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Abstract
Heart failure affects nearly 6 million Americans, with a half-million new cases emerging each year.
Whereas up to 50% of heart failure patients die of arrhythmia, the diverse mechanisms underlying
heart failure-associated arrhythmia are poorly understood. As a consequence, effectiveness of
antiarrhythmic pharmacotherapy remains elusive. Here, we review recent advances in our
understanding of heart failure-associated molecular events impacting the electrical function of the
myocardium. We approach this from an anatomical standpoint, summarizing recent insights gleaned
from pre-clinical models and discussing their relevance to human heart failure.

Introduction
Heart failure is approaching epidemic proportions in industrialized societies[1]. Mortality in
this syndrome, which derives from a host of disease-associated insults to the heart, is high, as
much as 50% per year in advanced disease. A prominent mechanism of death in patients with
heart failure is arrhythmia, especially tachyarrhythmia, where electrical activation of the heart
occurs so rapidly that effective filling and pumping of blood cannot occur. To combat these
arrhythmias, implantable devices (ICDs, implantable cardiodefibrillators) have emerged as an
important therapeutic strategy designed to abort malignant arrhythmia and restore normal,
sinus rhythm.

In parallel with the emergence of ICD therapy, the prominence of anti-arrhythmic drug therapy
has declined. The reasons for this decline are several, but stem largely from inefficacy of
existing antiarrhythmic pharmacotherapy in patients with structural heart disease. This
deficiency, in turn, likely derives from inadequate understanding of fundamental mechanisms
of arrhythmogenesis in the large number of disease states which culminate in heart failure.
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A great deal of work is underway to decipher mechanisms of pathological remodeling of the
ventricle[2]. Of necessity, the majority of this mechanistic work is conducted in preclinical
models, both in vitro and in vivo. This fact, then, raises an important question: how relevant to
clinical arrhythmias in humans are insights gleaned from cell culture or animal models of
disease? This question is all the more relevant given that the fundamental electrophysiological
anatomy of cardiac myocytes differs among mammals, from mouse to humans; differences in
the electrical properties of cardiac myocytes between humans and non-mammalian species are
yet more significant. How reliable are insights gleaned from preclinical models in identifying
new therapeutic targets in humans? Can we extrapolate discoveries made in nonhuman models
of electrical disease to our patients in the clinic? As a step toward addressing these near-
intractable questions, we summarize here recent advances in preclinical studies of arrhythmia
and discuss relevance to human heart disease. We address this topic from an anatomical
standpoint, tracking electrical events as they course through the myocardium, and discussing
heart failure-related remodeling events occurring in each tissue. As this field is vast, we do not
discuss all of the major channels and transporters; for detailed discussion channels and currents
not covered in this review, readers are referred to recent excellent reviews[3-5].

Normal electrical activation of the heart
Electrical activation of the heart normally commences at the sinoatrial (SA) node, a bundle of
specialized cells in the right atrium that fire action potentials spontaneously and automatically
(Figure 1). Signals arising in the SA node spread across the right and left atria, stimulating
them to contract. Excitation ultimately travels to the atrioventricular (AV) node, a bundle of
specialized cells between the atria and ventricles serving as an “electrical bridge” between
these two tissues. After a delay, the electrical signal emerges on the ventricular side of the AV
node and is conducted through specialized electrical cables (His bundle and Purkinje fibers)
to rapidly spread across the endocardial surfaces of both ventricles. Just beyond the bundle of
His, the cable splits into two branches, the left bundle branch and the right bundle branch. The
left bundle branch is short, dividing into the left anterior fascicle and the left posterior fascicle.
The left posterior fascicle is broad and fan-shaped with dual blood supply, making it relatively
resistant to ischemic damage. Electrical excitation then enters the contractile myocardium, a
functional syncytium where each cell is electrically coupled to its neighbors via gap junctions.
As a result, electrical impulses propagate freely between cells in every direction, so that the
myocardium functions as a single contractile unit. As electrical activation spreads rapidly
across the endocardial surfaces of both ventricles via the His-Purkinje system, mechanical
contraction occurs synchronously and efficiently.

Throughout the myocardium, electrically activated cells return to their basal, resting state as
their action potentials repolarize. In fact, resetting of electrical excitability in heart tracks the
course of excitation with variable delay. One major exception to this rule occurs in the ventricle,
where repolarization occurs first in the outer, sub-epicardial zone, even though these cells are
the last to be excited. Disorders in the temporal and spatial patterns of repolarization are a
major mechanism underlying heart failure-associated ventricular arrhythmias.

Heart failure-related electrophysiological remodeling
Nodal cells and specialized conduction system

• SA node—The SA node is a compact region within the right atrium located at the base of
the superior vena cava[6,7]. In the absence of extrinsic neural and hormonal control, cells in
the SA node will naturally generate action potentials at a rate of approximately 100 times/
minute. Rhythms driven by SA node pacemaker activity (“normal sinus rhythm”) occur at
60-100 beats per minute.
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Within the SA node, a pacemaker current (If) generates spontaneous depolarization during
diastole and consequent spontaneous pacemaker activity[8,9]. The resulting electrical activity
in several thousand cells is integrated via tight cell-cell coupling leading to nearly synchronous
firing of action potentials[10]. Within the SA node, If manifests morphology-dependent
variation, with a smaller If in spindle-like cells as compared with spider-like cells[11]. Cell
size-dependent variation has been described[7], as well as age-related variation, with smaller
If in adult compared with newborn heart[12]. It is estimated that only about 1% of the cells in
the SA node (“P” cells localized to the center of the node) actually function as leading
pacemaker cells[13]. Outside the center of the node, there is a gradual transition in cell type
over several millimeters reaching the periphery of the node. Perinodal cells, also called
transitional (T) cells, transmit the electrical impulse from the SA node to the right atrium. SA
nodal dysfunction may result from abnormalities in either impulse generation by the P cells or
in conduction across the T cells.

In SA node, the major currents generating phase 0 upstroke of the action potential are the L-
type Ca2+ current, ICa, and sodium current, INa. INa is responsible for the action potential
upstroke in SA node periphery cells, whereas ICa is responsible in the central cells[7]. In
addition to generating the rapid upstroke, ICa is an important contributor to late stage phase 3
pacemaker depolarization. Thus, ICa appears to be important in determining both the action
potential waveform and the slope of pacemaker depolarization[14].

Another distinct Ca2+ current present in mammalian SA node is the transient Ca2+ current,
i.e. T-type Ca2+ current. Its basic properties include a more negative threshold potential than
ICa and a more rapid rate of inactivation[15]. Although its amplitude is much smaller than
ICa, its activation threshold lies near diastolic potentials and thus has been hypothesized to
contribute to pacemaker activity[16]. Consistent with this, Hagiwara et al. have shown in rabbit
SA node cells that abolishing T-type Ca2+ current with Ni2+ leads to a 14% increase in cycle
length[15]. We now know that there are three T-type channel isoforms CaV3.1–3.3 (α1G,
α1H and α1I), two of which (CaV3.1 and CaV3.2) are expressed in the heart[17]. In contrast
with Ca2+ current, INa has a negligible effect on SA node cycle length[14].

Abnormalities in sinoatrial node function are seen frequently in clinical and experimental heart
failure[18,19]. For example, patients with heart failure can present with bradycardia[20], and
animal studies have pointed to increases in the intrinsic cycle length of the SA node with an
amplified response to acetylcholine as a contributing mechanism[18,21]. In a rabbit model of
combined volume and pressure overload-induced heart failure, If was reduced significantly,
accompanied by a decrease in the slow component of the delayed rectifier current (IKs). By
contrast, T-type and L-type Ca2+ current, rapid and ultrarapid delayed rectifier K+ current
(IKur), transient outward K+ current (Ito), and sodium-calcium exchange current (INCX) are
unaltered[22], and HF-associated decreases in heart rate were attributed to remodeling of If.
In addition to chronic reduction in heart rate[23], SA nodal function is altered in patients with
persistent atrial fibrillation (AF)[24], a condition commonly seen in heart failure. Indeed, even
transient episodes of atrial tachyarrhythmias[25] which occur commonly in heart failure,
induce significant electrical remodeling in the SA node and consequent nodal dysfunction.

At a molecular level, chronic reductions in heart rate, as can be seen in heart failure, lead to
declines in the transcript abundance of several ion channel subunits, including the voltage-
gated Na+ channel β-subunit Navβ1 (-25%), T-type Ca2+ channel subunit Cav3.1 (-29%),
K+-ATP channel α-subunits Kir6.1 (-28%), and K+ channel regulatory β-subunits Kvβ2 (-41%)
and Kvβ3 (-30%)[23]. By contrast, some ion channel genes are up-regulated, including K+

channel α-subunits (Kv1.1, +30%; Kir2.1, +29%; Kir3.1, +41%), hyperpolarization-activated
cation channels (HCN2, +24%; HCN4, +52%), and the gap junction channel connexin 43
(+26%)[23]. Down-regulation of HCN4 and HCN2 expression, however, was also reported in
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sinus node of canine ventricular tachypacing-induced HF[26]. Short bursts of rapid atrial
pacing (10-15 minutes), simulating transient atrial tachyarrhythmias, alter sinus node function
in humans, leading to increases in both sinoatrial conduction time (SACT) and corrected sinus
node recovery time (CS-NRT)[25]. After electrical cardioversion of longstanding (>3 months)
AF, CS-NRT was found to remain significantly increased, whereas impairments of sinus node
automaticity were reversible[27].

• AV node—The atrioventricular (AV) node is an electrical relay station connecting the atria
and ventricles. Conduction through the AV node is slow, affording a time delay that allows
the ventricles to fill with blood that was mechanically pumped during atrial systole. The AV
junctional tissue has its own intrinsic pacemaker activity at 40-60 beats per minute, such that
the AV node can assume the role of cardiac pacemaker in the setting of SA node dysfunction.
By virtue of the fact that the AV node transmits electrical impulses slowly, it limits the number
of impulses conducted from the atria to the ventricles. This function is important during fast
atrial rates (e.g. atrial flutter or fibrillation) where only a fraction of impulses are successfully
conducted to the ventricles and mechanical performance of the ventricles is thereby preserved.

The AV node and perinodal area comprises at least three electrophysiologically distinct cell
types: the atrionodal (AN), the nodal (N), and the nodal-His (NH) cells. In the N cells, an
inward calcium channel current (ICa) is the basis of the action potential upstroke[28], whereas
the upstroke of the action potential in AN and NH cells depends mainly on an inward sodium
current (INa). Because INa in AN and NH cells is larger and has more rapid kinetics than ICa
in N cells, conduction is faster through atrial transitional and NH regions than through the core
of the AV node. Fast pathway conduction through the AV node bypasses many of the N cells
by traversing transitional cells, whereas slow pathway conduction passes through the entire
compact AV node[29].

Adrenergic activation is a hallmark feature of heart failure[30]. In the AV node, sympathetic
nerve activation accelerates pacemaker function (due to increases in ICa), enhances excitability,
heightens action potential amplitude, increases conduction velocity, and decreases the effective
refractory period of AV nodal cells, which together facilitate both antegrade slow conduction
and retrograde fast conduction through the AV node[31]. In failing human ventricle, adrenergic
over-activation is accompanied by down-regulation of β1-adrenergic receptors with
preservation of β2-adrenoceptors, which shifts the β1:β2 ratio towards the β2-subtype. And
the resulting relative over-activation of β2-subtype receptors may play opposing roles in the
failing heart, viz. maintaining cardiac contractility via activation of Gs with consequent
increases in cAMP formation, or inhibition of contractility via enhanced coupling to Gi and
thus decreased adenylyl cyclase activity[21,32]. Whether a shift of the β1:β2 ratio also occurs
in AV node in the setting of heart failure is not known.

Although β-adrenergic antagonists are effective in regulating AV nodal conduction in many
patients, enhanced nodal conduction remains a significant issue in patients with atrial
fibrillation and heart failure. In addition to the PKA/cAMP pathway, recent studies suggest
that CaMKII, an enzyme which is significantly activated in heart failure, may play an important
role in regulating heart rate and electrical conductivity. Khoo el al. reported that in a model of
genetic CaMKII inhibition by cardiac-specific expression of autocamtide 3 inhibitory peptide
(AC3-I), PR and AH intervals were significantly prolonged, manifesting enhanced
Wenckebach-type conduction block[33]. CaMKII activity has also been implicated in electrical
activity within the SA node via regulation of ICa[34] and If[35]. In line with these findings, our
recent studies of CaMKIIδ knockout mice reveal heart rate declines in the setting of β-
adrenergic stimulation or increased workload (unpublished results). Further, Wu et al.
demonstrated that adrenergic regulation of heart rate depends on CaMKII-mediated regulation
of SA nodal Ca2+ homeostasis; CaMKII inhibition had no effect on the isoproterenol response
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in SA nodal cells when SR Ca2+ release was disabled, and CaMKII inhibition was only effective
at slowing heart rates during β-adrenergic stimulation[36]. Together, these observations raise
important questions regarding whether CaMKII activity plays a role in failure-related
alterations in heart rate and electrical conduction and highlight yet further the prospect of
CaMKII as a therapeutic target in heart disease.

• Purkinje cells—In 1839, Jan Evangelista Purkinje described a network of fibers located
on the endocardial surface of the left and right ventricles[37]. These fibers are specialized
cables that conduct electrical impulses rapidly over the endocardial surface, thereby enabling
coordinated mechanical activation of both ventricles. Purkinje myocytes have a higher density
of sodium channels and mitochondria, and they contain fewer myofibrils than surrounding
contractile myocardium. Transmission of electrical impulses to ventricular myocytes occurs
by cell-to-cell communication via gap junctions. The Purkinje conducting system is capable
of intrinsic pacemaker activity at a rate of 30-40 impulses per minute. If the SA and AV nodes
are injured, the ventricular Purkinje conducting system can assume control of heart rate and
rhythm.

Cardiac Purkinje cells play an important role in the generation of ventricular arrhythmias,
particularly those related to triggered activity[38,39]. In regions of myocardial infarction, ionic
currents are significantly altered in subendocardial Purkinje cells[40-42]. In heart failure, the
risk of drug-induced torsades de pointes is increased significantly, a phenomenon which is
associated with the remodeling of ionic currents in cardiac Purkinje cells[43]. In rapid pacing-
induced heart failure, Ito density in Purkinje cells is reduced without change in its voltage
dependence or kinetics[44]. Heart failure is also associated with reduced inward-rectifier
current density without changes in current-voltage relationship. In heart failure, densities of
L- and T-type calcium currents, rapid and slow delayed rectifier K+ currents, and Na+-Ca2+

exchange currents are typically unaltered, but inactivation of ICa,L is slowed at positive
potentials. Purkinje fiber action potentials from heart failure dogs manifest decreased phase 1
amplitudes and elevated plateau voltages, and they demonstrate twice as much prolongation
on exposure to the rapid delayed rectifier K+ channel blocker E-4031 as control Purkinje fibers
[44]. Down-regulation of Ito, along with slowed inactivation of ICa,L, is likely responsible for
the positive shift in the plateau voltage of cardiac Purkinje cells. Together, these heart failure-
induced ion channel changes in cardiac Purkinje cells may promote arrhythmogenic
afterdepolarizations. In fact, slowed ICa,L inactivation would be expected to promote ICa,L-
dependent early afterdepolarizations under conditions of delayed repolarization.

Contractile myocardium
• Atrial tissue—Atrial fibrillation (AF), the most common arrhythmia in heart failure,
contributes substantially to morbidity and mortality in this syndrome[1]. AF is an independent
risk factor for stroke and evidence suggests that atrial fibrillation promotes progression of heart
failure[45]. AF tends to be self-maintaining by creating an electrophysiological substrate that
facilitates AF, a concept which has been coined as “AF begets AF”[46]. Indeed, remodeling
of atrial myocytes is a major contributor to the increased propensity to AF in patients with heart
failure[47]. To date, therapy with antiarrhythmic drugs to maintain sinus rhythm has been
disappointing, and there is concern that untoward side effects could offset the benefits of sinus
rhythm maintenance. Thus, ventricular rate control and anticoagulation are recommended as
mainstays of therapy for persistent AF[48].

In some patients, paroxysmal AF initiates from automatic foci localized within sleeves of
musculature extending retrograde into the pulmonary veins. Indeed, catheter-based ablation of
AF, often by electrically isolating the pulmonary veins, has emerged as a prominent treatment
strategy[49] As a general rule, ablation is more effective for paroxysmal AF than for chronic
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AF[49], consistent with the concept that AF triggers remodeling events that promote its
persistence. Presently, it is believed that changes in atrial electrophysiologic substrate, beyond
structural heart disease, contribute to AF recurrence and/or perpetuation. Thus, a long-term
objective of AF therapy is to prevent the initial development of arrhythmia-related ion channel
remodeling and tissue fibrosis.

It was well established that atrial remodeling is a complex process that develops over time
[4]. The type and extent of remodeling depends on the strength and duration of the stressor.
The most common stressors of atrial myocytes are electrical (tachycardia, AF) or mechanical
(volume or pressure overload). Some evidence suggests that the ionic remodeling that occurs
in tachycardia-dependent disease is distinct from that occurring in heart failure[50,51]

Ionic remodeling occurs early during AF. Loss of heart rate-dependent adaptation of atrial
refractoriness, short atrial refractoriness, and AF duration have each been suggested to be a
predictor of AF recurrence[52]. Decreases in ICa contribute to the shortening of the atrial action
potential, whereas decreases in Ito likely contribute to loss of physiological rate adaptation of
the action potential[53,54]. These findings from preclinical models have been largely
confirmed in humans[55,56]. Ironically, declines in ICa could be viewed as an adaptive
alteration that antagonizes rate-induced calcium overload[57]. Reduced Na+ current (INa)
density has also been observed in a canine model of atrial fibrillation[58], which may contribute
to declines in conduction velocity,

In one report, decreased density of L-type Ca2+ channels was consistently observed following
long-term (several weeks) rapid atrial pacing, whereas inward T-type Ca2+ current remained
unchanged[53]. This, combined with recent studies demonstrating that Ca2+ influx through T-
and L-type channels have different effects on contractility and intracellular signaling [59],
suggests that in chronic AF, T-type Ca2+ current may be a significant contributor to intracellular
Ca2+ overload. Consistent with this, Lee et al[60] reported that verapamil attenuated shortening
of refractoriness after 1-day of pacing but did not alter electrophysiological remodeling long
term (1 and 6 weeks). Fareh et al[61,62] reported that the T-type Ca2+ channel blocker,
mibefradil, is superior to L-type Ca2+ channel blockers in attenuating tachycardia-dependent
remodeling. Based on these findings, one could speculate that patients with paroxysmal AF
may benefit from L-type Ca2+ blocker therapy, whereas the long-term remodeling which occurs
in persistent AF might respond to T-type Ca2+ channel blockers.

Atrial remodeling in heart failure is difficult to study, owing to complex interplay between
diseased tissue and disease-associated neurohumoral activation. In a canine model of pacing-
induced heart failure, decreases in ICa,L, Ito, and IKs, and an increase in INCX were observed in
atrial myocytes[47]. In atrial myocytes isolated from heart failure patients, by contrast, we have
reported that Ito density is significantly larger with an accelerated time course of recovery
[63]. In experimental heart failure, attenuated rate adaptation of atrial refractoriness (long
action potential duration at high rates) is observed[53]. Similar findings have been reported in
human heart failure[64]. Unlike the “AF begets AF” model, in which a decrease in effective
refractory period (ERP) is critical to the development of sustained AF, in atrial myocytes of
failing human heart, no difference or even an increase in ERP has been observed[65], and there
is no significant change in action potential duration[63].

These differences may result from different remodeling mechanisms occurring between atrial
tachycardia/AF and heart failure. For example, Yue et al reported that in a canine model, heart
failure decreased both IKs and ICa,L by about 30%, whereas atrial tachycardia decreased
ICa,L by 70% without affecting IK[53]. Animal studies also suggest that electrical remodeling
is reversible in both atrial tachycardia/AF and heart failure when the stressor is removed[66].
However, in both atrial tachycardia-dependent or in heart failure-dependent remodeling,
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irreversible changes can occur. For example, evidence suggests that aspects of structural
remodeling, including interstitial fibrosis, cellular hypertrophy, and degeneration which
develop concurrently with electrical alterations can be irreversible[66]. Fibrosis has been
detected in the atria of patients with heart failure due to prior myocardial infarction or idiopathic
heart failure[67-69] and in an animal model of ventricular pacing-induced HF[70]. Together,
these irreversible changes may contribute to reduced efficacy of medical therapy for chronic
AF in patients with heart failure.

• Ventricular tissue—Relative to atrial myocytes, electrical remodeling in failing
ventricular myocytes has been intensively studied, and several excellent reviews are available
[3-5,71,72]. Here, we focus on recent progress in a limited number of areas.

Cellular remodeling: Prolongation of the ventricular action potential is a hallmark of heart
failure. Although many discrepancies exist regarding the specific ionic and molecular
processes occurring in heart failure, studies in animal models and in humans with heart failure
have consistently revealed action potential duration (APD) prolongation due to functional
down-regulation of outward potassium currents[73,74], functional up-regulation of inward
calcium current and changes in Ca2+ current inactivation[75-77], or increases in late sodium
currents[78]. APD prolongation may prolong calcium channel opening and thereby contribute
to preservation of contractile force. However, it also increases the risk of Ca2+ overload which
could contribute to abnormal triggered impulses and perturbed signaling events.

Although all myocardial cell layers exhibit significant APD prolongation in heart failure, such
prolongation is typically heterogeneous. In a mouse model of pressure-overload heart failure,
we found that APD was more prolonged in subepicardial myocytes than in subendocardial
myocytes due to the more significant reduction of outward potassium currents[79]. In a canine
model of rapid ventricular pacing-induced heart failure, APD prolongation of midmyocardial
(M) cells was substantially greater than epicardial cells, eliciting a significant increase in the
transmural APD gradient and consequent increases in the transmural dispersion of
repolarization[80]. The magnitude of APD prolongation in M cells was found to be similar to
QT interval prolongation, suggesting that it may contribute to QT interval changes observed
in heart failure[80]. However, another study showed that, even though APD was increased,
transmural dispersion of APD was diminished in pacing-induced heart failure relative to that
seen in controls[81]. Although changes in transmural APD vary across species, leading to either
an increase or a decrease in transmural dispersion, the heterogeneous and selective
prolongation of repolarization between cell types across the ventricular wall underlies an
electrophysiological mechanism for unidirectional block, reentry, and arrhythmogenicity.

• Ionic mechanisms underlying ventricular electrical remodeling
1) Sodium current: The cardiac voltage-dependent Na channel (SCN5A or NaV1.5) generates
a large inward current (INa) within the first millisecond of excitation and thereby mediates
rapid membrane depolarization (the upstroke of the cardiomyocyte action potential). As a
result, it is a major determinant of conduction velocity in the atria and ventricles. Inactivation
of INa has both fast (fast inactivation, which lasts several milliseconds) and slow (which can
last hundreds of milliseconds) components[82]. The current associated with the slow
inactivating phase has been referred to as late, sustained, or persistent INa (INa,L, INa,sus,
INa,p) to distinguish it from the peak transient INa. Some evidence suggests INa,L arises from a
fraction of the Na+ channels that intermittently lose their inactivation[83], as opposed to a
distinct set of channel molecules.

The amplitude of late INa is less than 1% that of peak INa, but it is sufficient to prolong action
potential duration[84]. In animal models of heart failure, peak INa has been reported to be
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decreased[85], unchanged [73], or increased[78,86,87]. Also, peak INa has been reported to be
increased in human heart failure[88]. Maltsev et al[89] reported that late INa is present in
ventricular myocytes from normal human mid-myocardium and from failing human hearts,
contributing to 15–20% of APD in both species. Whereas peak INa density is often decreased
in heart failure, INa,L as a percentage of peak INa can be significantly increased in both
conditions (7-12-fold increase)[90]. Coincident with the increased density, INa,L decay was
found to be slower in failing dog and human hearts[88]. Given this, increased INa,L likely plays
an important role in APD prolongation in heart failure and may contribute to arrhythmogenesis.
INa,L inhibition decreased beat-to-beat AP variability and eliminated early afterdepolarizations
in failing cardiomyocytes[88]. Whether the changes in INa manifest transmural variations in
the failing ventricle or contribute to changes in transmural dispersion is unknown.

2) Potassium currents: K+ channels are critical to the restoration of cardiac excitability,
because they play a fundamental role in repolarization of the action potential. Over 50 genes
encoding K+ channel subunits have been cloned in man, and many aspects of their biophysical
properties, channel assembly and stoichiometry, and functional modulation by second
messengers and ligands have been elucidated. Numerous studies have linked K+ channel gene
mutations with a variety of diseases, and therapeutic approaches to target these channels have
been formulated[91,92]. Here we will focus on a limited set of K+ currents which play a major
role in myocyte repolarization.

Transient outward current (Ito): Prominent transient outward K+ current (Ito) has been
recorded in ventricular myocytes isolated from the hearts of many species, including mice,
rats, rabbits, cows, cats, dogs, ferrets and humans[93]. Depending on species and regions within
the heart, there are at least two distinct Ito phenotypes that can be distinguished based on their
molecular, biophysical and pharmacological properties: Ito,f which is characterized by fast
recovery from inactivation, and Ito,s which is characterized by slow recovery from inactivation.
Ito,f is mediated by Kv4.2 and/or Kv4.3 channels, whereas Ito,s is mediated by Kv1.4 channels.
Their relative contributions to Ito vary between species and across regions of the heart[94].
Across the left ventricular free wall, a gradient of the two distinct Ito phenotypes and a gradient
in peak current density of a single Ito phenotype are each present in many species, including
humans.

Kv1.4, Kv4.3, and KChIP2 mRNAs are expressed in the human LV[95,96], and based on the
gradients of protein expression, both KChIP2 and Kv4.3 are thought to contribute to Ito,f
[97]. However, only reductions in Kv4.2 and Kv4.3 abundances have been linked consistently
to the diminished Ito densities typically seen in cardiac hypertrophy[98].

Ito, a major determinant of the early phase of AP repolarization, plays a crucial role in
modulating AP plateau and repolarization profiles. In fact, down-regulation in Ito contributes
to changes in AP morphology observed in many forms of heart disease[53,99-101]. Studies
designed to determine the contribution of Ito to AP duration, however, have produced
conflicting results. In ventricular myocytes from failing heart, Ito was observed to be reduced
and was postulated to promote prolongation of APD[73,102]. However, inhibition of Ito by 4-
aminopyridine (4-AP) in the absence of pipette Ca2+ buffers shortens APD in ventricular
myocytes[103,104]. Yue et al[53] reported that suppression of Ito could either prolong or
shorten APD in canine atrial myocytes, depending on the density of ICa,L. We have reported
that increased Ito in atrial myocytes from patients with heart failure did not alter APD[63]. One
potential explanation for these inconsistencies is that in many common diseases, such as heart
failure, myocardial infarction, and atrial fibrillation, down-regulation of Ito is accompanied by
alterations in ICa,L. The complex interplay among these current alterations results in changes
in plateau level, which, in turn, induces secondary changes in activity of the L-type calcium
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channel, Na+/Ca2+ exchangers, and other currents[105-107]. In aggregate, these complex
changes make alterations in APD difficult to predict.

Although Ito is prominent in human heart, its role in ventricular APD is limited due to the
presence of large, delayed rectifier currents. It is clear, however, that reduction in Ito will slow
the early phase of AP repolarization (generally characterized by APD30, the duration of time
for the action potential to reach 30% repolarization). The slowed early repolarization is critical
to the success of AP conduction in cardiac tissue. We first reported the crucial role of Ito in
facilitation and maintenance of AP propagation at fast heart rates in rabbit atrial myocytes
[108]. In these experiments, inhibition of Ito by fast pacing delayed early repolarization and
increased APD30. This lengthening of APD30 allows the proximal (“leader”) cell to provide
more coupling current to the distal (“follower”) cell to bring it to its excitation threshold,
thereby facilitating AP propagation. In the normal LV, Ito density is larger in subepicardial
myocytes than in subendocardial myocytes. This transmural gradient of Ito contributes to the
transmural gradient of APD30, which enables subendocardial myocytes to provide more
coupling current to depolarize adjacent cells. As such, conduction of excitability is facilitated
in the physiological direction of endocardium to epicardium but disfavored in the opposite
direction (Figure 2). In heart failure, however, this directional preference of conduction is
blunted due to disease-related declines in the transmural gradient of Ito[79]. Together, these
changes may be arrhythmogenic, as conduction of abnormal impulses originating in the
subepicardium is relatively facilitated. Consistent with this, epicardial-site pacing is associated
with VT in patients with heart failure[109,110]

Delayed rectifier K+ current (IK): Delayed rectifier K+ current (IK) has different functional
components depending on the species. In human heart, IK can be separated into ultrarapid
(IKur), rapid (IKr) and slow (IKs) components. These currents exhibit different kinetics and
pharmacological properties, are regulated by different intracellular signaling pathways, and
are encoded by separate genes (hKv1.5, hERG, and KCNQ1/KCNE1, respectively)[111]. The
delayed rectifier current is primarily responsible for initiating phase 3 repolarization, thereby
governing action potential duration and tissue refractoriness.

Defects in IK underlie certain forms of the hereditary long QT syndrome[112]. A number of
IKr-blocking drugs can induce excessive action potential prolongation and cause acquired long
QT syndrome with consequent increased risk of sudden death[113]. At fast heart rates, IKr
contributes less to repolarization than IKs[114] leading to reverse use-dependence of IKr
blockers, i.e. these agents manifest their greatest effects on APD at slow heart rates. In contrast,
IKs blockers might be expected to exert their greatest effects on APD at relatively fast rates,
with a reduced propensity for pro-arrhythmia at slow rates. However, some recent studies
suggest that IKs plays only a limited role in action potential repolarization. For example,
blocking IKs results in little or no prolongation of APD in normal ventricle, regardless of pacing
frequency[115]. Furthermore, IKs contributes to repolarization only when the action potential
is abnormally prolonged[116]. Thus, IKs serves predominantly to prevent excessive APD
prolongation, and blocking IKs may remove this “safety mechanism” and thereby contribute
to triggered arrhythmias.

Relative to Ito, less is known about delayed rectifier K+ currents in heart failure. Delayed
rectifier K+ currents are reduced in ventricular myocytes from pacing-induced heart failure
[117] and in models of cardiac hypertrophy[118-121]. However, other studies have reported
no changes in delayed rectifier K+ current in cardiac hypertrophy[122-124]. In a rapid-pacing-
induced HF model in rabbits, IKs was reduced, but IKr was unchanged[125]. In failing human
ventricular myocytes, the delayed rectifier current has been reported to be small and unchanged
[99].
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ATP-sensitive potassium channels (K+-ATP channels): K+-ATP channels play important
roles in many cellular functions by coupling cell metabolism to electrical activity. Detected at
high density first in cardiac sarcolemma[126], the K+-ATP channel is an octamer composed
of four Kir6 subunits and 4 sulfonylurea receptor (SUR) subunits. The Kir6 subunits regulate
the inwardly rectifying potassium channel pore, whereas the SUR subunits, ATP-binding
cassette proteins, serve a regulatory role, modulating channel activity based on cellular ATP
levels[127-129]. Heterologous reconstitution experiments have suggested that the cardiac
K+-ATP channel comprises heteromultimerized Kir6.2 and SUR2A subunits[130].

Adenosine triphosphate (ATP) and nucleotide diphosphates (NDPs) are the major regulators
for K+-ATP channel activity[131]. ATP inhibits channel activity, and MgADP induces channel
opening[132]. In response to metabolic injury with associated declines in ATP and increases
in MgADP, K+-ATP channels open, reducing cell excitability and protecting the tissue from
damage. This occurs by a reduction in action potential duration, which leads to decreased
inward Ca2+ flux, diminished contraction, and conservation of cellular energy stores.

In HF, poorly defined pathological events lead to disruption of the communication between
cellular energetic signals and K+-ATP channel function. This breakdown in intracellular
signaling results in an inability of the K+-ATP channel complex to appropriately recognize
cellular metabolic stress and consequent failure to carry out its homeostatic functions[133].
Cardiomyocytes isolated from mice with heart failure fail to demonstrate either K+-ATP
channel activation in response to cellular metabolic stress or hypoxia-induced shortening of
the action potential[133]. Thus, heart failure-related dysregulation of K+-ATP channels
appears to contribute to the overall pathogenesis of the syndrome.

Because of the heterogeneous effect of APD shortening in the epicardium versus endocardium,
and in ischemic versus non-ischemic areas, concerns have been raised that potassium channel
activation may further increase dispersion of refractoriness and promote arrhythmias.
However, clinical trials have not uncovered increases in life-threatening arrhythmias for any
of the K+-ATP channel openers[134]. Instead, some clinical studies even reported decreased
incidence of malignant ventricular arrhythmias in subjects exposed to K+-ATP channel openers
[135].

3) Other currents
3) Other currents: L-type Ca2+ current: The L-type Ca2+ current (ICa,L) is the primary source
of Ca2+ entry in cardiac myocytes, triggering release of Ca2+ from sarcoplasmic reticular stores,
activating a number of Ca2+-sensitive signaling cascades, and initiating actin-myosin
crossbridge cycling. These channels are comprised of heteromultimers of at least three different
subunits (α1c, α2δ, and β2). The pore-forming α1c subunit specifies basic channel
characteristics, and serves as a docking site for several regulatory molecules including
calcineurin; the α2δ and β subunits are powerful modulators of channel expression, open
probability, activation, and inactivation[136-140]. ICa,L is expressed differentially across the
wall of the ventricle, manifesting a clear transmural gradient of channel density. Transmural
variations of ICa,L have been reported in canine[141], rat[142], and mouse[143] LV, but not in
guinea pig ventricle[144].

ICa,L density is altered in a number of animal models of ventricular hypertrophy and heart
failure. Depending on the severity of disease, ICa,L density has been reported to be increased,
decreased, or unchanged. In general, ICa,L density is increased in mild-moderate hypertrophy
and decreased in severe hypertrophy and heart failure[138,139]. The most common change in
ICa,L in heart failure is a slowing of the decay of the whole-cell current[145,146], a change
which may contribute to APD prolongation and to elevation of intracellular Ca2+ levels.
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The mechanism underlying the prolonged decay of whole-cell current is multifactorial. Cardiac
L-type Ca2+ channels are known to inactivate through voltage- and Ca2+-dependent
mechanisms[147,148]. Pure voltage-dependent inactivation has a substantially slower time
course of development than Ca2+-dependent inactivation and plays a minor role in inhibition
of Ca2+ influx into the cell. Thus, the major determinants of the inactivation kinetics of Ca2+

current during depolarization are Ca2+-dependent mechanisms[149]. Furthermore, Ca2+-
dependent inactivation includes Ca2+ current-dependent inactivation and Ca2+ release-
dependent inactivation. The former causes a slow phase inactivation and the latter causes a fast
phase inactivation. Although both Ca2+ released from the SR and Ca2+ permeating through
channels each play a role, SR-released Ca2+ is the more powerful inactivation mechanism
[150].

In heart failure, Ca2+-induced SR Ca2+ release is significantly diminished due to the diminished
SR Ca2+ content that stems from both reduced SERCA function and RyR leak. As a result,
ICa inactivation is significantly slowed in failing ventricular myocytes. In addition, recent work
from our group showed that CaMKII-dependent mechanisms also contribute to the slowed
ICa,L inactivation seen in load-induced heart failure[77]. Attenuation of frequency-dependent
Ca2+-induced ICa facilitation has been described in failing human LV, pointing to a likely role
of CaMKII in human heart failure[151]. In addition, spatial differences in remodeling of the
transmural gradient of ICa,L have been reported, with reduced ICa,L in subendocardial cells and
increased ICa,L in subepicardial and mid-myocardial cells[144]. In keeping with the findings
reported in animal models with severe hypertrophy or failure, ICa,L in failing human ventricular
myocytes also exhibits either no change[152,153] or a decrease in density[154]. However, one
report described increases in channel open probability in failing human ventricular myocytes
[155]. Abundance of the pore-forming α1c subunit has been reported to be unchanged in failing
human myocardium[156-159] or reduced[154,160]. In addition, a switch from the IVS3A to
the IVS3B isoform of the α1c subunit has been described in failing hearts[161].

Na+-Ca2+ exchanger (NCX): The Na+-Ca2+ exchanger (NCX) is a surface membrane protein
that transports one Ca2+ ion in exchange for 3 Na+ ions. Its activity is said to be “forward”
when Na+ is transported into the cell and Ca2+ is extruded outwards and “reverse” when ions
are transported in the opposite directions. Most studies from hypertrophied and failing human
hearts have demonstrated an increase in both NCX mRNA and protein levels[162-165], which
has been posited to preserve diastolic extrusion of cytosolic Ca2+. At the same time, increased
NCX activity may impair systolic function by favoring transport of Ca2+ out of the cell rather
than back into intracellular stores. However, direct studies of NCX function in failing hearts
are limited. In fact, NCX mRNA and protein levels are increased in pressure-overload
ventricular hypertrophy, but direct measurements of NCX transport function, i.e. the Na+/
Ca2+ exchanger current (INCX), revealed significant decreases, which may reflect disease-
related alterations in the targeting of NCX protein to the sarcolemma[165,166]. In a rabbit
model of HF induced by combined aortic insufficiency and aortic constriction, NCX mRNA
level and the function were both found to be significantly increased[167,168].

INCX can be arrhythmogenic, because inward current occurring during Ca2+ extrusion can give
rise to delayed afterdepolarizations. Indeed, as a result of NCX up-regulation and inward
rectifier potassium current (IK1) reduction, the propensity for triggered arrhythmias in HF is
significantly increased[168]. Similar to animal models, increased NCX mRNA and protein
abundances in failing human heart have been reported[162,169]. The functional role of the
NCX in failing human myocardium is of greater importance to Ca2+-homeostasis than in non-
failing myocardium due to the altered function of SR[170]. However, the alterations of NCX
in HF are controversial; unchanged levels of NCX protein in human heart failure have been
reported[171,172], and some have reported a HF-related decrease in NCX expression[173]
[174].
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NCX likely plays a significant role in shaping the action potential profile. Forward-mode
exchanger function generates an inward depolarizing current, contributing to APD
prolongation. Conversely, computer simulations suggest that augmentation of reverse mode
exchanger function during the early plateau would tend to shorten the action potential.
However, some data suggest that the combination of forward mode function and delayed
ICa,L inactivation together sum to prolong action potential duration[175]. It has been reported
that direct blocking of NCX leads to different changes in APD, including a shortening[176],
no change[177], or both shortening and prolongation depending on [Na+]i[178]. Also,
intracellular Na+ concentration ([Na+]i) is an important determinant of the effect of NCX on
APD. In the presence of high [Na+]i and low [Ca2+]i, as seen in heart failure, there is a large
NCX-dependent Ca2+ influx during the action potential[179], which ultimately mandates
removal of this extra Ca2+ during the diastolic period. Given that the NCX is the most important
efflux pathway, this would lead to a sustained inward current during diastole, contributing to
APD prolongation, instability of the resting membrane potential, and triggered abnormal
impulses[180].

Stretch-activated channels (SACs): Biomechanical signals external to the myocyte are capable
of altering electrical activity[181], a potential arrhythmogenic influence in patients with
congestive heart failure[182,183]. In fact, disordered mechano-electrical feedback is believed
to contribute to arrhythmogenesis via mechanisms of membrane depolarization and
modification of APD[184] [185].

Stretch-activated channels (SACs) are key mechanosensors of mechano-electrical signal
transduction. SACs are nonselective cation channels[186] which allow Na+, K+, Cs+, and
Ca2+ to permeate[187]. A linear current-voltage relationship has been described for SACs with
reversal potentials between -6 and -15 mV in myocytes[186,188,189]. Stretch has been
reported to depolarize resting membrane potential and to increase, decrease, or have a crossover
effect on APD[190]. The inconsistent effect on APD may reflect differences stress-
responsiveness of isolated myocytes versus tissue or intact heart. Additionally, the different
effects on APD may reflect the variety of experimental techniques used to stretch the
myocardium and to track electrical activity.

The effects of myocardial stretch on APD arise from complex interactions between the SAC
current and the other intrinsic membrane currents (and channels) present in myocytes. Even if
the SAC conductance were to be constant during stretch, the time dependence and polarity of
the SAC current are functions of myocyte membrane potential. For instance, with a constant
reversal potential of -10 mV, the SAC current would be inward during diastole but would
switch to outward as the cell depolarizes. Further, the large variability in the repolarization
process in ventricular myocytes across species (and in different regions of the ventricle) may
significantly alter the effects of a given SAC current. In addition, the reversal potential of SAC
varies across species. Thus, the role of SAC current in regulating myocyte depolarization and
repolarization is complex and species-dependent. Furthermore, membrane potential
measurements during dynamic axial stretching have shown that the action potential duration
is prolonged when stretch is applied during the late phase of twitch contraction, and that
membrane depolarization depends on the phase, amplitude, and speed of the applied stretch
[191]. The amplitude of stretch may also modulate the ion selectivity of stretch-activated
channels[191].

To isolate the effects of SAC current from the numerous other electrical events occurring in
the cell, several mathematical models have been developed. An SAC simulation was
incorporated into a guinea pig ventricular cell model, and SAC activation triggered EADs
[192]. Recently, we modeled SAC in rat ventricular myocytes, finding that SAC activation
elicited electrical changes in action potential repolarization similar to mechanical stretch, but
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it did not produce EADs[193]. However, in combination with oxidative stress, EADs were
steadily induced by SAC activation, potentially implicating SACs in ventricular arrhythmias
in cardiomyopathies with concomitant increased ventricular wall tension and oxidative stress.
This SAC-related mechanism may explain, at least in part, the clinical findings that reducing
myocardial wall tension and oxygen demand by mechanical unloading using intra-aortic
balloon counterpulsation significantly reduces ventricular arrhythmias in heart failure patients
with medically refractory ventricular arrhythmias[194]. In any event, owing to the technical
difficulty of imposing physiologically relevant mechanical stretch and the nonselectivity of
SAC ionic conductance, the arrhythmogenic role of SACs in heart failure is poorly understood.

Tissue level electrical remodeling
Tissue level electrical remodeling: Gap-junction remodeling: Gap junctions are specialized
regions of membrane with densely packed channels called connexons that dock end-to-end and
directly connect the cytoplasmic compartments of two adjacent myocytes. The number, size,
and spatial distribution of gap junctions play an important role in determining the conduction
properties of different cardiac tissues. Connexons are comprised of six monomers termed
connexins. There are 3 connexins expressed in ventricular myocytes, connexin 40 (Cx40),
connexin 43 (Cx43), and connexin 45 (Cx45). Cx43 plays a major role in electrical conduction
in myocytes[195,196], whereas Cx45 is likely less important owing to its low level of
expression[197]. Connexin 40, a connexin associated with high conductance channels[198],
is expressed mainly in the bundle branches and Purkinje fiber system[199,200].

In heart failure, gap junction expression is significantly reduced, redistributed, and
disorganized[201-203]. As a result, the normal ordered pathways for cell-to-cell conduction
are disrupted. A growing body of evidence from studies in animal models support the fact that
gap junction remodeling is one of the key determinants of the pro-arrhythmic substrate in
diseased heart. Altered distribution of connexin 43 gap junctions is a hallmark feature of infarct
border zones in failing ventricle harvested at cardiac transplantation[201]. In these zones,
connexin 43 gap junctions are scattered extensively over the cells, rather than clustered at
regions of cell-cell contact. In experimental models of myocardial infarction, this redistribution
has been shown to occur rapidly[204]. Similar alterations in gap junction distribution are found
in ventricular hypertrophy and are associated with reduced longitudinal conduction velocity
[205,206]. In end-stage heart failure, connexin 43 transcript and protein levels are markedly
reduced[207]. In addition, hypophosphorylation of Cx43 due to elevated PP2A activity has
been documented in failing LV[208,209], as well as spatially heterogeneous reductions in Cx43
expression (larger decreases in subepicardial than in deeper transmural layers)[210]. Thus, an
expanding literature supports the hypothesis that gap junction remodeling is a key molecular
feature contributing to both arrhythmia, and consequent sudden cardiac death (SCD), and
exacerbating the ventricular dysfunction associated with acquired heart disease. Therefore,
pathological remodeling of gap junctions is a therapeutic target of interest[211].

Conduction sequence remodeling: Normally, electrical activation of the ventricle initiates in
the subendocardial Purkinje network and spreads outward through the ventricular wall.
Although the epicardium is activated last, it repolarizes faster than the endocardium; as a result,
repolarization proceeds in the opposite direction, from epicardium to endocardium. The
combination of in-to-out depolarization and out-to-in repolarization produces an
electrocardiographic T wave on the surface ECG with polarity similar to the QRS. As noted
earlier, we have reported attenuation of the transmural gradient of repolarization in failing LV,
which abolishes preferential directionality of AP propagation[79].

In addition to the direct roles of altered myocardial repolarization in electrical conduction,
disease-related remodeling can indirectly affect electrical stability via exaggerated anisotropy
and altered cell-to-cell coupling. Chung et al. showed in an in vitro model that cardiac cell

Wang and Hill Page 13

J Mol Cell Cardiol. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



arrangement can alter electrical stability via mechanisms that are both dependent and
independent of the direction of wave propagation[212]. Notably, restitution of APD and
conduction velocity were significantly steepened in the direction of cell alignment.
Furthermore, prolongation of APD and calcium transient duration were seen in highly
anisotropic cell networks, both for longitudinal and transverse propagation[212]. Patients with
structural disease have a wider diastolic interval range over which APD alternans occurs with
earlier onset and increased magnitude of APD alternans compared with patients without
structural heart disease[213]. The occurrence of APD alternans during induced ventricular
tachycardia and during rapid pacing could be derived from the dynamic restitution function.
This suggests that tissue alignment must be taken into account in experimental and
computational models of arrhythmia generation and in designing effective treatment therapies.

Sarcoplasmic reticulum malfunction: The sarcoplasmic reticulum (SR) surrounds each
myofibril and is physically separate from the sarcolemma. The SR membrane contains high
levels of Ca2+-ATPase which serves to uptake Ca2+ from the sarcoplasm, a process leading to
mechanical relaxation. Ca2+ is released into the sarcoplasm via ryanodine receptors (RyRs)
during systole to trigger contraction.

In mammalian striated muscles, the expression of the different RyR protein isoforms is tissue
specific. The predominant RyR isoform in skeletal muscle is RyR1, commonly referred to as
the skeletal RyR isoform[214,215]. RyR2 protein is the most abundant isoform in cardiac
muscle, while RyR3 is also found in mammalian striated muscles but at relatively low levels
[216]. Ca2+ release from a cluster of ryanodine receptors results in a spatiotemporally-restricted
rise in cytosolic Ca2+, which can be visualized as a calcium spark. Marx et al[217] showed that
RyR2 assembles as a macromolecular signaling complex comprising FKBP12.6, the catalytic
and regulatory subunit of PKA, PP1, PP2A, and a PKA-anchoring protein, mAKAP. The actual
Ca2+-conducting channel is one of the constituents of an integrated macromolecular complex
that specifically regulates channel Ca2+ gating. Studies in both heart failure models and in
patients point to FKBP12.6 as a major regulatory element governing RyR2 function[217,
218]. The role of calcineurin on RyR function remains controversial and may be critically
dependent on the RyR isoform.

Several groups have reported lack of significant alterations in RyR2 abundance in failing
explanted human hearts compared with nonfailing controls[219-221], whereas other groups
have reported a down-regulation of RyR2[222,223]. However, spontaneous RyR leakage of
Ca2+ has been observed consistently in failing ventricular myocytes resulting from increased
RYR phosphorylation by CaMKII[224-226] and PKA[217]. Most recent studies have pointed
to CaMKII, but not PKA, in HF-related RyR Ca2+ leak[227,228].

Three distinct genes encode SERCA isoforms. The SERCA 1 gene is expressed in fast skeletal
muscle, whereas the SERCA 2 gene gives rise to SERCA 2a and SERCA 2b isoforms by
alternative splicing. The SERCA 2a isoform is expressed in cardiac and slow skeletal muscle,
while SERCA 2b is ubiquitously expressed and is the dominant isoform found in the
cerebellum. SERCA 3 is expressed in non-muscle tissues, such as platelets and lymphoid
tissues[229,230].

The rate at which SERCA moves Ca2+ across the SR membrane is controlled by
phospholamban (PLB). PLB is a 52 amino acid integral membrane protein that regulates the
Ca2+ pump in both cardiac and skeletal muscle. In vitro studies have shown that PLB can be
phosphorylated at Ser10 by protein kinase C, at Ser16 by cAMP-dependent protein kinase
(PKA), and at Thr17 by Ca2+-calmodulin-dependent protein kinase (CaMKII)[231-233].
However, in vivo studies have shown that only Ser16 and Thr17 are phosphorylated in cardiac
myocytes[234,235]. Each phosphorylation event appears to occur independently[236-239].
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Some studies have reported additive effects of PKA and CaMKII phosphorylation of PLB on
SR Ca2+ transport[236,237,240,241]; others have proposed that maximal stimulation of the
Ca2+ pump occurs by phosphorylation at a single site[239,242], and additional phosphorylation
events at other sites does not further stimulate pump activity[243]. In its unphosphorylated
state, PLB associates with SERCA and inhibits the Ca2+-ATPase and its pumping of Ca2+.
When phosphorylated PLB dissociates from the pump, Ca2+ movement increases. PP1
accounts for approximately 90% of phospholamban (Ser-16 or Thr-17) phosphatase activity
[244].

Evidence now indicates that the levels of PLB protein remain unchanged in human heart failure,
whereas the levels of SERCA2a protein decrease[220,245-249]. This would be expected to
lead to an increased functional stoichiometry of PLB to SERCA, facilitating inhibition of
SERCA2a Ca2+ pumping activity, and prolonged relaxation times. In addition, the
phosphorylation status of PLB at Ser16 and Thr17 is decreased in heart failure[250], indicating
that there is a yet further increase in the inhibitory function of PLB. Indeed, studies of SR
Ca2+ uptake have revealed decreases in both Vmax and Ca2+ affinity in failing myocardium
[245]. Thus, alterations in the PLB:SERCA2a ratio and the degree of PLB phosphorylation
together likely contribute to reduced SR Ca2+ uptake and increased diastolic Ca2+ levels in the
cytoplasm. The resulting reduction of SR Ca2+ content will, in turn, have a negative inotropic
effect on contraction, and at the same time, reduce Ca2+-induced Ca2+ inactivation, leading to
a slowed inactivation time course for ICa. This will, together with a prolonged APD, further
increase diastolic Ca2+ and the propensity for triggered ventricular arrhythmias.

Clinical relevance and perspective
Disease-related electrical remodeling is a fundamental mechanism underlying the
proarrhythmic phenotype of heart failure. Reductions in both transient outward and delayed
rectifier K+ currents contribute to prolongation of APD. Prolonged APD, in turn, promotes
increased influx of Ca2+ during excitation. In addition, increases in NCX function and slowing
of ICa,L inactivation contribute to Ca2+ overload. Further, prolongation of APD and abnormal
handling of intracellular Ca2+ promote abnormal increases in focal activity and automaticity.
In addition, heterogeneous APD prolongation within the ventricular wall amplifies dispersion
of repolarization, an established mechanism contributing to re-entry. Finally, spatially different
changes in Ito across the ventricular wall in heart failure alter cellular coupling current.
Together, these changes, along with the alteration of gap junctions and tissue alignment, lead
to significant changes in electrical conductivity and sequence, which are important mechanisms
underlying the increased propensity to ventricular arrhythmia and SCD in heart failure.

Recent studies have also raised the possibility that alterations in membrane currents may be
proximal events contributing to cardiomyopathy. For example, Ca2+ entering through the L-
type voltage-dependent Ca2+ channel not only functions as a trigger for contraction but also
transduces electrical activity into a series of intracellular signaling events. Numerous studies
have demonstrated that increases in intracellular Ca2+ concentration may lead to contractile
dysfunction, hypertrophy, and heart failure[76] and that “Ca2+ overload” may trigger
downstream signaling cascades that initiate the hypertrophic gene program[251]. Enhanced
sarcolemmal L-type Ca2+ channel activity can precipitate heart failure through myocyte
necrosis[252]; in contrast, T-type currents can antagonize hypertrophy[253]. Also, whereas
decreases in Ito density have been regarded as secondary to the hypertrophic or failure
phenotype, some evidence suggests that suppression of Ito could result in cardiac hypertrophy
[254,255]. These data suggest that ion channel remodeling resulting from heart disease may
contribute to the progression of heart disease. In addition, heart failure-related remodeling of
one channel may trigger remodeling of other channels. For instance, we have reported that
suppression of Ito facilitates ICa,L in cardiac myocytes[256].
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Nearly 6 million Americans live with heart failure, a syndrome marked by substantial morbidity
and mortality from arrhythmia[1]. Indeed, arrhythmic sudden death is a leading cause of
mortality in the Western world, with an estimated 300,000 cases per year in the United States
[1]. Whereas the mechanism of mortality in heart failure depends on disease severity, some
estimates suggest that death stems approximately equally from progressive pump failure, SCD,
and SCD during episodes of clinical exacerbations of heart failure[1]. In addition to ventricular
tachyarrhythmias, patients with heart failure experience a variety of other arrhythmias. For
example, AF is very common in heart failure (11.8%), is responsible for about 15-20% of all
strokes[257], and contributes substantially to morbidity in heart failure.

The clinical efficacy of antiarrhythmic pharmacotherapy has proved disappointing in the
majority of instances. However, recent insights into complex mechanisms of electrical
remodeling have raised the prospect of targeting disease-related events contributing to the
proarrhythmic substrate of the failing LV. Major challenges remain, but patients with heart
disease are likely to benefit.
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Figure 1. Cardiac conduction system
(© Carolina Biological Supply Company, Used with permission)
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Figure 2. Anisotropic conduction between subendocardial and subepicardial layers of LV
In normal heart, impulse conduction is favored in the physiological direction of
subendocardium (SEN) to subepicardium (SEP) and relatively disfavored from SEP to SEN.
Electrical remodeling in heart failure, including AP prolongation and a diminished transmural
gradient of APD30, abolishes directionally preferential conduction.
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