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Abstract

Carboxylesterase (CES) is predominantly responsible for the detoxification of a wide range of
drugs and narcotics, and catalyze several reactions in cholesterol and fatty acid metabolism.
Studies of the genetic and biochemical properties of primate CES may contribute to an improved
understanding of human disease, including atherosclerosis, obesity and drug addiction, for which
non-human primates serve as useful animal models. We cloned and sequenced baboon CES1 and
CES2 and used in vitro and in silico methods to predict protein secondary and tertiary structures,
and examined evolutionary relationships for these enzymes with other primate and mouse CES
orthologs. We found that baboon CES1 and CES2 proteins retained extensive similarity with
human CES1 and CES2, shared key structural features reported for human CES1, and showed
family specific sequences consistent with their multimeric and monomeric subunit structures
respectively.
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Introduction

Carboxylesterases (CES; E.C.3.1.1.1) exist as a family of enzymes which have been
implicated in the catalysis of a broad range of hydrolytic and transesterification reactions
[54]. Diverse substrates include xenobiotics (carboxyl esters, thioesters and aromatic
amides), anticancer drugs such as CPT-11 and capecitabine, narcotics such as heroin and
cocaine, and clinical drugs such as lovastatin and lidocaine [48,56]. CES detoxifies
numerous organophosphate and carbamate compounds used as chemical weapons (sarin,
tabun and soman) or insecticides (malathion), usually by “suicide-inactivation’ at the CES
active site [1,31]. The enzyme has also been associated with cholesterol and fatty acid
metabolism through demonstrated activities for several reactions: cholesterol:ester hydrolase
[19]; fatty acyl CoA hydrolase [60]; acyl CoA:cholesterol acyl transferase [2]; acyl carnitine
hydrolase [23]; and fatty acyl: ethyl ester synthase [13], and has been linked with the
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assembly of low density lipoprotein particles in liver [63]. CES is predominantly localized
in the endoplasmic reticulum (ER), has an N-terminal hydrophobic signal peptide consistent
with a trafficking role through the ER and forms complexes with B-glucuronidase, consistent
with a partnering role in phase 11 drug metabolism [45,68].

Two major forms of human CES have been reported: CES1 is the major liver enzyme and
also is found in lung epithelia, macrophages and other tissues [59]; and CES2 is the major
intestinal enzyme and is widely distributed in tissues including liver, kidney, heart and
skeletal muscle [30]. Three-dimensional structural analyses of several human CES1
complexes have shown that the active site is highly promiscuous enabling catalysis of many
diverse reactions for a wide range of substrates [4,5,34,48,56]. In addition to the active site,
human CESL has at least two ligand binding sites, the ‘side-door’ and “Z-site’, where fatty
acids and cholesterol analogues respectively, are bound. The trimer-hexamer subunit
structure for CES1 is proposed to play an important role in the regulation of catalysis
through ligand binding, which may influence access to the active site by shifting this
equilibrium [48]. Genomic structures for the genes encoding these enzymes have been
determined: CESL1 is located on chromosome 16 contains 14 exons and spans about 30 kb
[7,30,59]; and CES2 is also located on chromosome 16 contains 15 exons and spans about
11 kb [8,34,57]. Their close proximity and sequence similarity (47% identity for human
CES1 and CES2 cDNAs) imply that they arose from a common ancestor [22,44,54-56].
Three other CES genes (CES3, CES4 and CES7) also map to human chromosome 16
[37,53,66].

This paper reports the cDNA and deduced amino acid sequences, subunit structures and
predicted secondary and tertiary structures for baboon CES1 and CES2, and describes the
structural and likely evolutionary relationships for these enzymes from several primate
species, including humans. The baboon and other non-human primate species are used as
animal models for studying several human diseases [52], including atherosclerosis and
related arterial diseases [6,33], obesity [11] and drug addiction and toxicity [38,50]. Given
the major role of CES in the metabolism of drugs and narcotics [48,56], and in catalyzing
several reactions of cholesterol and fatty acid metabolism [2,12,19,23,60], these and related
studies may lead to a better understanding of genetic and biochemical factors contributing to
these common diseases.

cDNA cloning and sequencing

Total RNA was extracted from archived baboon liver. First strand cDNA synthesis from
total RNA was performed with an Oligo (dT) Primer (Ambion, Austin,TX) and Superscript
I11 Reverse Transcriptase (Invitrogen, Carlsbad,CA) according to the manufacturer’s
instructions. CES1 baboon cDNA was PCR amplified from one first strand cDNA sample
using forward primer (5’ - AAAACTGTCGCCCTTCCACG -3’) and reverse (5’ —
TTCCCCAGCCACGGTAAGATGCCT -3’) designed from rhesus sequence data [28,51].
CES2 baboon cDNAs were PCR amplified as 3 overlapping fragments from each first strand
sample using: fragment 1 (698 bp — 2532 bp) forward primer (5’ —
TTTGCTCAAGCGGTTCCTTC -3”) and reverse primer (5 —
TCATGTGCGGTGGCCTGATGTTCT -3%); fragment 2 (1171 bp — 2532 bp) forward
primer (5 — AACCGAGACCAGCGAGCCGACCAT -3’) and reverse primer (5’ —
TCATGTGCGGTGGCCTGATGTTCT -3%); and fragment 3 (2429 bp — 3862 bp) forward
primer (5 = GCGGACTCCATGTTTGTGATCCCT -3”) and reverse primer (5” —
ACTTAGGTGTGGGCAACATTCTTC -3’) designed from human sequence data [27].
Baboon CES1 and CES2 cDNAs were sequenced from the PCR fragments and a tiling path
of sequencing primers for each gene was constructed (Table 1). cDNA samples for each
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baboon were sequenced using these primers and Big Dye v3.1 chemistry (Applied
Biosystems Cat. No. 4337455). Sequencing products were purified using Exonuclease |
(10ul/ul, USB Cat. No. 70073Z) and Shrimp Alkaline Phosphatase (SAP) (1u/ul, USB Cat.
No. 700927) and analyzed on an automated sequencer (Applied Biosystems 3100) using
Sequence Analysis software (Applied Biosystems 3100). Sequence data were imported into
Sequencher (Gene Codes, Inc.) for alignment. Gene sequences were deposited with
GenBank (accession numbers xxx and Xxx).

Phylogenetic Studies and Sequence Divergence

Phylogenetic trees were constructed using an amino acid alignment from a ClustalW-derived
alignment of primate and mouse CES protein sequences, obtained with default settings and
corrected for multiple substitutions [10, http://www.ebi.ac.uk/clustalw/], and used to predict
likely evolutionary relationships for these enzymes. Table 2 provides a summary of the
Genbank (http://www.nchi.nlm.nih.gov/Genbank/), UniProtK B/Swiss-Prot
(http://au.expasy.org/sprot/) and predicted in silico CES sequences [27] used in alignment
studies. Also included are the baboon CES1 and CES2 sequences reported here. The extent
of divergence for mammalian CES1 and CES2 amino acid sequences was determined using
the SIM-Alignment tool for Protein Sequences [http://au.expasy.org/tools/sim-prot.html].

In silico CES gene and gene product identification

BLAT (BLAST-Like Alignment Tool) in silico studies were undertaken using the UC Santa
Cruz [http://genome.ucsc.edu/cgi-bin/hgBlat] web site with the default settings [27].
UniProtKB/Swiss-Prot Database [http://au.expasy.org] and GenBank
[http://www.ncbi.nlm.nih.gov/Genbank/] sequences (see Table 2) were used to interrogate
the human, chimp, rhesus, mouse, rat, cow, dog and cat genome sequences [27] and gene
locations were observed for each CES sequence examined for those regions showing
identity with the respective CES gene products.

Purification of CES1 and CES2 and native MW studies

Baboon liver samples stored at —80°C were extracted into 50mM Tris-HCI buffer pH 8.0
containing 0.1% Triton-X 100 ( buffer A) (20% w/v) using an Ultra-Turrax homogenizer
and centrifuged at 4°C for 30 min at 15,0009. Extracts (~ 5pl) were then subjected to
electrophoresis on Titan 111 cellulose acetate plates at 4°C using 50mM Tris-citrate buffer
pH 7.0 at 150 V for 60 min. Edges of the plate were cut and histochemically stained for CES
activity using a-napthyl acetate as substrate, Fast Blue RR salt and 1% agarose-overlay in
50mM Tris-HCI pH 8.0 buffer [26]. Cellulose acetate particles were scraped from the
unstained plate for the CES1 and CES?2 activity zones, and gently extracted into 0.25 mls of
Buffer A and centrifuged at 2,000g for 10 min at 4°C. Supernatants containing isozymically
purified CES1and CES2 were then subjected to gradient-PAGE (4-20%) in a Tris-Glycine
pH 8.5 buffer at 150V for 4.45 hours at 4°C and histochemically stained for CES activity.
Native MW standards were run simultaneously with the purified CES1 and CES2 samples
and these lanes stained for protein with Coomassie Blue G-250 (0.25%w/v in a solution of
30% methanol/10% acetic acid and distilled water) and destained in the methanol/acetic acid
solution. Native MWs for baboon liver CES1 and CES2 were determined from a linear plot
of log,oMW for the protein standards and migration distance.

Predicted Secondary and Tertiary Structures for Baboon CES Gene Products

Predicted secondary structures for baboon CES1 and CES2 were obtained using the
PSIPRED v2.5 web site tools provided by Brunel University [36,
http://bioinf.cs.ucl.ac.uk/psipred/psiform.html]. Predicted tertiary structures for baboon
CES1 and CES2 were obtained using the SWISS MODEL web tools
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[http://swissmodel.expasy.org/workspace/index.php?func=modelling_simplel]
[21,28,43,67]. The reported human CESL tertiary structures [3,4,48] served as the reference
for obtaining the predicted baboon CES1 and CES2 tertiary structures.

Baboon liver CES1 and CES2 cDNA Sequences

We isolated and sequenced cDNAs for baboon CES1 and CES2 and lodged the respective
sequences with GenBank (these will be deposited upon acceptance of the manuscript for
publication xxx). Based on an alignment with the human CES1 sequence [7,19,30] (data not
shown), the baboon CES1 cDNA sequence includes 21 bp of the 108 bp 5’ untranslated
region (UTR), the entire coding sequence, and 47 bp of the 212 bp 3'UTR. We also
sequenced 1980 bp of the baboon CES2 cDNA. An alignment of the baboon CES2 cDNA
sequence with the reported human CES2 cDNA sequence [8,53,57,59] (data not shown)
showed that the sequence includes 57 bp of 1192 bp 5° UTR, the entire coding sequence and
237 bp of the 1085 bp 3’ UTR. Alignments of baboon CES1 and CES2 cDNAs with the
corresponding sequences for human CES1 and CES2 showed 95% and 92% sequence
identities respectively with both the non-coding and coding regions of the genes.

Alignments of baboon CES1 and CES2 with human and other primate CES1 and CES2
amino acid sequences

The deduced amino acid sequences for baboon liver CES1 and CES2 are shown in Figure 1
together with previously reported sequences for human CES1 [7,19,30] and human CES2
[8,53,57,59], and with deduced sequences for orangutan CES1 [62], chimp CES1 and CES2,
and rhesus CES1 and CES2. The latter four sequences were obtained by in silico
interrogation of the chimp and rhesus genomes using human CES1, human CES2, baboon
CES1 and baboon CES2 sequences, respectively [27]. Alignments of baboon CES1 with
human CESL1 and of baboon CES2 with human CES2 showed 94% and 90% sequence
identities respectively, while other primate CES1 amino acid sequences are 93% or more
identical with human CES1 whereas other primate CES2 sequences are 86% or more
identical with human CES2 (Table 3). The deduced amino acid sequence for baboon CES2
was two residues longer (Met310 and Lys546 within the 561 amino acid sequence) than for
human CES2 (559 residues). Human CES1 occurs as two major isoforms containing 567
and 568 residues for isoforms 1 and 2 respectively [2,7], in comparison with the reported
baboon CES1 sequence which contains 567 amino acid residues. Since the human CES-
isoform 1 was used to describe the tertiary structure for this enzyme [3,4,15,48], these
residue numbers are cited in the following text for comparing amino acid sequences of
several primate CES1 proteins. The primate CES forms examined in this present study were
between 559-567 residues in length, of which 228 residues (~40%) were identical. Of
particular interest were the key residues involved in determining the catalytic,
microlocalization and regulatory functions for these enzymes which will be dealt with in
more detail below and in the discussion section.

Predicted Secondary and Tertiary Structures for Baboon and other Primate CES Gene

Products

Analyses of predicted secondary structures for human CES2, and for baboon and other
primate CES1 and CES2 proteins were compared with the previously reported secondary
structure for human CES1 [3,4,48] (Figure 1). The a-helix/p-sheet predominant CES
structure is readily apparent with a high degree of similarity in secondary structures for the
CES gene products examined. Consistent structures were apparent near key residues or
functional domains including the a-helix within the N-terminal signal peptide (residues 2-13
and 3-24 for human CES1 and CES2, respectively); the B-sheet and a-helix structures
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bordering the active site Ser228 (human CESL1) and the active site and nearby Z site (Glu354
and Gly356 respectively); the a-helix structures bordering the ‘side door’ site; and the a-
helix located near the ‘gate’ at the CES1 and CES2 C-terminus end [3,4,48). In addition, two
random coil regions (residues 51 —115 and 169 —188 for human CES1) are retained for all
forms of primate CES1 and CES2 which have been shown for human CES1 to contain 2
charge clamp sites: Lys79...Glu183; and Glu73...Arg186); an N-glycosylation site at
79NAT; a second potential N-glycosylation site for all 4 forms of primate CES2 (111INMT
for human CES2), and one of the disulfide bridges (87Cys —S-S-117Cys) reported for
human CESL [3,4,48] . Predicted 3-D structures for baboon CES1 and CES2 (Figure 2)
showed a high degree of similarity with human CES1 [3,4,48]. The rainbow based color
code (red for carboxyl-end and deep blue for amino terminus end) illustrated the high degree
of conservation observed for both baboon CES1 and CES2 secondary and tertiary structures
despite having <45% sequence identity.

Subunit Structures for Baboon Liver CES1 and CES2

Baboon liver CES1 exhibited gradient PAGE migration properties consistent with being a
mixture of two multi-subunit structures, trimers (~170kD) and hexamers (340kD), whereas
liver and intestine CES2 behaved as a monomer, based upon subunit MWs of ~62kD for
both enzymes (Figure 3) [7,8]. This is consistent with the results reported for human CES1
and CES2 as trimers/hexamers and monomers, respectively [44]. Baboon intestine CES1
exhibited similar properties to liver CES1 but with two higher MW zones indicating further
aggregation of subunits for this enzyme. A monomeric subunit structure for baboon CES2 is
further supported by the amino acid replacements observed at the subunit-subunit binding
sites of human CES1 [15] for the corresponding residues in human and baboon CES2
(Figure 1). The CES2 amino acid charge clamp residue substitutions interfere with
monomer-monomer binding: CES1 Glu183, which binds to Lys78 in human and baboon, is
substituted in CES2 by Lys190 in human, baboon and other primates (Figure 1); and CES1
Arg193, which in human and baboon binds to Glu72, is substituted in CES2 by Thr200
(Figurel) human, baboon and other primates. In addition, the CES1 79Asn in human and
baboon has been replaced by 87Asp (Figure 1) in CES2 for the 4 primate enzymes
examined, preventing carbohydrate binding to the amide group and sialic acid stacking
which is essential for trimer-hexamer formation [15]. The loss of two charge clamps and the
carbohydrate binding site for CES2 may contribute significantly to the disruption of
monomer-monomer binding leading to the observed single subunit structure for human and
baboon CES2.

Phylogeny of Mammalian CES1 and CES2 Sequences

A phylogenetic tree (Figure 4) was calculated by the progressive alignment of nine primate
and two mouse CES1 and CES2 amino acid sequences which shows clustering into two
main groups (or families) for the CES1 and CES2 ‘like’ genes. Primate CES2 genes are
apparently undergoing a more rapid rate of amino acid sequence divergence than primate
CES1 genes and non-primate CES1 and CES2 genes, which is further substantiated by
comparing the percentage of sequence identities for human and chimp CES1 and CES2 with
those for baboon and rhesus CES1 and CES2 (Table 3). In each case, a significantly lower
percentage of identity was observed for baboon and rhesus CES2 with human and rhesus
CES2 than for the same inter-species comparisons for primate CES1.

Gene Locations for Mammalian CES1 and CES2 Genes

Table 2 summarizes the known or predicted CES1 and CES2 gene locations for 3 primate
species and for 5 non-primate eutherian mammals based upon published reports for human
[7,8,30,57,59], mouse [14,16,17,39] and rat CES1 and CES2 [18,47], and BLAT
interrogation of the genomes for human, chimp [27,35], rhesus [49], mouse [39], rat [47],
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cow, dog and cat [27]. With the exception of rat CES2 (CES2 ‘like”) and CES3 (CES1
‘like’) genes, which are located on chromosomes 1 and 19 respectively, CES1 and CES2
genes from the other 5 mammalian genomes examined were syntenic. In addition, ten of
eleven mammalian CES1 genes were transcribed on the negative strand, and nine of ten
CES?2 genes were transcribed on the positive strand.
Discussion

Three dimensional structures for human CES1 have been determined at high resolution
(2.8A) [3,4,48] and the enzyme shown to be divided into three functional domains: the
catalytic domain contains the active site ‘triad” and the carbohydrate binding site; the af§
domain provides the majority of the hydrophobic internal structure and assists in forming the
trimeric subunit structure for this enzyme; and the regulatory domain which may regulate
substrate binding, product release and the trimer-hexamer equilibrium. Three ligand binding
sites have been described, designated as the active site, the side door and the Z-site. The side
door apparently assists with the release of product (eg. fatty acids) following catalysis,
whereas the Z-site is proposed to play a role in regulating catalysis following ligand binding
by shifting the trimer-hexamer equilibrium towards trimer, and opening up the active site to
substrate and subsequent catalysis [15]. Several key amino acid residues or sequences have
been strictly conserved among primate CES1 and CES2 (Figure 1), which correlate with
their proposed functions, based on the 3-D studies conducted on human CESL1 [see 3, 4, 49]:
the active site ‘triad” (Ser221, Glu354 and His468) [12]; Gly356 or the Z-site, which binds
cholesterol-like compounds; Cys95/Cys123 and Cys280/Cys291, the sites for disulfide bond
formation [32]; and two microsomal targeting sequences, including the hydrophobic N-
terminus signal peptides for CES1 (residues 1-18) and CES2 (residues 1-26) [61] and the
C-terminal endoplasmic reticulum (ER) retention sequences His-X-Glu-Leu (HXEL), which
functions in protein retrieval from the Golgi apparatus and in CES retention in the ER lumen
[40,51].

There are other conserved amino acid residues or sequences which appear to be CES1 or
CES?2 specific among the primate sequences examined, and correlate with the functions
proposed by the human CESL tertiary structure studies [3,4,48]. The high-mannose N-
glycosylation site reported for human CES1 (Asn79-Ala80-Thr81) [15] was retained for all
primate CES1 sequences whereas another potential carbohydrate binding site was observed
for all primate CES2 sequences at Asn111-X112-Thr113. A second potential carbohydrate
binding site was also found for human and chimp CES2 at 276NLS (Figure 1). Given the
roles described for N-glycosylation in maintaining human CES1 activity [29] and in
stabilizing the N-terminal structure [15], it is likely that these potential sites for primate
CES?2 are also subject to N-glycosylation in vivo to assist with the stability for this enzyme.
The charge clamps that perform key roles in maintaining the trimeric-hexameric subunit
structures for human CES1 [15] are retained by baboon and rhesus CES1. Chimp and
orangutan CES1, however, have retained only one of these clamps (Glu183 binding to
Lys78 in the adjacent CES1 subunit), whereas the second charge clamp (Arg193 binding to
Glu72 in the adjacent CES1 subunit) will not function as for human CES1 because of the
Arg193 substitution by 193Pro. The monomeric subunit structure for baboon CES2 (Figure
3) is consistent with a previous report for human CES2 [45], and may be explained by the
absence of key residues supporting two charge clamps previously reported for human CES1
[15]. The four primate CES2 sequences examined have undergone amino acid substitutions
for those residues contributing to the human CES1 charge clamps: human CES1 Glu183 and
Arg186 have been replaced for primate CES2 by amino acids that would not support charge
clamp formation: Glu183 — Lys183; and Arg186 — Thr183 (Figure 1). It would appear that
the respective multimeric and monomeric subunit structures for CES1 and CES2 have been
retained for all primate species examined. This is likely to have a major influence on the
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kinetics and biochemical roles for these enzymes. Bencharit and coworkers [3,4] have
proposed that ligand binding to the CES1 *Z-site’ shifts the trimer-hexamer equilibrium
towards the trimer facilitating substrate binding and enzyme catalysis. They also proposed
that ligand binding to this site may play a role in facilitating the hydrolysis of cholesterol
esters and in the allosteric activation of esterase catalysis. As a monomer, primate CES2
would behave quite differently and may serve a distinct set of roles in drug and lipid
metabolism in the body.

Human CES1 Met425 has been described as the most important residue in regulating the
release of fatty acids following hydrolysis of cholesterol esters and serving as a ‘gate’ at the
‘side door’ of human CESL1, where Phe426 serves as a switch’ and Phe551 acts as an
aromatic releasing residue also in the “side door’ region [3,4,48]. The 424VMF ‘side door’
amino acid residues (Figure 1) have been retained for all five primate CES1 sequences
examined, whereas only the human CES1 425MF amino acids have been retained for the
four primate CES2 sequences. This may reflect a change in the kinetics or specificity in
regulating fatty acid or other acyl-product release for primate CES2 as compared with
CESL1. In addition, the key residue at the human CES1 “gate’, 551Phe, has been conserved
for all primate CES1 sequences examined, whereas another hydrophobic amino acid (human
CES2 542Leu) has replaced the human CES1 551Phe residue in all four primate CES2
sequences. The significance of this change in ‘gate’ residue for primate CES2 remains to be
determined however it may influence product release following acyl hydrolysis or
transesterifcation. The deduced amino acid sequence for baboon and rhesus CES2 was two
residues longer (Met310 and Lys546 within the 561 amino acid sequence for baboon CES2)
than for human and chimp CES2 (559 residues) (Figure 1). Human, chimp and baboon
CES1 contained 567 amino acid residues; whereas, orangutan and rhesus CES1 were one
residue shorter (566). The N-terminal microsomal signal peptides for human and baboon
CES1, which facilitates retention of the enzyme within the ER [42,51,61], were identical in
sequence between human CES1 isoform 2 and baboon CES1, and both contained an extra
residue (Alal8) prior to Gly19 which is immediately prior to the cleavage site for human
CES1 isoform 1. This is in contrast to most mammalian CES1 and CES2 products which
have N-terminal signal peptides containing a bulky aromatic residue followed by a small
neutral residue prior to the cleavage site [61].

There were three major predicted secondary structure differences observed between primate
CES1 and CES2, involving longer helices for the four primate CES2 proteins, in comparison
with primate CES1: (1) The helix following the primate CES1 *side door’ residues (human
CES1 424VMF) was extended into the ‘side door’ region for primate CES2 proteins
(415MF for human CES2); (2) The CES1 N-terminus helix (human CESL1 residues 2-14)
was considerably lengthened for the primate CES2 proteins (human CES2 residues 3-23);
and (3) The CES1 C-terminus helix (human CES1 residues 540-554) was significantly
extended for primate CES2, including forming a second smaller predicted helix at or near
the HTEL terminus for three of the four primate CES2 structures (human CES2 residues
531-549 and 554-557 respectively (Figure 1). The role of these longer helices for primate
CES2 in comparison with primate CES1 awaits 3-dimensional structural analysis of primate
CES2.

The phylogenetic tree reported for primate CES1 and CES2 (together with mouse CES3 and
CES?2 included as outgroups) (Figure 4) was obtained by the progressive alignment of 8
primate CES amino acid sequences and shows a cluster into two main groups (or families)
consistent with CES1 and CES2 being products of ancestral gene duplication events. This is
similar to previously published phylogenetic trees for mammalian CES [44,55,56] and is
consistent with the results of a recent study of marsupial (opossum) and eutherian CES,
which indicated that CES gene duplication events which generated ancestral mammalian
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CES genes predated the common ancestor for eutherian and marsupial mammals [22]. This
study proposed that several ancient gene duplication events took place prior to the
evolutionary appearance of mammals, generating five ancestral genes for CES1, CES2,
CES3, CES6 and CES7. The timing of the CES1/CES2 gene duplication event has been
estimated at ~ 330 MY ago following the appearance of tetrapods during vertebrate
evolution [22]. In addition to these ancestral CES gene duplication events, it is apparent that
several more recent gene duplications have occurred for mammalian CES1 and CES2. For
example, mouse CES1 ‘like’ and CES2 ‘like’ genes exist as multiple copies which are
closely linked on chromosome 8 [5,23]; rat CES1 ‘like’ and CES2 ‘like’ genes also occur as
multiple copies although in this case, they are localized on chromosomes 19 and 1,
respectively [17,47]; and a second CES1 ‘like’ gene has been reported in human, designated
as CES4, and localized on chromosome 16 within 80 kilo bases of CES1 [9,27,66].

The tissue distribution profiles and differential kinetic properties for human (and baboon)
CES1 and CES2 may assist in determining their respective metabolic roles in the body.
Mammalian liver is predominantly responsible for drug and xenobiotic clearance from the
body where CES1 plays the major role, following the absorption of drugs and xenobiotics
into the circulation [24,45]. In contrast, mammalian intestine CES2 is predominantly
responsible for first pass clearance of several drugs and xenobiotics, with activity occurring
mostly in the ileum and jejunum and processed via CES2 [25]. CES1 and CES2 also serve
distinct roles in prodrug activation, as shown for the anti-cancer drug irinotecan (CPT-11)
which is converted to its active form SN-38 predominantly by CES2 [24,25]. It is readily
apparent that these specific roles for human CES1 and CES2 will have been retained for
these enzymes from other primate sources, including the baboon, given the structural
similarities observed for human and other primate CES1 and CES2 proteins, respectively.

In conclusion, the results of the present study indicate that primate CES1 and CES2 have
very similar amino acid sequences with the corresponding human enzymes and share key
conserved sequences and structures that have been reported for human CES1, and have
family specific sequences consistent with their multimeric and monomeric subunit structures
respectively. Predicted secondary and tertiary structures for baboon CES1 and CES2 showed
a high degree of conservation with human CES1. Phylogeny studies using primate and other
mammalian CES1 and CES2 amino acid sequences showed that these two CES classes have
undergone sequence divergence during mammalian and primate evolution, with primate
CES2 showing higher amino acid substitution rates than that for primate CES1.
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Figure 1. Alignment of primate CES1 and CES2 amino acid sequences

The sequence is annotated with: sequence identities: * identical residues : 1 and . 2
alternative residues observed; residues involved in microsomal processing at N- and C-
termini (bold red); N-glycosylation residues at 79NAT (CES1) and potential N-
glycosylation sites (green highlight); active site residues Ser; Glu; and His. (red highlight);
AS: active site; Side door and gate residues (boxed red font); cholesterol binding Gly
residue for human CES1 (light blue font); Z site (boxed black font); disulfide bond Cys
residues for human CES1 S---S (blue font); charge clamp residues identified for human
CES1 —.....+ (red highlight); helix (human CES1) or predicted helix. (yellow highlight);
sheet (human CES1) or predicted sheet structures (gray highlight).
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Baboon CES1

Figure 2.
Predicted tertiary structures for baboon CES1 and CES2
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669kd

440kd

232kd

140kd

67kd

Stds 1 2 3 4 3] 6

\ ' €Hexameric CES1—>
< Trimeric CES1>
‘ <Monomeric CES2 2> & ”
+
Figure 3.

Gradient PAGE zymogram of baboon liver and intestine CES1 and CES2. 1: Baboon
intestine CES1; 2: Baboon intestine CES2; 3: Baboon intestine CES1 and CES2; 4: Baboon
liver CES1; 5: Baboon liver CES2; 6: Baboon liver CES1 and CES2. Stds: Native protein
MW standards.
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— CES1_HUMAN

—— CES1_CHIMP
CES1_ORANGUTAN
CES1_RHESUS
CES1_BABOON

CES2 CES2_HUMAN
CES1 ) CES2_CHIMP
— CES2_RHESUS
CES1/CES2 Gene Duplication 360 MY CES2_BABOON
CES2_MOUSE

CES3_MOUSE

Figure 4.

Phylogenetic tree of primate (human; chimp; baboon; and rhesus) and mouse CES
sequences. Each branch of the tree is labeled with the gene name and followed by the
species name. O designates a Catarrhine common ancestor estimated to occur at ~ 25
million years ago [21,46]; X designates the eutherian common ancestor estimated to occur at
~ 100 million years ago [41,64]. The line joining the CES1 and CES2 eutherian common
ancestors designates the separation for the 2 separate lines of evolution following the
proposed gene duplication event at ~ 360 million years ago [22].
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Table 1

Baboon cDNA CES1 and CES2 Sequencing Primers

Name Position  Direction  Sequence (5’ - 3)

CES1_15WG 89 Forward ~ AAAACTGTCGCCCTTCCACG
CES1_2 384 Forward CGTGGCAGGGCAGGTACTCTCAGA
CES1_3 759 Forward CATCTTTGGAGAGTCAGCGGGAGG
CES1 4 1166 Forward AGCAGGAGTTTGGCTGGATTATTC
CES1_5 1596 Forward GGTGATGAAATTCTGGGCCAACTT
CES1_8 388 Reverse ~ TAGCTCTGAGAGTACCTGCCCTGC
CES1 9 760 Reverse ~ TCCTCCCGCTGACTCTCCAAAGAT
CES1_10 1165 Reverse ~ AATAATCCAGCCAAACTCCTGCTT
CES1 11 1596 Reverse ~ AAGTTGGCCCAGAATTTCATCACC
CES1_12 1855 Reverse TCCCTTTCACAAGATACCCCAGTC
CES1_16WG 1892 Reverse ~ TTCCCCAGCCACGGTAAGATGCCT
Name Position  Direction  Sequence (5’ - 3)

CES2_4 2036 Forward CAAGTTGACTCTGAGGCCCTGGTG
CES2_5 2429 Forward GCGGACTCCATGTTTGTGATCCCT
CES2_13 1814 Reverse ~ AAAGTGGGCGATATTCTGCTGGAC
CES2_15 2532 Reverse ~ TCATGTGCGGTGGCCTGATGTTCT
CES2_24 2533 Forward  GAACATCAGGCCACCGCACATGAA
CES2_25 2543 Forward CCACCGCACATGAAGGCAGACCAT
CES2_36 2663 Reverse ~ ATTTCTCGCAAAGTTGGCCCAGTA
CES2_40 1136 Forward TCTCTGGGTGAACAGCAGCGTGTC
CES2_41 1515 Forward GCCAAGTCAATGTGACCATCCCTT
CES2_45 2865 Reverse ~ GCACAGGGAGCTACAGCTCTGTGT
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