
Evaluation of Probabilistic and Logical Inference for a SNP
Annotation System

Terry H. Shen1, Peter Tarczy-Hornoch1,2,3, Landon T. Detwiler4, Eithon Cadag1,6, and
Christopher S. Carlson5,7
1 Department of Biomedical and Health Informatics, University of Washington, Seattle, WA
2 Department of Computer Science and Engineering, University of Washington, Seattle, WA
3 Department of Pediatrics, University of Washington, Seattle, WA
4 Department of Biological Structure, University of Washington, Seattle, WA
5 Department of Epidemiology, University of Washington, Seattle, WA
6 Biomedical Research Institute, Seattle, WA
7 Fred Hutchinson Cancer Research Center, Seattle, WA

Abstract
Genome wide association studies (GWAS) are an important approach to understanding the genetic
mechanisms behind human diseases. Single nucleotide polymorphisms (SNPs) are the predominant
markers used in genome wide association studies, and the ability to predict which SNPs are likely
to be functional is important for both a priori and a posteriori analyses of GWA studies. This article
describes the design, implementation and evaluation of a family of systems for the purpose of
identifying SNPs that may cause a change in phenotypic outcomes. The methods described in this
article characterize the feasibility of combinations of logical and probabilistic inference with
federated data integration for both point and regional SNP annotation and analysis. Evaluations of
the methods demonstrate the overall strong predictive value of logical, and logical with probabilistic,
inference applied to the domain of SNP annotation.
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1. Introduction
The future of both public health and healthcare likely will include aspects of the vision of
predictive, preventive and personalized medicine articulated by both Hood and Zerhouni [1,
2]. They describe using molecular mechanisms to better identify diseases before they become
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symptomatic as a core challenge that will require a translational approach. Paramount to
achieving this vision is an in-depth understanding of the genetic risks of individual patients.

Genome wide association studies (GWAS) play an important role in uncovering the genetic
mechanisms behind human disease. Using single nucleotide polymorphisms (SNPs) as
markers, genome wide association studies measure the correlation between polymorphisms
and phenotypic traits of interest using traditional epidemiologic measures [3,4]. While genome
wide association studies have shown some promise, the results have been modest and often
lacking in evidence for a functional mechanism [5]. Understanding the functional mechanisms
of the results reported in genome wide association studies is the first step to making the
connection between correlation and causation. This process, which we term SNP annotation,
can be conducted either before or after the GWAS is completed.

2. Background - Related Work
Informatics systems for the purpose of conducting SNP annotation in an automated manner
are a recent phenomenon. Previous work has been limited to certain categories, such as the
PolyDoms system that looks at nonsynonymous SNPs [6] or MutDB, which examines missense
SNPs [7]. No previously developed systems use a federated data integration system with a
common data model in order to pull SNP-related annotation information. And, unfortunately,
formal evaluations of SNP-oriented systems are at best few and far between, and at worst
completely absent from literature.

Using combinations of logical and probabilistic inference, our system analyzes biological
information on genetic variations. The system was built on top of a previous system, SNPit
(SNP Integration Tool). SNPit is a SNP annotation system that uses the BioMediator federated
data integration system [8] in order to integrate a wide range of data sources related to genetic
variation annotation.

2.1. Functional SNP Annotation
A GWAS allows researchers to investigate SNPs that are shared in a group of individuals and
produces a list of SNPs that are statistically associated with a particular phenotype being
studied. As seen in a scenario presented in Figure 1, markers in the form of SNPs are frequent
(Figure 1,1); a is then GWAS conducted where tens to hundreds of SNPs are found to be
statistically significant (Figure 1, 2) correlating with the observed phenotype. However, once
a GWAS is completed, investigators still need to determine the biological significance of the
statistically noteworthy SNPs. Lack of reproducibility in previous GWAS studies have
necessitated that studies need to be replicated in order to be published, and require that
biological background be provided as part of the results [9]. Furthermore, limitations in time
and costs provide additional incentive for researchers to filter their list of SNPs for resequencing
purposes.

The process of uncovering the functional impact of a SNP marker is what we term SNP
annotation. Though this process has been done mostly via manual methods, in recent years,
some informatics tools have also been created to annotate SNPs in a semi-automated or
automated fashion. SNP annotation permits identification of the most likely causative,
functional SNPs among those associated with a phenotype (Figure 1,3).

2.2. Current SNP Tools
Previous informatics tools focusing on SNP annotation have typically utilized a non-
generalized data warehouse approach to data integration and examined limited categories of
SNP annotations. For this manuscript, we limited our review of previous systems to those that
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include data integration and are published and available for use. Table 1 displays the various
strengths and weaknesses of the different SNP tools currently available.

Many of the previous SNP tools focused on annotating certain categories of SNPs, for example,
LS-SNP, PolyDoms, and SNPs3D annotate nonsynonymous SNPs. Other approaches
examined a wider spectrum of functional SNP predictors; systems such as FastSNP and F-SNP
look at both transcription and translational mechanisms. However, a limitation of these systems
is reliance on ad hoc data warehousing techniques for information storage, which places a limit
to the currency of the data stored and presents challenges to incorporating additional sources
of SNP information into a system. In addition, in general the ad hoc approach to data integration
and warehousing has prevented the development of any formal common data models for these
systems. Thus, the transformation of the individual data sources into a uniform schema during
the cleaning and importing process is not often flexible enough to easily accommodate
evolution of the schema for the warehouse. The exception to this limitation is FastSNP, which
uses generalized wrappers to integrate information, though it still does not include a common
data model in its implementation. In addition, none of the previous SNP annotation systems
formally evaluated their implementations comprehensively. Evaluations that did occur
generally used a limited case study approach, i.e., only a small handful of SNPs were tested
and the results of this testing described in a qualitative fashion. In contrast to these existing
tools, our system is the first to use a federated integration approach using both logical and
probabilistic inference for the purposes of ranking functional SNP annotations; it is also the
first to use a formalized evaluation approach.

2.3. Previous Work on SNPit
The SNP Integration Tool (SNPit) was implemented using the BioMediator data integration
system [8,10,11]. Details on the implementation of the previous baseline SNPit system
including the federated data integration component and common data model can be found in
a previous publication [12]. There are three primary components to SNPit: the data sources
themselves, which are queried on the fly by wrappers and contain data relevant to genetic
variation analysis; the BioMediator federated data integration system, which accomplishes the
mapping between the common data model and the data sources via the interface and translation
layers; and the two interfaces that can be used by researchers to access the system (Figure 2).

3. Methods - Models
Due to the limitations of current approaches, we opted to implement our SNPit system using
a federated data integration approach, thus ensuring data is always up to date. We utilized a
mediated schema (common data model) in order to reconcile differences in the modelling of
the different data sources to which we linked. The underlying architecture of SNPit is highly
modular, and allows a user to add or remove data sources without having to modify the common
data model. Modification of the common data model is facilitated by the modular architecture
as well since the wrapper (interface) layer can remain the same and only the mapping layer
(translation layer) from wrapper to common data model needs to be adjusted. This translation
layer uses a set of mapping directives to facilitate this step. In this article, we describe important
extensions to the SNPit system - specifically a framework supporting ranking of integrated
SNPit results based on both logical and probabilistic inference. Providing a list of ranked SNPs
allows researchers to be able to prioritize which SNPs to spend their resources on.

3.1. Federated Data Integration
The SNPit system is built upon the BioMediator data integration system developed at the
University of Washington by the Biomedical Data Integration and Analysis Group [8,11].
BioMediator was used as the underlying system to SNPit for several reasons: the federated
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architecture, flexible mediated schema, ease in querying, and the use of XML as a data standard.
These features of BioMediator allow SNPit to retrieve recent and timely data, allow for quick
adaptation or deletion of data sources, facilitate mediated schema evolution, support user
friendly interfaces and retrieve disparate data in a uniform manner. The ability of the
BioMediator system to bring diverse sources into a syntactically and semantically uniform
representation is particularly important for supporting logical and probabilistic inference.

As a federated data integration system, BioMediator queries data sources in real time making
a large and potentially cumbersome local relational data warehouse unnecessary. BioMediator
has a flexible architecture and integrates both structured and semi-structured biologic data.
Figure 3 displays the generalized organization of the modular components of BioMediator.

The architecture of BioMediator allows users to send a query via the user interface. The query
passes through a query processor layer, which references the mediated schema for mappings
between the query and the data sources. The query then passes to the metawrapper and
wrappers, which translate the query semantically and connects to the data sources in their native
query formats. Regardless of the original source formats, BioMediator returns results in XML.
This XML is mapped onto the mediated schema by the metawrapper, is passed back through
the query processor and then finally retrieved by the user through the user interface (Figure 3).

3.2. Logical Inference
BioMediator’s extensible architecture easily accommodates the inclusion of various supporting
modules, including ones that apply logical and probabilistic approaches to functional SNP
identification and prioritization. These orthogonal methods to SNP annotation take as input
the XML data generated from the BioMediator metawrapper from various sources (in a
semantically and syntactically uniform format) and produces reasoned assertions and
probabilistic estimates of “belief” for retrieved, integrated database records.

The former approach, logical inference, has been employed in the past to reason over biological
data, and is effective at automating some types of analyses that are usually done manually.
Systems that leveraged logical reasoning have included those whose focuses were gene
function assignment and phylogenetic inference [13,14]. Previous work with BioMediator
coupled the data integration engine with an expert system for the express purpose of protein
annotation, where it was found that one of the greatest advantages of this approach was the
transparency and ease of translating a human annotator’s decision-making process into a rule-
based representation [15].

Developing an expert system to operate over SNP data follows a similar method and process;
rules for functional SNP annotation and prioritization are elicited from an expert scientist (see
details in section 4.1) and can be supplemented with evidence from the literature. Within the
BioMediator system, a rule executes over data retrieved from multiple sources, which are
semantically integrated such that the rules themselves are independent of data source, and
instead reference general entities, per the mediated schema. This approach maximizes
generalizability of the rules over any number of data sources, allowing rules to remain the same
as individual data sources change a common occurrence in federated query and retrieval
systems.

In BioMediator, when a rule is triggered and executed, the result is some assertion of fact that
is readily derivable from the query graph (e.g., a database record indicates that the query SNP
q does change the amino acid of its corresponding protein, and thus a new fact,
IsNonSynonymous(q), is created). These assertions, in turn, can act as the antecedents to other
rules, allowing for a chaining of rules. BioMediator can continue to execute rules until no
further information is entailed by the current query graph.

Shen et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3. Probabilistic Inference
BioMediator employs an exploratory approach to query answering. First it queries the mediated
data network for records that directly satisfy the query condition(s). Then it expands on these
initial results by successive joins with other related records. If the network of data sources is
even moderately well-connected, this exploratory method tends to produce large result sets
[10]. The results take the form of a directed graph (Figure 8, see section 4.2), and an inference
engine (logical and probabilistic) may reason over this graph. A seed node represents the query
itself, and all other nodes represent resultant data records. The joins performed by BioMediator
are represented via edges. Ideally, all of the records in a result graph would be both factual and
highly-relevant to the query. In practice, however, many are speculative in nature, or weakly
related. Inspection of the poorer quality results suggests that characterizing and leveraging this
uncertainty could improve query result ranking (returning more certain and reliable results
higher in the list). The intuition for this is simple -- biomedical data sources frequently contain
tentative data. As we follow a chain of evidence through multiple records (potentially residing
in multiple data sources) where each record (or connection between records) introduces
additional uncertainty, our confidence in subsequent results should correspondingly decrease.

Ongoing work in biomedical data integration, the Uncertainty in Information Integration
project (UII) [16], seeks to characterize the uncertainty present in biomedical data records as
well as the uncertainty introduced via mediation and exploratory data integration. Nodes and
edges in the graph are augmented with metrics representing our confidence (belief) in each
individual record or join respectively. Nodes are given values Pi = Ps * Pri where Ps is our
prior belief in nodes of a given type and source (i.e. any SNP record from dbSNP) and Pri is a
posterior modifier for our belief in record i specifically, given its content (SNP records in
dbSNP have a Validation Method attribute which, depending on its value, could affect our
belief in record i). Similarly edges are enhanced with values Qi = Qs * Qri. P and Q values
range from 0 to 1 inclusive and are interpreted as probabilistic node or edge weights
respectively. Prior beliefs as well as posterior belief functions are subjective and intended to
reflect the beliefs of our scientific experts.

Given a result graph with probabilistic node and edge weights, our goal is then to compute, for
each record, a measure of its relevance to the query. To do so we adapted techniques from
network reliability theory (2 terminal or s-t reliability). These techniques were originally
conceived for calculating the reliability of communication networks in the presence of
connection failures. In our case we use them to calculate the relevance of query results in the
presence of uncertain data and joins. The network reliability approach allows us to compute
the strength of the connection, given all connecting paths in the result graph, of a result to the
original query. We rank our results according to this relevance measure (UII score).

Previous UII work, involving the functional annotation of proteins, showed promising results
using probabilistic methods [10,16]. Additionally this work addressed the appropriateness of
treating subjective belief measures as probabilities and demonstrated the utility of doing so on
a specific biomedical data integration task. In this work we investigate whether or not this
utility carries over to our current task, functional annotation of SNPs.

4. Methods - Implementation
Previous methods to probabilistic and logical inference were extended onto the SNPit system
for the purpose of predicting the functional outcome of genetic polymorphisms as detailed
below.
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4.1. Building Logical Inference into SNPit
Basic biological principles as to where a SNP is located along the genome assisted us in the
creation of logical rules based on a decision tree [12]. Where a SNP is located on the genome
can impact the SNP’s role in transcription, translation, and regulation -- all of which play a
role in creation of a normal amount of normally functioning protein. For example,
nonsynonymous SNPs are thought to be the most damaging because they result in either a
changed amino acid triplet or the production of a stop codon; the end result is a high likelihood
of an abnormal pathologic phenotype (Figure 4). For a list of the logical algorithms used in
our inference, please Appendix A in the Supplementary section. Local experts and the
published literature were consulted during the process of creating our decision tree [17-20].

A decision tree was created based on this biological knowledge and corroborated with two
SNP experts (one of whom is a co-author in this paper, CC). Heuristic weights of increasing
rank and importance ranging from 1 to 4 was assigned to each node along the path of the
decision tree (Figure 5). Inference rules were then created to capture this decision tree in the
form of rules using a reasoning plug-in called Java Expert System Shell (Jess) [21,22] which
was incorporated into the BioMediator system. For example, Figure 6 demonstrates one such
rule in Jess, in this case, the rule is fired only for nonsynonymous SNPs that are also deemed
tolerant. The antecedent of the rule is a SNP that is predicted to be both coding-nonsynonymous
and tolerant, and the consequent is to categorize the SNP as “coding SNP, nonsynonymous,
benign” and assign it a score. Rules such as this example are then placed in working memory,
and when a SNP is queried, the rules are activated and new facts represented by the rules are
added to working memory. Figure 7 shows a screenshot of the logical component of SNPit,
with three SNPs being ranked based on the logical inference rules described previously.

4.2. Building Probabilistic Inference into SNPit
In collaboration with SNP experts, probabilistic measures of prior belief, Ps and Qs, were
assigned for each SNPit source. Appropriate functions were also determined for computing
posterior belief values, Pr and Qr. Table 2 describes the assignments of Ps and Pr for the SNPit
data sources (see 3.3 for definition of Ps and Pr).

In the previous application of UII (Uncertainty in Information Integration project), functional
annotation of proteins, P and Q measures were computed on a per-record basis, based solely
on the data found within the record, independent of other results. For our SNPit application,
however, computing P values for SNP records required knowledge external to the record itself.
In part this was because we required our belief in a SNP record to reflect not just our belief in
its correctness, but also our belief in its functional potential (ability to affect phenotypic
outcomes). Determining a SNP’s functional potential required examining the neighbouring
results in the result graph. Figure 8 shows an example SNP result graph demonstrating its
clustered topology. A cluster of attribute records, further describing the SNP, surrounds each
SNP record. We modified the existing UII protocol to include an additional pre-processing
step augmenting the Pr value for each SNP record based on its neighbouring results.

In order to create a customized algorithm for SNP annotation, we first averaged the sources
that were related to each other. Then we took the maximum score out of the unrelated sources,
and averaged the independent sources. This was done in a sequential manner and a SNP
score was produced. This SNP score was then combined with the original UII score to get a
customized belief score with probabilistic properties. Then the UII algorithm is run and a final
UII score is produced. Figure 9 is a screenshot of the probabilistic results that SNPit returns.
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4.3. Building Logical and Probabilistic Inference into SNPit
Combining the logical and probabilistic components of our system required modification of
the heuristic weights we had previously described in section 4.1. The heuristic weights were
transformed from a range of 1 to 4 into a number between 0 and 1. This revised logical inference
value was then combined with the original Pr score to arrive at a new Pr score. This new Pr
score was then applied to the UII algorithm to generate a new SNP UII score. In the process
of developing this combined logical and probabilistic score, we explored numerous ways in
which to combine these two metrics. Figure 10 lists the five methods we used to combine the
scores: multiplying the original Pr score with the logical score, multiplying the customized
probabilistic score with the logical score, averaging the logical and probabilistic scores, taking
a weighed average, and using a formula for combining the probability of two independent
events. Figure 11 is a screenshot of the SNPit output for both the logical and probabilistic
inference approach for a regional SNP. In this example, we used the first method for combining
the two scores.

5. Evaluation
One of the main challenges that we faced when trying to develop a formal evaluation of the
SNPit system was the fact that as of the completion of this manuscript, there are no true gold
standards for the annotation of SNPs. This is especially the case for complex diseases where
genetic factors would only account for a portion of the final phenotype. We had initially
considered the use of GWAS hits, but there is a subtle difference between reproducible
statistical association and function. Each SNP reported from a GWAS is a tagSNP, which is
usually in strong LD with one to a dozen other SNPs. All of these statistically confounded
SNPs will show a statistically reproducible association, but only one is likely to be functional.
On average, tagSNPs are confounded with more than 5 other SNPs in European populations,
and the tagSNP does not appear any more likely to be functional than the tagged SNP. Thus,
at best 20% of the tagSNPs with reproducible associations will be functional polymorphisms,
so this was a less than optimal resource to use as a gold standard.

In order to arrive at an alternative standard that could be used to test the different inference
methods applied to SNPit, we opted for the Human Gene Mutation Database (HGMD) as an
alternative standard (version 2009.2) [23]. We chose HGMD because it provides evidence on
GWAS SNPs that have been found to be statistically significant through manual curation as
well as other SNPs that have been found to be potentially functional due to in vivo techniques.

We faced a similar obstacle in trying to identify a source of true negatives for our SNPit system.
We eventually decided to use dbSNP; the version of dbSNP that we used (build 129) shows
that out of a total approximate number of human SNPs with rs numbers, only a small percentage
had some kind of functional class and were cited in PubMed [24,25]. This strongly suggests
that most of the SNPs found in dbSNP would not have a functional impact, and thus we decided
to use dbSNP as our source of true negatives.

5.1. Evaluating Logical Inference of SNPit
To evaluate the ranked lists of SNPs created using logical inference, recall and precision values
were measured for our system. We ran 250 random SNPs from HGMD and 250 random SNPs
from dbSNP through the SNPit system. The scores from the decision tree were recorded from
our sources of true positives and negatives. Recall and precision measures were then taken at
50 level intervals. A receiver operating characteristic (ROC) curve was then created to assess
the predictive power of SNPit using logical inference (Figure 12). The ROC curve indicated
very good performance in terms of predictive ability. Using the trapezoid rule, the area under
the curve (AUC) was found to be 92.4%
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The breakdown of the classification groups that make up the logical rules (Figure 13)
demonstrates that the majority of SNPs randomly selected from HGMD are classified as
“coding SNP, nonsynonymous” and “coding SNP, nonsynonymous, damaging” SNPs. SNPs
randomly selected from dbSNP were mainly classified as “intronic, low evoluntionary
conservation”.

5.2. Evaluating Probabilistic Inference of SNPit
To evaluate the list of ranked SNPs produced using probabilistic inference, we again measured
the recall and precision values of our ranked list. We used the 250 random SNPs from HGMD
and another 250 random SNPs from dbSNP as our sources for true postives and true negatives.
When the ROC curve was created for this version of our SNPit system, we found that
probabilistic inference performed moderately well. The ROC curve did extend beyond the
diagonal towards the upper left corner and the AUC was 68.11% (Figure 14). When we
randomly split our 500 test SNPs for the probabilistic method into 10 sets of 50, we found that
the average ROC is 0.68904, the 95% confidence interval is (0.626630788, 0.751449212).

The break down of the categories that provide information for probabilistic inference reveals
that randomly selected SNPs from HGMD provide more information from the SIFT and BDGP
data sources, which provide nonsynonymous and splice site predictions. Information from data
sources related to evolutionary conservation, transcription factor binding sites, and linkage
disequilibrium provided approximately equivalent levels of information for SNPs randomly
selected from HGMD and dbSNP (Figure 15).

5.3. Evaluating Logical and Probabilistic Inference of SNPit
Evaluation of the logical and probabilistic inference component of SNPit followed the same
procedures as described in sections 5.1 and 5.2. ROC curves were created for all five methods
of combining the scores previously detailed in section 4.3. The ROC curves for all five
combination methods demonstrated good predictive ability as it curves towards the top left
corner of the graph; notably, the customized probabilistic score multiplied by the logical score
performed the best (Figure 16). The method that performed the best, the SNPit customized
probabilistic metric multiplied by the logical metric, had an area under the curve of 90.25%
(Figure 17).

5.4. Cross Evaluations of the Combinations of Logical and Probabilistic Inference of SNPit
In order to evaluate all the different combinations of logical and probabilistic inference that
were created and implemented for SNPit, we carried out a multiple comparison ROC curve.
This allowed us to cross evaluate the results ranked by logical inference, with the results ranked
by probabilistic inference, with the results ranked by the best combination method of logical
and probabilistic inference, with the results ranked randomly.

The multiple comparisons ROC curve showed that logical inference performed the best.
Results ranked by combined logical and probabilistic inference (using the combination method,
see Figure 10) performed approximately the same, albeit slightly lower. The results ranked by
probabilistic inference performed low relative to logical (though above random), and the results
of random rankings performed as expected (approximating a diagonal with AUC of roughly
50%). (Figure 18).

6. Discussion
This article described the design, implementation, and evaluation of a SNP annotation system
with combinations of logical and probabilistic inference. We detailed the methods we used to
create such a system, previously unknown in the domain of SNP annotation. To our knowledge,
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there had not been research in the areas of combining data integration with both logical
inference and probabilistic inference in the same system.

6.1. Results
The results of this study demonstrated that SNPit with logical inference provided surprisingly
good predictive power in the domain of SNP annotation. SNPit with probabilistic inference
performed better than random in the domain of SNP annotation, though not nearly as well as
logical. SNPit with logical and probabilistic inference combined together does perform very
well, but does not contribute significantly to predictive power as compared to logical inference
alone.

While the rankings generated by the probabilistic approach alone were poorer than expected
(based on previous work) we considered the possibility that, when used in conjunction with
logical methods, probabilistic methods might potentially improve ranking performance over
logical alone. In the end they did not appear to add significant value, although the logical
inference component performed strongly.

The ROC curve and AUC performed well overall for both logical and logical combined with
probabilistic inference. Using the optimal threshold value of 85% sensitivity on the ROC curve,
the accuracy rates were as follows: probabilistic inference - 0.648, logical inference - 0.848,
logical and probabilistic inference - 0.856, and random ranking - 0.448. This demonstrates that
the logical and probabilistic inference combination performs slightly better than logical
inference alone, though not by a statistically significant amount.

The reasons why logical inference performed better than probabilistic inference could be that
only two of the five functional categories of functional SNP data sources provided preferential
information to the SNPs scored as true positives (Figure 13). Furthermore, the SNPit adaption
of the UII algorithm for probabilistic inference was not fine tuned, the SNPit UII metrics could
have been too closely grouped together and thus, did not provide strong classification
predictions.

6.2. Limitations
The results of this article are not necessarily generalizable outside the domain of SNP
annotation or the specific methods details previously. This is due to the limitations of this study
stemming from both the lack of gold standards as well as the need to refine various methods
in the study. As discussed previously in section 3, we were faced with the challenge of
identifying a source of true positives and true negatives in this study, there is the possibility of
true negatives being present in HGMD and true positives being present in dbSNP. As a result,
evaluations based on these datasets may not be completely accurate, although we estimate that
the error rates would be relatively small and largely inconsequential.

A further limitation concerns rs numbers that can go stale or lead to falsely dead links when
different versions of dbSNP are used as the basis for lookups. For this very reason, we have
favored the use of the actual SNP sequence when possible, as in the queries of BDGP and
TFSEARCH. With regard to dbSNP, although rs numbers evolve over time, the database is
reverse compatible, so that a query on a stale rs number that has collapsed into a new rs number
will typically retrieve the correct sequence (unless the original entry has been withdrawn, rather
than merged).

Another source of limitation in our evaluation stems from the lack of refinement to our logical
and probabilistic methods. We did not use machine learning when designing our decision tree
or UII metrics, we did not address SNPs that reside on more than one path in the decision tree
and the customized algorithm used in our probabilistic inference method was not exhaustively

Shen et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tested and its mathematical properties were not fully explored. These limitations need to be
kept in mind when examining the results.

7. Conclusions
This study demonstrates that it is feasible to incorporate combinations of both logical and
probabilistic inference onto a federated data integration system for the purposes of SNP
annotation. Cross evaluations of the different methods of inference demonstrated that
probabilistic inference alone did not contribute significantly to the predictive power of the SNP
annotation system.

In the end, combining probabilistic methods with logical methods didn’t really add value.
While the probabilistic methods alone did not out-perform the logical methods, it was still
possible that, in conjunction with logical methods, probabilistic methods might add some
additional selectivity. We did not know beforehand if combining them would add utility or
not. In the end it didn’t. We publish this as a finding nonetheless, for others who might consider
a similar approach.

We point out the possibility that some optimization might improve on these results, including
the choices of prior and posterior belief metrics, as well as the customized algorithm for each
SNP to incorporate neighboring information when determining the posterior belief. The reason
we believe optimization might improve results is that in prior work by Louie [26] optimization
of parameters in a probabilistic inference system over integrated data did improve performance.
These possible modifications to the prior and posterior beliefs are directions for future
experiments. Time to assemble results for a given query would be another interesting parameter
to present for future experiments. The difficulty of fitting the probabilistic method to a new
problem (the probabilistic approach was used successfully on a previous task, protein
annotation) is informative. Additionally it is informative that it may be difficult to tune the
probabilistic parameters, while the logical decision tree closely mimics the way human experts
would manually rank SNP results.

These results were limited by the lack of a gold standard as well as the lack of optimization in
the inference techniques applied. Since this is the first study, to our knowledge, that attempts
to formally evaluate a federated data integration system with combinations of logical and
probabilistic inference in the domain of SNP annotation, the fact that our best performing
method produced an area under the curve greater than 90 percent demonstrates that informatics
methods can be used to accurately predict the functional impact of SNPs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram of the role of GWAS. Starting from a population of individuals with common SNPs,
a GWAS is conducted, which highlights those SNPs that are statistically associated with the
phenotype of interest.
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Figure 2.
Overview diagram of SNPit [15]. The system is comprised of three sections: data sources
related to SNP annotation, the BioMediator federated data integration system, and both a
graphical user and web servlet interface.
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Figure 3.
Generalized diagram of the different components of BioMediator.
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Figure 4.
Biological principles from previous literature used to create a decision tree (reproduced here
for clarity from [25]).
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Figure 5.
Decision tree with heuristic weights assigned to the nodes (reproduced here for clarity from
[15]).
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Figure 6.
Jess rule checking for nonsynonymous SNPs that are predicted to be tolerant.
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Figure 7.
Screenshot of the logical inference component of SNPit, demonstrating the ranking of three
separate SNPS.
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Figure 8.
Snapshot of the result graph for a sample SNP, demonstrating how each SNP resembles a
cluster.
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Figure 9.
Screenshot of the SNPit system showing the probabilistic results.
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Figure 10.
Different algorithms used to combine the logical and probabilistic metrics.
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Figure 11.
Screenshot of logical and probabilistic inference ranking page.
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Figure 12.
ROC curve for SNPit with logical inference.
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Figure 13.
Classification groups for logical inference results.
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Figure 14.
ROC curve for SNPit with probabilistic inference.
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Figure 15.
Classification groups for the data sources that provided information on probabilistic inference.
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Figure 16.
ROC curves for the five different methods that were used to combine the logical and
probabilistic scores.
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Figure 17.
ROC curve of the combined probabilistic and logical inference which performed the best, the
area under the curve is 90.25%.
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Figure 18.
Multiple comparions ROC curve for the different versions of SNPit.
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