inflammatory breast
cancer [19] (IBC_2)

Primary breast tumors 50 Van Laere S, Van der Auweral et
al.

Histologic grade [24] Primary breast tumors 264 Ivshina AV, George J et al.

Bone metastasis [25] Cell lines 102 Kang Y, Siegel PM et al.
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Table 3
Gene Ontology Enrichment of Network-Signature Genes

GO ID Function Name
Network-
signature

genes
GO term

genes
Adjusted
P-Value

GO:0007067 Mitosis 15 128 3.8E-11

GO:0007049 cell cycle 25 306 3.8E-11

GO:0051301 cell division 18 160 3.8E-11

GO:0006260 DNA replication 11 102 4.5E-11

GO:0006270 DNA replication initiation 5 19 9.6E-07

GO:0007051 spindle organization and biogenesis 4 7 9.6E-07

GO:0048015 phosphoinositide-mediated signaling 5 26 4.6E-06

GO:0006268 DNA unwinding during replication
regulation of cyclin-dependent protein

3 11 7.6E-04

GO:0000079 kinase activity
traversing start control point of mitotic

4 37 9.4E-04

GO:0007089 cell cycle 2 5 9.8E-03

GO:0000082 G1/S transition of mitotic cell cycle 3 28 1.5E-02

*
The significant biological processes were identified by comparing genes in PPIS and Affymetrix U133a chips using Onto-Express software. The

criterion of significance is set at 0.01 with enrichment calculated using the cumulative hypergeometric p-value adjusted for multiple testing.
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