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Abstract
Activation of phospholipases A2 (PLA2s) leads to the generation of biologically active lipid
mediators that can affect numerous cellular events. The Group VIA Ca2+-independent PLA2,
designated iPLA2®, is active in the absence of Ca2+, activated by ATP, and inhibited by the
bromoenol lactone suicide inhibitor (BEL). Over the past 10–15 years, studies using BEL have
demonstrated that iPLA2β participates in various biological processes and the recent availability of
mice in which iPLA2β expression levels have been genetically-modified are extending these findings.
Work in our laboratory suggests that iPLA2® activates a unique signaling cascade that promotes β-
cell apoptosis. This pathway involves iPLA2® dependent induction of neutral sphingomyelinase,
production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body
of literature supporting β-cell apoptosis as a major contributor to the loss of β-cell mass associated
with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to
gain a better understanding of the molecular mechanisms underlying β-cell apoptosis so that
improved treatments can be developed to prevent or delay the onset and progression of diabetes
mellitus. Herein, we offer a general review of Group VIA Ca2+-independent PLA2 (iPLA2β) followed
by a more focused discussion of its participation in β-cell apoptosis. We suggest that iPLA2β-derived
products trigger pathways which can lead to β-cell apoptosis during the development of diabetes.
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A. The Biology of Group VIA Phospholipase A2 (iPLA2β)
1. Classification of phospholipases A2 (PLA2s)

In pancreatic islet subcellular organelles, similar to brain tissue [1], arachidonic acid is a major
sn-2 substituent of membrane phospholipids [2,3]. Arachidonic acid and its oxygenated
metabolites and the lysophospholipids are potent bioactive mediators that regulate a myriad of
physiological and pathophysiological processes [4,5]. Phospholipases A2 (PLA2s) are a diverse
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group of enzymes that catalyze hydrolysis of arachidonic acid (and other sn-2 substituents)
from glycerophospholipid substrates. [6]. For more detailed descriptions of the biology of the
PLA2 enzymes, the reader is referred to a number of comprehensive reviews [7–17].

To date, 15 distinct groups of PLA2s are recognized [7,8] and among them, the Ca2+-
independent PLA2s (iPLA2s) are the most recently described and the least well characterized.
The iPLA2 was first purified from macrophages in 1994 [18] and was subsequently cloned
from multiple sources between 1997 and 1999 [19–21]. A brief review of the biology and
properties of iPLA2 is provided here and the reader is referred to other, more comprehensive
reviews for more detailed discussions of the iPLA2 enzymes [15–17].

2. Sub-classification, activity, and localization of Group VI PLA2s (iPLA2s)
The iPLA2s have a conserved C-terminal lipase consensus motif (GXSXG) and manifest
catalytic activity in the absence of Ca2+. According to the current classification, iPLA2 products
of different genes are designated as follows: VIA or iPLA2β (Table 1), VIB or iPLA2γ [22–
26], VIC or iPLA2δ [27,28], and VID or iPLA2ε, VIE or iPLA2ζ, and VIF or iPLA2η [29].

A unique characteristic of the group VIA iPLA2s is the presence of 7–8 ankyrin N-terminal
repeats that are not found in the other iPLA2s. The VIA-1 and VIA-2 are designated as the
short and long form iPLA2β, where the long form is a product of alternatively spliced exon 8
that generates a protein containing a 54 amino acid insertion in the eighth ankyrin repeat. The
Ank-1 and Ank-2 are truncated iPLA2β proteins that interact with full-length iPLA2β and
suppress catalytic activity in a dominant negative fashion [31,35,36]. The VIA isoforms arising
from post-translational modification (PTM), designated here as groups VIA-4 and VIA-5, are
generated via cleavage of iPLA2β at the N-terminal by caspase-3 (VIA-4) [32,33] and at the
C-terminal by an unknown mechanism (VIA-5) [34] and are catalytically active.

In addition to a PLA2 activity, the iPLA2s exhibit lysophopholipase and transacylase activities
[37] and the iPLA2β also expresses an acyl-CoA thioesterase activity [38,39]. The group VIA
iPLA2β is the most extensively studied iPLA2 and under basal conditions is predominantly
localized in the cytosol but upon certain stimulation translocates to the nucleus [33,40], ER
[41–43], Golgi [42,43], and mitochondria [44].

3. Structural Features of iPLA2β
The iPLA2β is encoded by mRNA species that yield a protein with an expected molecular mass
of 84–88 kDa. Full-length iPLA2β protein consists of the lipase motif preceded by the eight
N-terminal ankyrin-repeats [20,21,30]. Other salient features of the iPLA2β amino acid
sequence include a caspase-3 cleavage site (DVTD*), an ATP-binding domain (GGGVKG),
a serine lipase consensus sequence (GTSGT), a putative bipartite nuclear localization sequence
(KREFGEHTKMTDVKKPK), a C- terminal 1-9-14 calmodulin-binding motif
(IRKGQGNKVKKLSI), and a calmodulin-binding peptide (AWSEMVGIQYFR) [45–47].
The recent findings that certain stimuli promote translocation of iPLA2β to the ER and
mitochondria [41,44] suggest that additional targeting sequences, not yet identified, also reside
within the iPLA2β.

4. Alternative splicing and post-translational modifications of iPLA2β
The iPLA2β gene undergoes a variety of alternative splicing events, generating variants that
differ in their subcellular localization, catalytic activity, and likely cellular function [31,36,
48]. Group VIA-1 iPLA2β is the “classic” 84–85 kDa isoform. The 88 kDa iPLA2β isoform is
a product of an mRNA species that arises from an exon-skipping mechanism of alternate
splicing [31] and contains a 54-amino acid sequence that interrupts the eighth ankyrin repeat.
Two additional splice variants (Ank-1 and Ank-2) encode premature stop codons due to
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alternatively spliced exon 10a. The proteins encoded by these splice variants, group VIA Ank-1
and group VIA Ank-2, terminate after the ankyrin repeat domain but before the active site.

In addition to the 70 kDa isoforms that result from proteolytic cleavage of full-length
iPLA2β, mass spectrometry analyses reveal that iPLA2β is a candidate for N-terminal
modification and truncation [43,49] (Song et al, under review). Though the mechanisms
responsible for generating the iPLA2β protein variants or their role in biological processes have
yet to be determined, these observations indicate that iPLA2β is a candidate for post-
translational modification by NH2-terminal processing and that this might represent a means
to regulate its activity, subcellular location, or interaction with other proteins.

5. Chemical and biological modulation of iPLA2β Activity
Chemical Inhibitors—Hazen et al. (1991) reported the synthesis of (E)-6-
(bromomethylene) tetrahydro-3-(1-naphthalenyl)- 2H-pyran-2-one, designated initially as
haloenol lactone suicide substrate (HELSS) [50] but referred to now as bromoenol lactone
(BEL). This suicide inhibitor selectively targets iPLA2β and other group VI PLA2 enzymes
and has little or no effect on cPLA2 or sPLA2 activity [29,50,51]. Although BEL treatment
results in covalent modification of iPLA2β [50,52], the modified residues are cysteines, and
not the active site, likely due to a diffusible bromoketomethyl acid that is generated when
iPLA2β acts on the inhibitor [53].

iPLA2β is also targeted by arachidonyl trifluoromethyl ketone (AACOCF3), methyl
arachidonyl fluorophosphonate (MAFP), and palmitoyl trifluoromethyl ketone (PACOCF3),
inhibitors that are sometimes used for “selective” inhibition of cPLA2 [52,54]. This underscores
the importance of pairing AACOCF3, PACOCF3, and MAFP experiments with BEL treatments
to accurately assess involvement of specific PLA2s a given system.

Over the years, BEL has been used to discern the involvement of iPLA2 in biological processes
and is still considered the only available specific irreversible inhibitor of iPLA2. Recently, the
S- and R-enantiomers of BEL have been demonstrated to exhibit specific inhibition of
iPLA2β and iPLA2γ, respectively [55]. However, several examples of inhibition of non-
iPLA2 enzymes by BEL have been described [28,29,56–58] and the mechanism of inhibition
does not appear to involve the active site of iPLA2 [53,59]. In view of this, the now available
mice genetically-modified to be deficient in or overexpress iPLA2β [60–62] are expected to
significantly promote studies leading to further understanding of iPLA2 participation in various
biological processes.

Biological regulators
ATP: The iPLA2β contains a consensus nucleotide binding motif (GXGXXG) that is
homologous to those of the protein kinases [22,46]. This feature likely mediates the well-
established regulation and stabilization of iPLA2 activity by ATP [18,37,63,64], which is
independent of phosphorylation of the enzyme [18,63,64]. Although the ATP binding domain
is not disrupted by the 54 amino acid insertion that distinguishes group VIA-1 from group
VIA-2 iPLA2β, only VIA-2 is activated by ATP [21]. This is likely because the insertion is
highly enriched in proline residues that can change conformation of the adjacent ATP binding
site.

Phosphorylation: Several investigators have proposed that iPLA2 is activated downstream of
serine-threonine protein kinases, including PKC and p38 kinases [26,65–70]. However, there
is little direct evidence for iPLA2β activation in response to phosphorylation. Although
iPLA2 activity increases when the enzyme binds Ca2+/calmodulin dependent protein kinase
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βII (CaMKII) in pancreatic β-cells [71], there is no evidence for CaMKII-dependent
phosphorylation of the enzyme.

Ca2+-Calmodulin: The iPLA2β is bound by calmodulin affinity columns [72], suggesting that
the enzyme may be regulated by calcium-calmodulin complexes. Indeed, iPLA2 activity
increases in Ca2+-depleted cells [73–75], consistent with the observation that calmodulin
suppresses catalytic activity [76]. Negative regulation of iPLA2β by Ca2+/calmodulin
complexes has important implications for activation of store-operated Ca2+ channels [74] and
neutrophil activation in response to stress [77].

Caspase-mediated proteolysis—The iPLA2β has been implicated in apoptosis induced
through both the intrinsic and extrinsic pathways [32,33,41,44,78,79]. The executioner
caspase, caspase-3, is common to both pathways and can cleave iPLA2β at Asp183, producing
a 62–70 kDa-truncated enzyme that has enhanced iPLA2β catalytic activity [32,33,78]. Another
group has suggested that the highly active iPLA2β is a 26 kDa protein, generated after
processing at an additional caspase-3 cleavage site at Asp513, just upstream of the active site
[80]. The truncated iPLA2β is responsible for the arachidonic acid release that occurs during
apoptosis of U937 monocytes, in response to TNFα or anti-Fas [32,78]. Caspase-processed
iPLA2 also generates lysophosphatidylcholine (LPC), a chemoattractant that recruits
monocytes and thereby promotes phagocytosis and clearance of apoptotic cells and
lysophosphatidic acid (LPA), a survival factor that protects the cells against apoptosis [79,
80].

Oligomerization—Radiation inactivation studies indicate that active iPLA2β is a
homotetramer [18], which indicates oligomerization is another mechanism for the regulation
of iPLA2 activity. This is most likely due to the N-terminal ankyrin repeats, which can facilitate
protein-protein interactions [81] and mediate oligomerization of iPLA2β into active tetramers
[31,48]. The truncated iPLA2β proteins encoded by VIA Ank-1 and group VIA Ank-2,
terminate after the ankyrin repeat domain but before the active site. These proteins retain the
ability to oligomerize with full-length monomers but are catalytically inactive. As a result, the
proteins encoded by VIA Ank-1 and group VIA Ank-2 are endogenous dominant-negative
proteins that oligomerize with full-length monomers and prevent the monomers from
assembling into active oligomers [31,36,48].

It was reported earlier that oxidants inactivate iPLA2 by a mechanism involving oxidation of
sulfhydryl groups within the iPLA2 [82]. Subsequently, Song et al. identified oligomerization
of iPLA2β in INS-1 cells in response to oxidative stress [59]. Oxidant-induced oligomerization
alters the subcellular localization of iPLA2β and results in reduced release of arachidonic acid,
suggesting inhibition of iPLA2β catalytic activity. These non-productive oligomers are DTT-
sensitive and therefore likely generated through intermolecular disulfide bonds. Like
iPLA2β, iPLA2γ activity is also suppressed by oxidants, but restored when oxidant-inhibited
enzyme is treated with reducing agent [82,83]. Together, these studies indicate that iPLA2β
monomers are capable of assembling into both productive and non-productive monomers. The
productive oligomerization is mediated through the N-terminal ankyrin repeat domain while
inactive oligomers are formed through intramolecular disulfide bonds.

Regulation of iPLA2β expression—While iPLA2β was once thought to be constitutively
expressed, there is mounting evidence that its expression is regulated by a variety of stimuli.
For example, iPLA2β expression is regulated by lipids and in response to changes in systemic
lipid metabolism. The human iPLA2β gene contains a sterol response element. Sterol response
element binding protein-2 (SREBP-2) binds this element and is likely the mechanism for
iPLA2β induction in lipid-depleted cells [84]. Both iPLA2β and iPLA2γ expression increase
during adipocyte differentiation, and these responses are required for adipocyte development

Lei et al. Page 4

Biochimie. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[85]. Although the molecular mechanism for iPLA2β induction during adipogenesis is not yet
certain, it may be mediated through PPARγ or FOXO4 transcription factors which have been
linked to adipogenesis [86,87] and have putative binding sites in the 5′ flanking region of the
iPLA2β gene (unpublished observation). In addition, iPLA2β expression is regulated in the
retina [88,89], in the cerebral cortex and hippocampus [90], and in the myocardium of rats
undergoing congestive heart failure [91] through mechanisms that have not yet been elucidated.

6. iPLA2β in cell survival versus apoptosis
A significant number of reports over the years from various laboratories, including ours [42,
43,71,92–99] indicate that iPLA2β has a prominent role in phospholipid remodeling, the
maintenance of phosphatidylcholine (PC) mass, and signal transduction [78,100–107]. Studies
describing this function have escalated in the past five years and are now greatly facilitated by
the availability of iPLA2β knockout [61,108] and iPLA2β transgenic mice [60]. A list of
biological processes in which iPLA2β participation has been described is provided in Table 2.
For more details regarding the role of iPLA2β in these and other biological processes, the reader
is referred to other recent reviews [15–17]. As the focus of this review is the role of iPLA2β
in ®-cell apoptosis, we will focus on only one biological process in this section: the role of
iPLA2β in cell survival vs. apoptosis.

iPLA2β involvement in cell proliferation—Although iPLA2 has important roles in a
variety of apoptotic responses in some systems [26,32,40,41,78,79,137–140], studies utilizing
BEL have led to identification of a role for iPLA2β in proliferation in other systems. Addition
of BEL to culture media decreases cell proliferation [141–144] and this is reversed by addition
of arachidonic acid [143,145]. Consistent with these observations, knock-down of iPLA2β
suppresses and overexpression of iPLA2β accelerates proliferation of insulinoma cells [94,
99] and proliferation of vascular smooth muscle cells from iPLA2β-null mice is severely
impaired but is reversed by addition of arachidonic acid or PGE2 [146]. Other studies suggest
that iPLA2β is required for cell cycle progression [109,140,144,145,147], through both p53-
dependent and independent mechanisms. The molecular mechanism whereby iPLA2β
promotes cell cycle progression and proliferation remains unclear, but is likely to be related to
bioactive lipid mediators that are generated by the enzyme. For example, the products of
iPLA2β activity may activate genes involved in cell division [30,144,148–151]. Arachidonic
acid and eicosanoids have been connected to iPLA2-dependent proliferation [143,145].
Ovarian cancer cells produce lysophosphatidic acid (LPA) in an iPLA2-dependent manner and
this potent mitogen acts in an autocrine fashion to induce proliferation and migration [144,
148]. The effect of iPLA2β on cell survival vs. apoptosis and its mechanism of action are likely
to be cell type-specific and dependent on the spectrum of bioactive lipids that are generated
by the enzyme.

iPLA2β involvement in apoptosis—Another recognized role of iPLA2β is its participation
in programmed cell death (i.e. apoptosis; recently reviewed in [152]. An early indication for
this was provided by Dr. Kenneth Polonsky’s group [153] who reported that apoptosis of mouse
insulinoma cell line MIN6 due to ER stress induced by sarcoendoplasmic reticulum Ca2+-
ATPase (SERCA) inhibitors occurred via a mechanism that does not require an increase in the
cytosolic Ca2+ concentration but that does require the generation of arachidonic acid 12-
lipoxygenase products. These observations were soon followed by a report from the group of
the late Dr. Ichiro Kudo that Fas-induced death of U937 cells was unaffected by inhibition of
cPLA2 or sPLA2 but was delayed by inhibition of iPLA2β [78]. The same group subsequently
demonstrated that induction of U937 cell apoptosis was associated with caspase-3-mediated
cleavage of iPLA2β in the N-terminal region (DVTD183) that generated a more active truncated
iPLA2β product [32]. These latter reports arising from Dr. Kudo’s group are the first
demonstrations of a link between iPLA2β activation during the apoptotic process.
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Subsequently, several laboratories demonstrated that iPLA2β activation contributes to
apoptosis of various cell system and their studies are summarized in Table 3.

In contrast to these observations, other studies suggest that iPLA2β involvement is not crucial
for the execution of apoptosis. For instance, while arachidonic release or iPLA2β activation
occurred during apoptosis of S49 caused by thapsigargin [154], of human macrophages by
Mycobacterium tuberculosis [166], or of cultured epithelial cells and fibroblasts by
Pseudomonas aeruginosa [167], inhibition of iPLA2β with BEL did not suppress the apoptosis.
In fact, some studies suggest that BEL treatment can actually induce apoptosis [57,154].
However, in these studies the cells were exposed to BEL for up to 24h, which may allow its
inhibition of non-iPLA2 proteins to come into play. Further, a recent study reported that
androgen receptor activation of iPLA2 upregulates prostate specific antigen (PSA) expression
and secretion and PSA via activation of the PI3K/Akt pathway provides a survival signal in
prostate cancer cells [168]. It has also been reported that mitochondrial abnormalities promoted
by increased generation of ROS and subsequent apoptosis are prevented by expression of
iPLA2β, which facilitates repair of membrane phospholipids, in particular cardiolipins, which
are susceptible to damage by ROS-mediated peroxidation [169].

Though a more active truncated iPLA2β generated by caspase-3-mediated cleavage of
iPLA2β at the N-terminal region is proposed to amplify apoptosis [32], it has been reported
that nuclear shrinkage and PC12 cell death due to hypoxia requires activation of iPLA2β but
occurs via a caspase-independent pathway [40]. As noted above, caspase-cleaved iPLA2
generates LPC, arachidonic acid, and LPA [79,80]. These bioactive lipids not only promote
safe clearance of dying cells but are also potent mitogens that may protect against apoptosis
[79,80,134,170]. It is suggested that a 32 kDa product generated by caspase-mediated cleavage
of iPLA2β at a site proximal to the lipase site (DLFD513) or 25/26 kDa fragments generated
by truncation of the 32 kDa product at other putative caspase-consensus sequences in the C-
terminal region (MVVD733, DCTD737, or RAVD744) facilitate generation of the “attraction
signals” [79,80,134].

B. iPLA2β role in ®-cell apoptosis
1. ER Stress and β-cell apoptosis

The work by Polonsky and co-workers [153] demonstrated that insulinoma cells were sensitive
to SERCA inhibitors. These agents deplete ER Ca2+ stores and this can lead to ER stress. Being
a site for Ca2+ storage, the ER responds to various stimuli to release Ca2+ and is therefore
extremely sensitive to changes in cellular Ca2+ homeostasis. In addition to being a storage site
for cellular Ca2+, the ER is also the site where secretory proteins are synthesized, assembled,
folded, and post-translationally modified. Interruption of these functions can lead to production
of malfolded proteins that require rapid degradation. ER stress ensues when an imbalance
occurs between the load of client proteins on the ER and the ER’s ability to process the load
occurs, as when ER Ca2+ is depleted [171,172]. Prolonged ER stress promotes induction of
stress factors and activation of caspase-12, localized in ER [173–176], and can subsequently
lead to downstream activation of caspase-3, a protease that is central to the execution of
apoptosis [177].

The secretory function of β-cells endows them with a highly developed ER and heightens their
susceptibility to ER stress. Thapsigargin, a widely used SERCA inhibitor [178] induces ER
stress and promotes caspase-12 cleavage [175,179] and apoptosis of neurons and insulin-
releasing BRIN-BID11 cells [175] and Apaf-1 null cells [176]. While SERCA inhibitors
promote loss of ER Ca2+ stores, induction of MIN-6 insulinoma cell apoptosis by these agents
occurs by a pathway that does not require an increase in [Ca2+]i but instead requires the
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generation of arachidonic acid metabolites [153]. These findings were an early indication that
ER stress-induced apoptosis may involve Ca2+-independent generation of arachidonic acid.

The likelihood that this process occurs in β-cells is enhanced by the fact that glucose-responsive
insulinoma cells, pancreatic islets, and β-cells express iPLA2β and also contain an abundance
of arachidonate-containing membrane phospholipids [2,3,20,21,34,98]. Consistent with these
features, thapsigargin-induced ER stress in pancreatic islets leads to hydrolysis of arachidonic
acid from membrane phospholipids by a Ca2+-independent mechanism that is suppressed by
BEL [73], supporting the possibility that ER stress in β-cells promotes iPLA2β activation.

2. iPLA2β involvement in β-cell apoptosis
Our lab has used the INS-1 insulinoma cell line, which behaves similarly to pancreatic islet
β-cells [180], to address this possibility and elucidate the mechanism by which iPLA2β
participates in β-cell apoptosis [33,41,44]. We found that thapsigargin induces ER stress in
INS-1 cells, as evidenced by increases in ER stress factors GRP78/BiP, pPERK, and peIF2a.
Prolonged ER stress activated the apoptotic process and this was associated with induction of
ER stress apoptotic factor CHOP, activation of ER caspase-12, activation of apoptosis
executioner caspase-3, and cleavage of PARP, which facilitates cellular disassembly. These
events led to apoptotic INS-1 cell death, as reflected by DNA laddering and increased TUNEL
staining. Pre-treatment of the cells with BEL suppressed apoptosis, suggesting that iPLA2β
activation was involved in ER stress-induced apoptosis. A direct role of iPLA2β was examined
next by overexpressing in INS-1 cells. Exposure of the iPLA2β-overexpressing INS-1 cells to
thapsigargin significantly amplified the various outcomes described above, including
apoptosis, and DNA laddering and TUNEL-positivity in these cells were inhibited by BEL.

To verify that the development of ER stress and subsequent apoptosis was not a unique property
of insulinoma cells, we exposed human islets to thapsigargin and found that they also exhibit
ER stress-induced apoptosis and that pretreatment of the human islets with BEL suppresses
islet β-cell death (Lei et al. in review). These findings are taken to indicate that native pancreatic
islets are susceptible to ER stress and that the process in islets also involves iPLA2β activation.
Consistent with this, islets prepared from iPLA2β-KO mice were resistant and islets prepared
from iPLA2β-Tg mice were more susceptible to ER stress-induced apoptosis (Lei et al., in
preparation). That this was a specific effect in β-cells is suggested by the fact that the
iPLA2β-Tg mice were generated using the Rat Insulin I Promoter (RIP) to drive iPLA2β
overexpression and as such, iPLA2β expression was only increased in the β-cells [60].

The above-described findings were made in insulinoma cell and islet preparations that were
treated with a chemical agent to induce ER stress or in which iPLA2β expression was
genetically-modified. We therefore considered whether iPLA2β participation was necessary
under conditions where ER stress developed in the β-cell in the absence of chemical
intervention. To address this, we compared β-cell lines generated from wild type (WT) and
Akita mice. The Akita mouse contains a spontaneous mutation in the insulin-2 gene that results
in insulin misfolding and leads to development of diabetes due to ER stress-induced β-cell
apoptosis [181,182]. Consistent with their pre-disposition to developing ER stress, basal
pPERK and activated caspase-3 are higher in the Akita cells [183]. Interestingly, basal
iPLA2β is higher in the Akita cells, relative to WT cells and exposure to thapsigargin induces
expression in both the Akita and WT cells. These findings are taken as further proof of
iPLA2β involvement during the development and progression of ER stress in the β-cell. In
support of these observations in the cultured Akita cell lines, expression of iPLA2β is markedly
increased in islets from Akita mice, relative to WT mouse islets. Collectively, these findings
suggest that increases in iPLA2β expression and activity during ER stress are not unique to
INS-1 cells or artifacts of overexpressing iPLA2β in INS-1 cells or native pancreatic islet β-
cells but that they are indeed evident in spontaneous models of ER stress.
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3. Evidence for iPLA2β-induced ceramide generation in β-cell apoptosis
An unexpected finding associated with induction of ER stress in INS-1 cell apoptosis was an
increase in ceramide generation that was significantly amplified in iPLA2β-overexpressing
INS-1 cells [33]. Ceramides are lipid messengers that can suppress cell growth and induce
apoptosis [184–186] and they can be generated via multiple pathways. Interestingly, ceramide
accumulation in INS-1 cells during ER stress was not associated with changes in mRNA levels
of serine palmitoyl-transferase, the rate limiting enzyme in de novo synthesis of ceramides
[41]. However, both message and protein levels of neutral sphingomyelinase (NSMase), which
hydrolyzes sphingomyelins to generate ceramides, were temporally increased in the INS-1
cells. This was reflected by increased hydrolysis of sphingomyelins and increased generation
of ceramides in the INS-1 cells undergoing prolonged ER stress. The increases in NSMase
expression in the ER-stressed INS-1 cells were associated with corresponding temporal
elevations in ER-associated iPLA2β protein and catalytic activity and pretreatment with BEL
prevented induction of NSMase message and protein.

Relative to control INS-1 cells, the effects of ER stress were accelerated and/or amplified in
iPLA2β overexpressing INS-1 cells [41]. However, inhibition of iPLA2β or NSMase
(chemically or with siRNA) suppressed induction of NSMase message, ceramide generation,
sphingomyelin hydrolysis, and apoptosis in both control and iPLA2β-overexpressing INS-1
cells during ER stress. In contrast, inhibition of serine palmitoyltransferase did not suppress
ceramide generation or apoptosis in either control or iPLA2β overexpressing INS-1 cells. These
findings indicate that iPLA2β activation participates in ER stress-induced INS-1 cell apoptosis
by promoting ceramide generation via NSMase-catalyzed hydrolysis of sphingomyelins,
raising the possibility that this pathway contributes to β-cell apoptosis due to ER stress. This
is in contrast to the contribution of the de novo pathway to lipoapoptosis of β-cells in ZDF rats
[187] or of pancreatic islets exposed to free fatty acids [188,189]. Ongoing studies indicate
that NSMase expression is increased in the Akita islet β-cells and thapsigargin-treated
iPLA2β-Tg mouse or native human pancreatic islets, relative to corresponding controls.

To determine if the same ceramide-generating mechanism is expressed and is activated in the
ER or mitochondria during ER stress, ER and mitochondrial fractions prepared from INS-1
cells were analyzed by mass spectrometry. Such analyses revealed that ER stress induces
ceramide generation and sphingomyelin hydrolysis in both the ER and mitochondrial fractions
of INS-1 cells. Although the ER and mitochondrial fractions were not completely free of plasma
membrane contamination, it is not totally unexpected that both the ER and the mitochondria
are capable of generating ceramides via sphingomyelin hydrolysis. The membranes of the
nucleus and ER are contiguous [190,191] and they both express NSMase [192,193]. Purified
mitochondria from cells exposed to various agents have increased ceramide levels [194] and
the contribution of mitochondrial sphingomyelin hydrolysis to ceramide generation and
apoptosis has been demonstrated in other studies [195,196]. These observations suggest that
the ER and mitochondria express components of sphingolipid metabolism and raise the
possibility that these organelles may also contribute to the generation of ceramides via
sphingomyelin hydrolysis during apoptosis.

4. Evidence for iPLA2β-induced ceramide generation leading to the mitochondrial pathway
of apoptosis

Although ER stress alone can induce the necessary factors to cause apoptosis, it is becoming
increasingly apparent that the mitochondria, as an organelle that sequesters Ca2+ released from
the ER, plays an important role in supporting the apoptosis process initiated by ER stress
[197,198]. Recent studies in our lab [44] reveal that both caspase-12 and caspase-3 are activated
in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage
is amplified in iPLA2β overexpressing INS-1 cells, relative to control cells, and is suppressed
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by iPLA2β inhibition. Unexpectedly, ER stress also promoted the release of cytochrome c and
Smac and their accumulation in the cytosol is amplified in iPLA2β-overexpressing cells. These
findings raise the likelihood that iPLA2β participates in ER stress-induced apoptosis by
activating the intrinsic apoptotic pathway.

Several lines of study support a link between iPLA2β and mitochondria during apoptosis. The
work of Brustovetsky et al. [158] raised the possibility that truncated BID and BAX activate
ROS generation, leading to iPLA2β activation in the mitochondria, which promotes changes
in the outer mitochondrial membrane (OMM) and release of mitochondrial apoptotic factors
into the cytosol [158]. Similarly, mitochondrial-associated iPLA2β was suggested to be
activated during energy-dependent Ca2+ accumulation leading to opening of the permeability
transition pore with sustained activation of iPLA2β leading to rupture of the OMM and release
of cytochorome c into the cytosol [160]. While a precise mechanism connecting iPLA2β
activation with mitochondrial abnormalities was not elaborated in these studies, it has been
suggested that iPLA2β-mediated generation of AA causes disruption of membrane integrity
[157].

Consistent with this possibility, we find that ER stress promotes iPLA2β accumulation in the
mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial
membrane potential in INS-1 cells and that these changes are amplified in iPLA2β
overexpressing cells. These ER stress-induced mitochondrial abnormalities and apoptosis are
suppressed by inactivation of iPLA2β or NSMase. These data suggest that iPLA2β triggers
mitochondrial abnormalities through the generation of ceramides via sphingomyelin hydrolysis
during ER stress. In support, inhibition of iPLA2β or NSMase prevents cytochrome c release.
Taken together, our findings indicate that the iPLA2β-ceramide axis plays a critical role in
activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress
(summarized in Fig. 1). Interestingly, in contrast to our findings and those of the others [157,
158,160], Seleznev et al. reported that staurosporine-induced generation of ROS in the
mitochondria and apoptosis of INS-1 cells is suppressed by overexpression of iPLA2β. They
suggest that staurosporine-mediated down-regulation of iPLA2β results in the loss of
mitochondrial membrane repair and that this leads to mitochondrial failure and apoptosis.
These contrasting findings suggest that different stimuli may activate different apoptotic
pathways in the same or different cell systems.

C. Summary and conclusions
Diabetes mellitus is the most prevalent human metabolic disease, and it results from loss and/
or dysfunction of β-cells in pancreatic islets. Type 2 diabetes mellitus (T2DM) results from a
progressive decline of β-cell function and chronic insulin resistance. Autopsy studies indicate
that β-cell mass in obese T2DM patients is smaller than in obese non-diabetic subjects and that
the decrease is not due to reduced β-cell proliferation or neogenesis but to increased β-cell
apoptosis [199]. Type 1 diabetes mellitus (T1DM) is caused by autoimmune β-cell destruction
and apoptosis plays a prominent role in β-cells loss during its development and cytokine-
mediated β-cell apoptosis is a recognized contributor to β-cell death during the development
of T1DM [200]. It is therefore important to understand the mechanisms underlying β-cell
apoptosis if this process is to be prevented or delayed.

β-cell apoptosis can be mediated not only via death receptors residing in the plasma membrane
and/or mitochondrial signaling but as a consequence of prolonged ER stress. A third organelle
gaining recognition as a participant in apoptosis is the endoplasmic reticulum (ER) [179]. A
number of factors can induce ER stress and this process is thought to cause various diseases,
including Alzheimer’s and Parkinson’s [201]. β-cell death in the Akita [202] and NOD.k iHEL
nonimmune [203] diabetic mouse models are reported to be due to ER stress. Further, mutations
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in genes encoding the ER-stress transducer pancreatic ER kinase (PERK) [204] and the ER
resident protein involved in degradation of malfolded ER proteins have been linked to
diminished β-cell health clinically [205,206]. As the secretory function of β-cells endows them
with a highly developed ER and the β-cell is one of the most sensitive cells to nitric oxide (NO)
[207], it is not unexpected that β-cells exhibit a heightened susceptibility to autoimmune-
mediated ER stress. In support of this, Wolfram syndrome, which is associated with juvenile-
onset diabetes mellitus, is proposed to be a consequence of chronic ER stress in pancreatic β-
cells [208].

Phospholipases A2 serve an important function in cells by providing lipid mediators (i.e.
arachidonic acid) that subsequently participate in a variety of biological processes, including
influencing cell survival. Among the PLA2s is the iPLA2β, and our work has revealed that
prolonged activation of this enzyme triggers mitochondrial abnormalities that subsequently
cause β-cell apoptosis and that this occurs by a novel mechanism involving iPLA2β-dependent
ceramide generation via sphingomyelin hydrolysis. Continued studies to understand the role
of iPLA2β in β-cell apoptosis will enable us to more precisely define its contribution to the
onset and progression of diabetes. Findings from such studies will further our knowledge of
factors that influence β-cell health in diabetes mellitus and identify potential targets for future
therapeutic interventions to prevent β-cell death.
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Figure 1. Role of iPLA2β and ceramides in ER stress-induced β-cell apoptosis
Proposed mechanism of iPLA2β and ceramide involvement in ER stress-induced β-cell
apoptosis. ER stress in β-cells leads to activation of iPLA2β and this induces neutral
sphingomyelinase (NSMase), which promotes generation of ceramides (CMs) via hydrolysis
of sphingomyelins (SMs). The ceramides cause mitochondrial membrane depolarization,
opening of mitochondrial permeability transition pore, and release of cytochrome c.
Accumulation of cytochrome c in the cytosol leads to activation of caspases and causes
apoptosis of the β-cell. (BEL, bromoenol lactone suicide inhibitor of iPLA2β; GW, GW4869
inhibitor of NSMase; KD, knock-down of NSMase with siRNA.)
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Table 2

Biological Processes in Which iPLA2β Participates

Biological Process Citation

Nerve Degeneration [109,110]

Insulin Secretion [60,111,112]

Onset of Acute Pleurisy [113,114]

Neurotransmission in Hippocampus [114,115]

Diabetes- and Ischemia-Induced Arrhythmias [116]

Impairment in Memory Acquisition [54,117]

Schizophrenia [118,119]

Muscle Degeneration [120]

Skeletal Muscle Contractility [121,122]

HIV-Induced Cardiomyopathy [122]

Drip Formation in Muscle [123]

Photoreceptor Cell Renewal [89]

Exfoliation Glaucoma [124]

Bipolar Disorder and Neuroinflammation [90,125]

Infantile Neuroaxonal Dystrophy [126–128]

Bone Formation [129]

Skeletal Muscle Fatty Acid Oxidation [38]

Chemotaxis [130–132]

Store-Operated Ca2+ Entry [133,134]

Neurodegeneration Associated with Brain Iron Accumulation [135]

Vascular smooth muscle cell contraction [136]
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Table 3

Evidence for iPLA2β involvement in apoptosis

Year Citation Stimulus System

1998 [78] Fas Human leukemic monocyte lymphoma U937 cells

2000 [32] Fas & TNF/CHX Human leukemic monocyte lymphoma U937 cells

2000 [154] Thapsigargin T cell lymphoma S49 cells

2002 [155] Polychlorinated biphenyls Rat pheochromocytoma PC12 cells

2002 [139] Polycyclic aromatic hydrocarbons Human coronary artery endothelial cells

2003 [40] Hypoxia Rat pheochromocytoma PC12 cells & Mouse
cerebellar granule neurons

2004 [138] H2O2 Human leukemic monocyte lymphoma U937 cells

2005 [156] Chemotherapeutic drugs Human renal cell models

2005 [157] Cancer Human cancer cells

2005 [158] ROS generation Non-synaptosomal brain mitochondria

2006 [159] iPLA2 siRNA Human epithelial cells (HEK 293 and Caki-1)

2006 [160] Depolarization and Ca2+ accumulation Rat liver mitochondria

2006 [161] iPLA2β overexpression Human leukemic monocyte lymphoma U937 cells

2006–2008 [140,144,162–164] p53/p21 mediated cell cycle arrest and cell growth Cancer cell lines

2007 [163] Virus Human hepatoma (Huh7) and breast adenocarcinoma
(MCF7)

2008 [137] Free cholesterol loading Murine macrophages

2009 [165] Extracellular ATP Murine macrophages
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