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Abstract
The graphics processing unit (GPU) is used to solve large linear systems derived from partial
differential equations. The differential equations studied are strongly convection-dominated, of
various sizes, and common to many fields, including computational fluid dynamics, heat transfer,
and structural mechanics. The paper presents comparisons between GPU and CPU implementations
of several well-known iterative methods, including Kaczmarz’s, Cimmino’s, component averaging,
conjugate gradient normal residual (CGNR), symmetric successive overrelaxation-preconditioned
conjugate gradient, and conjugate-gradient-accelerated component-averaged row projections
(CARP-CG). Computations are preformed with dense as well as general banded systems. The results
demonstrate that our GPU implementation outperforms CPU implementations of these algorithms,
as well as previously studied parallel implementations on Linux clusters and shared memory systems.
While the CGNR method had begun to fall out of favor for solving such problems, for the problems
studied in this paper, the CGNR method implemented on the GPU performed better than the other
methods, including a cluster implementation of the CARP-CG method.
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1. Introduction
Natural and engineered systems are often modeled by sets of partial differential equations that
have no closed-form solution. Discretization of these equations leads to large sparse systems
of linear equations. A considerable amount of algorithmic and computational work has been
performed to develop iterative algorithms for solving these systems as efficiently as possible
[1].
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The current paper investigates the performance of several iterative solvers on a graphics
processing unit (GPU). The algorithms we are interested in include Kaczmarz’s sequential
algorithm, as well as several block-parallel algorithms: Cimmino’s method, component
averaging (CAV), conjugate gradient normal residual (CGNR), symmetric successive
overrelaxation (SSOR)-preconditioned conjugate gradient (CGMN), component-averaged row
projections (CARP), and conjugate-gradient-accelerated CARP (CARP-CG).

Given the challenging nature of large-scale systems, parallel computing has been utilized in
the development of efficient solution algorithms. In the context of GPUs, recent hardware
developments, such as the NVIDIA Tesla C870, offer a massively multithreaded processor
architecture that is ideal for high performance computing applications. These innovative
designs have led many researchers to implement various linear algebra routines on the GPU.
A Jacobi iterative solver was implemented on the GPU by Göddeke et al. [2]. Conjugate
gradient and multigrid sparse matrix solvers were implemented on the GPU by Bolz et al.
[3]. Krüger and Westermann [4] implemented direct solvers for sparse matrices, and studied
their performance using multi-dimensional finite difference equations arising from the 2-D
wave equation and the incompressible Navier-Stokes equations. An algorithm to solve dense
linear systems using GPUs was implemented on an NVIDIA GeForce 7800 GPU by Galoppo
et al. [5]. These are some of several studies recently reported using GPUs to accelerate the
solution of various linear algebra problems.

There are many studies reporting the parallel solution of linear systems on hardware other than
GPUs. Here, we mention those most closely related to the algorithms studied in this paper.
Bramley and Sameh [6] implemented a block-sequential Kaczmarz algorithm with CG
acceleration under five different partitioning schemes on structured grids. The disadvantage
of the block-sequential approach is that it requires the identification of independent sets of
equations which is difficult for unstructured grids. In [7], the same authors extended the work
in [6] to include a CG acceleration of a block-Cimmino algorithm and a new projection method
called V-RP. Their block-parallel CG-accelerated methods were shown to be robust in practice,
but there was no clear “best” partitioning scheme. Arioli et al. [8] studied parallel CG
acceleration of block-Cimmino for different block partitionings. The authors restricted their
study to block-tridiagonal systems. Gordon and Gordon [9] introduced the CARP algorithm
that divides the linear equations into blocks and operates in a block-parallel manner. Kaczmarz
row projections are performed within each block in parallel and the results are then merged
using component-averaging operations. CARP was shown to be very robust and suitable for
unstructured grids.

The main purpose of the paper is to evaluate the performance on the GPU of several parallel
algorithms with respect to solving large linear systems arising from the discretization of elliptic
convection-diffusion partial differential equations. In particular, we are interested in
identifying the best possible algorithm for this architecture, as well as in comparing the GPU
against the CPU and earlier cluster implementations of these algorithms. For this purpose, we
will investigate the performance of these algorithms on a set of problems addressed in many
earlier works. This set of problems includes six partial differential equations proposed in [7],
along with three additional partial differential equations that were investigated in [10,11]. All
nine of these partial differential equations are strongly convection-dominated.

The remainder of the paper is organized as follows. Section 2 provides mathematical
preliminaries and an introduction to GPU computing and architectures, including the NVIDIA
Tesla C870, which is utilized for computations in this paper. The algorithms considered here
are described in Section 3, while the philosophy and drivers behind our GPU implementation
of these algorithms are detailed in Section 4. In Section 5, we present extensive computational
results, followed by conclusions from this work in Section 6.
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2. Preliminaries
2.1. Mathematical background and notation

The problem of finding a point in the intersection of two or more convex sets is referred to as
the convex feasibility problem. Let C1, C2, …, Cn be closed convex subsets of a Hilbert space
X with a nonempty intersection

The convex feasibility problem involves finding some x in C. In image reconstruction, the
convex sets Ci are hyperplanes. The iterative algorithms presented in Section 3 use orthogonal
projections on the hyperplanes Ci to solve these problems. A matrix P ∈ ℝn×n is an orthogonal
projection onto S ⊆ ℝn if R(P) = S, P2 − P = 0, and PT = P, where R(P) is the range of P.

Define a linear system as Ax = b, where A ∈ ℝm×n, x ∈ ℝn, and b ∈ ℝm. A consistent linear
system is one where b ∈ R(A). An inconsistent linear system is such that b ∉ R(A). Simply put,
the equations of a linear system are consistent if they possess a common (but not necessarily
unique) solution, and inconsistent otherwise.

A linear system with a low condition number is said to be well-conditioned, while a linear
system with a relatively high condition number is said to be ill-conditioned. For a linear system
with an invertible matrix, the condition number is given by

where ||A|| denotes the norm of A. Any norm, ||·||, without a subscript denotes the Euclidean
norm. For rectangular matrices with full column rank, i.e., A ∈ ℝm×n and rank(A) = n, the
condition number is given by

where σmax(A) denotes the maximum singular value of A and σmin(A) denotes the minimum
singular value of A.

Two nonzero vectors u and v are conjugate with respect to A if

Likewise, it is necessary to define the notation
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When discussing an iterative algorithm, the kth iterate of any vector will always be denoted by
a superscript in parenthesis, e.g., x(k). On the other hand, the position in the vector will be

denoted with a subscript. For example,  would denote the jth element of the kth iteration of
x. For an m × n matrix A, aij denotes the element of A in the ith row and jth column. Furthermore,
ai is used to denote the ith row vector of A, unless otherwise noted. The standard basis vectors
are written ei.

2.2. The graphics processing unit
This subsection briefly describes the architecture of a GPU from the perspective of a
programmer using the compute unified device architecture (CUDA) [12]. CUDA is a hardware
and software architecture that issues and manages data-parallel computations on a GPU. The
GPU is a single-instruction multiple-data (SIMD) parallel device. The GPU should be viewed
as a compute device or coprocessor, while the CPU should be viewed as the host. Since the
GPU is a SIMD architecture with a host device, the GPU is utilized for data-parallel and
computationally intensive portions of the algorithm or application.

The computationally intensive portions of the algorithm are executed in parallel using
thousands of threads. Each thread executes the same set of instructions independently on
different data. The GPU instructions are referred to as a kernel, which is downloaded to the
device. A block is a group of threads that share data through shared memory and synchronize
their execution to coordinate their memory accesses. These synchronization points are
specified within the kernel and act as a barrier where all threads in the block are suspended
until they reach this barrier. A grid is an organization of thread blocks. Within each grid, there
exist a programmer-defined number of blocks.

The memory model for the GPU is provided at the grid level. Read-write access to global
memory and read-only access to constant and texture memory is afforded to the entire grid.
The host has read-write access with global, constant, and texture memory. Each thread has
read-write access to its own set of registers and local memory, while each block has read-write
access to designated shared memory.

The multiprocessors on an NVIDIA Tesla C870 are organized in a streaming processor
array. Each element of this array is referred to as a texture processor cluster. In the case of the
NVIDIA Tesla C870, there are eight texture processor clusters. A texture processor cluster
consists of texture memory and two streaming multiprocessors. Each streaming multiprocessor
contains instruction and data cache, instruction fetch and dispatch unit, shared memory, eight
streaming processors, and two special function units. The special function units allow for fast
single-precision mathematical computations, such as sine, cosine, logarithm, and exponential.

The interested reader can find additional discussions on the Tesla architecture in [13]. More
detailed information on GPU computing can be found in two recent special issues of IEEE
Proceedings [14] and the Journal of Parallel and Distributed Computing [15].

3. Iterative methods
This section describes the iterative methods utilized in this paper. Interest is placed on solving
linear systems of the form Ax = b, where A is an m × n matrix, x is an n-vector, and b is an m-
vector.
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3.1. Kaczmarz’s algorithm
Kaczmarz introduced this algorithm in [16]. Kaczmarz’s approach is a projection method that
is also referred to as ART (algebraic reconstruction technique) and is used for solving linear
systems from image reconstruction problems.

Kaczmarz’s algorithm is sequential. The algorithm sweeps through rows of A in a cyclic
manner. At each iteration, the previous iterate is projected orthogonally onto the solution
hyperplane 〈ai, x〉 = bi. This orthogonal projection leads to the normalized step at iteration k

(1)

where λi is a cyclic relaxation parameter that extends the projections either in front of the
hyperplane (λi < 1), exactly on the hyperplane (λi = 1), or beyond the hyperplane (λi > 1), and
we assume henceforth that 0 < λ < 2. In this case, i is equal to k modulus m + 1, with k ≥ 0. A
randomized version of the algorithm has also been proposed in [17], where the row i is chosen
at random rather than sequentially. In either case, each set of m iterations is referred to as a
sweep. The iterate progresses as follows

where the step s(k) is defined by (1).

Algorithm 1 is a presentation of Kaczmarz’s method.

3.2. Cimmino’s algorithm
Cimmino introduced his algorithm in [18]. This method is highly parallel and guaranteed to
converge in the inconsistent case. In practice, the method is slow, requiring many iterations to
reduce the residual error and approach the solution. The algorithm converges to the weighted
least-squares solution,

which minimizes the weighted sum of the squares of the distances to the sets C1, …, Cn
discussed in Subsection 2.1. This result is due to Combettes [19].

The method of Cimmino involves a simultaneous orthogonal projection onto the set of solution
hyperplanes 〈ai, x〉 = bi, i = 1, …, m. The orthogonal projections lead to a normalized step at
iteration k

(2)

where  is the jth element of the kth normalized Cimmino step. The observant reader should

recognize that each  can be computed in parallel for all j = 1, …, n. The iterate progresses
as before:
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This algorithm can also be expressed in matrix form as:

where

(3)

Algorithm 2 is a presentation of Cimmino’s algorithm.

3.3. Component-averaging
Component-averaging (CAV) was introduced by Censor et al. [20]. CAV projects the current
iterate onto all the system’s hyperplanes in parallel, just like Cimmino’s algorithm. CAV retains
the desired convergence properties of Cimmino’s method, in the sense that it converges in the
inconsistent case. Furthermore, CAV exhibits significantly faster numerical convergence for
large sparse systems in practice. The exhibited acceleration is noticeable on a single processor
as well as parallel architectures.

The scalar weighting of Cimmino’s method is replaced by diagonal sparsity weighting. That
is, the weights are inversely proportional to the number of nonzeros in each column. CAV’s
orthogonal projections lead to a normalized step at iteration k

(4)

where sp is the number of nonzeros in column p, for p = 1, …, n. As with the previously
introduced iterative methods, the iterate progresses using the formula

As in Cimino’s algorithm, CAV can be expressed in matrix form

where
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(5)

The reader will notice only a subtle difference between CAV and Cimmino’s method, namely
(3) versus (5), that is, the difference between the sparsity-oriented versus scalar weighting
schemes which are captured by equations (3) and (5).

Lastly, CAV is proven to converge to a minimizer of a certain proximity function regardless
of x0 and independent of the consistency of the underlying linear system. For more details on
these convergence results, the reader is referred to [20].

Algorithm 3 is a presentation of CAV.

3.4. Conjugate gradient normal residual (CGNR)
The CGNR algorithm was introduced by Hestens and Stiefel in [21]. In order to solve the linear
system Ax = b when A is nonsymmetric, CGNR attempts to solve the equivalent system

(6)

By construction, this system is symmetric positive semidefinite. CGNR works by applying the
conjugate gradient method to the normal equations (6). Conjugate gradient can be applied to
(6) because AT A is symmetric positive semidefinite.

The algorithm does not store AT A explicitly in memory. This fact makes CGNR a natural
choice for sparse matrices, since operations such as matrix-vector multiplication are usually
very efficient. In addition, the implicit use of AT A leads to relatively large diagonal elements.
This contributes to the algorithm’s relative robustness.

The downside of using CGNR is the fact that κ(AT A) = κ(A)2. The relatively large condition
number of (6) leads to a slow rate of convergence, depending, of course, on the condition
number of the original system. This important fact makes a preconditioner all the more
important for this algorithm.

Algorithm 4 is a presentation of the CGNR algorithm.

3.5. Symmetric successive overrelaxation (SSOR)-preconditioned conjugate gradient
(CGMN)

CGMN is a conjugate gradient acceleration of the SSOR algorithm. CGMN was introduced
by Björck and Elfving in [22], where it was referred to as an SSOR preconditioning of CG. It
will become clear that CGMN can also be considered a CG acceleration of Kaczmarz’s
algorithm. Similar to CGNR, it is advantageous to utilize CGMN when A is sparse. CGMN is
a CG acceleration of the SSOR algorithm applied to the system

(7)

Therefore, a relatively large condition number can negatively impact the rate of convergence
since κ(AT A) = κ(A)2.
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Define a Kaczmarz sweep as before

(8)

Applying Gauss-Seidel’s method to (7), it is evident that the ith minor step, y(i), is updated by

By x = AT y,

Therefore, Gauss-Seidel’s method is equivalent to Kaczmarz’s method for (7).

Since CGMN involves an SSOR relaxation parameter, (8) becomes

(9)

where λ is the relaxation parameter. If the relaxation parameter is 0 < λ < 2, then the algorithm
is consistent with Kaczmarz’s method. SSOR implies a forward and backward sweep of
Kaczmarz. Therefore, (9) becomes

It is now evident that the forward sweep is followed by the backward sweep. Furthermore, the
double sweep can be transformed into

where
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and

QSSOR is symmetric, since Qi is symmetric for all i.

Conjugate gradient is then applied to the system

Define

Then, the conjugate gradient method is applied to solve the symmetric positive semidefinite
system Bx = c, where B is symmetric and positive semidefinite and c is in the range of B. For
an arbitrary x(0), define

The algorithm proceeds by computing x(k+1), r(k+1), and p(k+1) for each k = 0, 1, 2, …, where
q(k) = p(k) − QSSORp(k). To compute p(0), it is necessary to perform a full forward and backward
Kaczmarz sweep as defined by (8) on the system Bx = c. To compute q(k), let x(1) = p(k) and
again use the forward and backward Kaczmarz sweep with b = 0, which leads us to q(k) =
p(k)−QSSORp(k). Notice that there is no RSSOR term since b = 0.

Algorithm 5 is a presentation of CGMN.

3.6. Conjugate-gradient-accelerated component-averaged row projections
Component-averaged row projections (CARP), which was introduced by Gordon and Gordon
[10], divides the set of m equations into blocks. Each processor performs Kaczmarz iterations
in parallel. The results of these Kaczmarz iterations are then merged together by averaging to
form the next iterate.

In [10], the authors proved that CARP is equivalent to Kaczmarz’s algorithm with cyclic

relaxation parameters in some superspace ℝs, where  and sj denotes the number of
nonzeros in column j. There is a mapping that exists between ℝs and ℝn, such that every x ∈
ℝn maps to some y ∈ ℝs. That is, every component xj of x maps to sj components of y.
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The fact that CARP is equivalent to Kaczmarz’s algorithm in some superspace ℝs allows for
the construction of a CG-accelerated CARP. The CG acceleration is performed in much the
same manner as the CG acceleration of SSOR, which created CGMN. A forward followed by
a backward sweep of CARP is performed, rather than the forward and backward sweep of
Kaczmarz. Due to the superspace equivalency, it is shown in [10] that the CG acceleration of
CARP always converges, even when the linear system is inconsistent and/or rectangular. The
details are available in [10].

Algorithm 6 is a presentation of CARP-CG.

4. GPU implementation
4.1. Preliminary tests

The parallelization of linear algebra algorithms has been under investigation for the last few
decades, and led to the proposal of a number of implementations that utilize parallel computers.
Depending on the specific parallel architecture, there are appropriate algorithms that match the
characteristics of the underlying hardware such as memory organization and size, node
communication bandwidth, and processing model (MIMD, SIMD). In many cases, a specific
algorithm does not lend itself to a particular architecture, and it is required to develop a parallel
version of the algorithm to achieve the desired speedup.

With this in mind, Gordon and Gordon [9] proposed the CARP algorithm, a block-parallel
version of the Kaczmarz algorithm implemented on a 16-node Linux cluster. In addition to
exhibiting increased robustness for the problems studied in [9], CARP also exhibited a better
or comparable solution time relative to other well-established algorithms that had been
proposed for the same kind of problems. In implementations with a single general-purpose
processor, CARP and CARP-CG, being block-parallel algorithms, are not suitable; thus
Gordon and Gordon in [11] show that the CGMN algorithm gives the best robustness and
performance, with CGNR offering the same robustness but lower performance on the same set
of problems as in [10]. Note that CARP-CG reduces to CGMN, when the number of blocks is
equal to one.

In the preliminary search of the most appropriate iterative algorithms to implement on the GPU,
it became clear to us that Kaczmarz’s algorithm may not be the best possible algorithm for the
GPU architecture. We first investigated Kaczmarz’s algorithm in the form presented in [16].
It is important to keep in mind that while a thread is very cheap to originate on a GPU, allowing
for performance gains in operations as simple as level-one BLAS routines, the problem must
be large enough to mitigate the overhead of launching the thread, transferring the data to and
from the GPU, and any interruptions necessary to check for convergence on the CPU. It was
quickly discovered that, due to this fact and because the only available operations of this
algorithm that can be parallelized are the dot product and vector addition in (1), this algorithm
could only exhibit superior performance on the GPU when studying very large, dense linear
systems. For details on how one can use a GPU to implement reduction-based parallel
operations and other BLAS routines, the reader is referred to [12]. The performance of the
implementation is shown in Table 1. In this table, the problems studied are one hundred percent
dense n × n systems, where the elements of A and b are drawn randomly from a normal
distribution with a mean of zero and standard deviation of one. The reader can clearly see that
the memory initialization and memory copy necessary to load the data on the GPU can be
costly for dense systems depending on the total number of iterations required. However, this
cost is amortized by the superior cost per iteration as the problem size grows and/or the number
of required iterations increases.
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In the case of Cimmino’s algorithm, we quickly discovered two facts. First, this algorithm
exhibited very poor solution times due to the number of necessary iterations for the particular
PDEs studied in this paper. Additionally, the algorithm was very costly at each iteration,
regardless of whether it was implemented on the GPU or the CPU. We implemented Cimmino’s
algorithm for dense linear systems in order to get a better idea of the best-case speedup that
could be expected by placing this algorithm on the GPU. The results are presented in Table 2.
Cimmino can be parallelized on the GPU by implementing slightly specialized level-two BLAS
routines. For more details on how one might implement level-two BLAS routines for dense
matrices, the reader is referred to [12]. Ultimately, the low potential for improvement in the
cost per iteration and the number of required iterations led us to reject this method for the
particular PDE problems studied.

In addition, CAV was studied. Due to the fact that CAV is equivalent to Cimmino’s algorithm
when applied to dense problems, CAV was preliminarily tested on the GPU using banded linear
systems (also generated randomly). We found that the method had potential and mapped well
to the GPU. However, as was the case with Cimmino’s algorithm, it appeared that CAV requires
too many iterations. Based on the results demonstrated in [20], albeit on different problems,
and the potential for speedup on the GPU (see Table 3 and Table 4), we decided it was
appropriate to at least try this method on the PDEs in Section 5. In Table 3, the number of
diagonals above and below the main diagonal were held constant at twenty-five, while the size
of the matrix itself was varied. In Table 4, the size of the matrix was fixed at 25, 000×25, 000,
while the number of nonzero diagonals above and below the main diagonal varied from one
to sixty-four. The relatively poor convergence witnessed here is due to the small variance in
the nonzero elements of the PDEs studied. This relatively small variance causes CAV to
perform no better than Cimmino.

4.2. GPU implementation
We have tailored the kernel to the seven bands at fixed offsets of the A matrix. The reads and
writes can be perfectly coalesced with the restriction that the number of the discretization points
on the x direction is a multiple of 16 to achieve coalesced global memory accessing. In other
words, if we desire 40 discretization points on the x axis, it is better to choose 48, which will
give higher resolution and better performance than the 40-point discretization.

For a desired tolerance of 10−7, the arithmetic results need to be at least double precision. There
are two ways to achieve this accuracy. The first is to exclusively use double-precision floating-
point arithmetic for all operations. The second is to use single-precision floating point with
iterative refinement in order to achieve the required double-precision termination criterion.

Using exclusively double precision for all operations can be necessary depending on the size
of the problem, the algorithm that is used, and the termination criterion. The drawback of using
double-precision floating point is the lower speed of the floating-point unit relative to single-
precision, and the requirement to load and store 64-bit data, compared to the 32-bit data of
single-precision floating point. When it is necessary or desired to use single-precision
arithmetic, iterative refinement reduces the roundoff errors in the computed solution of a system
of linear equations. The basic steps of solving Ax = b with iterative refinement are given in
Algorithm 7.

Since the Tesla C870 GPU is only capable of single precision, the double-precision refinement
is done on the CPU, which involves the transfer of the data from the GPU to the CPU and vice
versa in each refinement iteration. This extra data transfer is unavoidable with the Tesla C870.
Newer GPU models, such as the Tesla C1060 have double- and single-precision capabilities,
which would eliminate these data transfers. In our current implementation, the single-precision
step of the algorithm is carried out on the GPU and involves the solution of Ac = d with one
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of the iterative methods CGNR, CGMN, CARP-CG, or CAV. At the end of each internal
iteration, we test whether the solution of Ac = d has been improved or not by checking whether
||c(k)||/||c(k−1)|| > 1.0. In case this condition is not met, the Ac = d loop is terminated and the
iterative-refinement step updates the solution of x = x + c in double precision.

Even though a double-precision GPU could carry out all the operations in double precision,
thereby avoiding the refinement steps, it is not guaranteed that the overall performance would
be better than using iterative refinement [23]. Although the exclusive use of double precision
requires fewer iterations to achieve convergence, this performance benefit is assuaged by the
increased memory bandwidth and the reduced performance of double-precision arithmetic. For
example, it is notable that the peak single-precision performance of the Tesla C1060 is 933
GFLOPS, while its peak double-precision performance is only 78 GFLOPS.

5. Computational results
The test problems used here are the same used in [9,10,11], and are given below:

1. Δu + 1000 = F

2. Δu + 1000exyz(ux + uy − uz) = F

3. Δu + 100xux − yuy + zuz + 100(x + y + z)u/xyz = F

4. Δu − 105x2(ux + uy + uz) = F

5. Δu − 1000(1 + x2)ux + 100(uy + uz) = F

6. Δu − 1000[(1 − 2x)ux + (1 − 2y)uy + (1 − 2z)uz] = F

7. Δu − 1000x2ux + 1000u = F

8. Δu − ∂(10exyu)/∂x − ∂(10e−xyu)/∂y = F

9. Δu − ∂(1000exyu)/∂x − ∂(1000e−xyu)∂y = F

Here, we use the notation Δ = uxx + uyy + uzz. Problems 1–7 have the following analytical
solution:

The expression for the right-hand side function F in problems 1–7 is computed analytically,
using the preassigned solution. For problems 8 and 9, the right-hand-side function F is
irrelevant, because the equation system was set up by first computing the system matrix A, and
then computing b = Av, where v was chosen as v = (1, 1,…, 1)T (similar to the approach taken
in [1, Problem F3D]). All the test problems were solved on the unit cube domain [0, 1] × [0,
1] × [0, 1], with the Dirichlet boundary condition u = 0. The problems were discretized using
a uniform mesh with the same number of mesh points in each direction, and the equations were
obtained by using a seven-point centered difference scheme. Test runs were made for problems
of size 80 × 80 × 80 = 512, 000 equations. Additional tests were also made on smaller grid
sizes in order to study how the various algorithms perform as the mesh is gradually refined.

Since the results in this section are compared to the results in [10,11], an identical termination
criterion is chosen, which is based on the relative residual: res/res(0) = ||b − Ax||/||b − Ax(0)|| <
10−7, with x(0) = 0. For problems 3 and 7, this criterion was unattainable. Instead, we used the
same termination criteria used in [10,11], i.e., 10−4 and 5 · 10−4, respectively. Since this
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criterion depends on the scaling of the equations, we first normalized the equations (for all the
tested methods) by dividing each equation by the L2-norm of its coefficients.

We investigate the GPU implementation of the most robust methods (CGNR, CGMN, CARP-
CG) for the nine PDE problems, and we compare their performance to a single CPU
implementation of CGNR and CGMN, and to the 16-node cluster implementation of CARP-
CG [10]. The CARP-CG is a block-parallel algorithm and is suitable only for parallel
computers, thus its CPU implementation is not considered. Moreover, we show the results of
the GPU implementation of the CAV algorithm for the sparse PDE problems due to the fact
that CAV achieves the highest GFLOPS performance.

Figures 1–9 present the convergence of each method for each problem with respect to time. It
is clear from these figures that, for all problems, the GPU implementation of CGNR achieves
the best performance relative to the other methods on both the CPU and the GPU. On the CPU,
CGMN is consistently better than CGNR, as expected [11]. Although CARP-CG performs the
best on a 16-node Linux cluster [10], the proposed implementation does not map well on the
GPU architecture. The same can be observed for CGMN, which lends itself to a single CPU
architecture, but is not the best choice for a GPU implementation. The relaxation parameters,
λ, for CGMN are identical to the ones in [11].

In general, GPUs are suitable for algorithms, such as BLAS, that exhibit fine grain parallelism.
There is a trade-off between using small blocks to take advantage of the fine grain parallelism
available on the GPU and the number of iterations required, since one of the basic underlying
assumptions in CARP-CG is that the block boundary points are just a small fraction of the total
number of points [10]. The proposed GPU CARP-CG is a direct implementation of the
algorithm of [10] with uniformly divided grids and scaling-factor values that give the smallest
number of iterations. The Kaczmarz sweeps can be executed on the GPU or on the CPU. Despite
the additional burden of transferring the data to the CPU, executing the Kaczmarz sweeps on
the CPU is a better choice. For the same reason, CGMN does not map well on the GPU, as the
Kaczmarz sweeps slow down the performance of the algorithm. CAV is the algorithm that
achieves the highest GFLOPS performance on the GPU, as can be seen in Table 5. However,
its extremely slow rate of convergence makes CAV the slowest algorithm among the ones
studied in this paper.

The algorithm that exhibits the best balance between parallelization and rate of convergence
with iterative refinement is CGNR. In Tables 6 and 7, we display the number of iterations and
times to solution, respectively, for each architecture (GPU, CPU, 16-node cluster) and
algorithm. Although the GPU CGNR requires more iterations to achieve the same level of
precision relative to GPU CGMN and GPU CARP-CG, we observe that GPU CGNR exhibits
the best solution time due to its superior utilization of the fine-grain parallelism available on
the GPU architecture. The very large number of iterations required by GPU CAV results in its
poor performance and its failure to converge for Problems 2, 4, and 8.

The robustness of the algorithms of [10,11] is preserved here despite the single-precision
arithmetic, largely due to iterative refinement, which guarantees convergence to a solution
within the desired accuracy. Moreover, the CGNR algorithm with single-precision iterative
refinement is much more robust than CGMN and CARP-CG, in terms of required iterations to
convergence. In Table 8, we present the ratio of iterative-refinement iterations for each
algorithm over the double-precision iterations. It can be observed from this table that CGNR
is affected less by the use of single-precision floating-point arithmetic. This is demonstrated
further in Table 9, where it can be seen that the number of iterative-refinement iterations is
always smaller for CGNR in every problem except for Problem 5. Moreover, CGNR does not
involve a relaxation parameter that needs to be adjusted as in CARP-CG and CGMN.
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Finally, in Figure 10, we show the speedup obtained by the GPU in comparison to the CPU
CGMN and the 16-node cluster CARP-CG implementations. The GPU implementation is 5–
20 times faster than the CPU, depending on the particular problem. Compared to the 16-node
cluster, the GPU implementation is 1–3 times faster. The achieved speedup for CGNR is
roughly a factor of 30 to 40.

6. Conclusions
Among the algorithms considered in this paper, CGNR was shown to be the most efficient for
solving the investigated partial differential equations on the GPU. This finding is in contrast
to earlier works on the CPU, where CGMN was found to be consistently better than CGNR.
Moreover, CGNR was the most robust method under the GPU’s single-precision floating-point
arithmetic. CAV was able to achieve the highest GFLOPS but slowest solution time due to
poor convergence.

The GPU has a clear advantage when compared to the CPU. In particular, the computational
results demonstrated that the GPU implementation is five to twenty times faster than the CPU,
depending on the particular problem. Compared to a 16-node cluster, the GPU implementation
was one to three times faster. When the cost of the hardware, its power consumption, and its
portability are accounted for, it becomes apparent that a single GPU offers a clear advantage
over a 16-node Linux cluster.

While algorithm performance is known to be architecture-specific, our computational results
specifically demonstrate that the GPU offers a low-cost and high-performance computing
solution for solving large-scale partial differential equations. Continued improvements, such
as performance and double precision, will only make the GPU more attractive as a high-
performance computing device for scientific computing applications.
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Figure 1.
Convergence results for Problem 1.

Elble et al. Page 16

Parallel Comput. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Convergence results for Problem 2.
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Figure 3.
Convergence results for Problem 3.
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Figure 4.
Convergence results for Problem 4.
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Figure 5.
Convergence results for Problem 5.
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Figure 6.
Convergence results for Problem 6.
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Figure 7.
Convergence results for Problem 7.
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Figure 8.
Convergence results for Problem 8.
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Figure 9.
Convergence results for Problem 9.
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Figure 10.
GPU speedups in comparison to the CPU CGMN and the 16-node cluster.
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Table 1

Run times of Kaczmarz’s algorithm for dense n × n systems

GPU time (sec) CPU time (sec)

Problem size (n) Memory initialization Per iteration Per iteration

1000 0.003 0.034 0.014

2500 0.016 0.036 0.020

5000 0.061 0.039 0.034

7500 0.137 0.044 0.050

10000 0.245 0.043 0.064

15000 0.547 0.055 0.102
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Table 2

Run times of Cimmino’s algorithm for dense n × n systems

GPU time (sec) CPU time (sec)

Problem size (n) Memory initialization Per iteration Per iteration

1000 0.004 0.624 3.121

2500 0.018 5.547 18.702

5000 0.063 15.496 90.354

10000 0.265 28.634 349.058
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Table 3

Run times of CAV for n × n banded systems

GPU time (sec) CPU time (sec)

Problem size (n) Memory initialization Per iteration Per iteration

1000 0.001 0.113 0.289

2500 0.001 0.188 0.657

5000 0.003 0.345 1.531

10000 0.005 0.720 3.145

15000 0.007 0.933 4.396

20000 0.008 1.060 5.021

25000 0.009 1.382 6.268

30000 0.011 1.614 7.515
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Table 4

Run times of CAV for banded 25, 000 × 25, 000 systems

GPU time (sec) CPU time (sec)

Band size Memory initialization Per iteration Per iteration

1 0.002 0.151 1.955

2 0.006 0.199 1.950

4 0.006 0.296 1.815

8 0.008 0.492 2.718

16 0.009 1.249 4.417

32 0.011 1.844 7.729

64 0.014 5.168 14.630
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Table 5

Average GFLOPS performance over the nine problems. For GPU-CAV, the average is over the six problems
that it does not fail

Algorithm GFLOPS

GPU-CGNR 11.82

GPU-CGMN 0.32

GPU-CARPCG 0.66

GPU-CAV 15.26

CPU-CGMN 0.2

CPU-CGNR 0.31
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Table 8

Ratio of iterative-refinement iterations over double-precision iterations for each method

Problem CGNR CGMN CARP-CG

1 1.22 1.14 1.61

2 1.03 1.04 6.53

3 1.00 1.00 0.65

4 1.01 1.06 1.86

5 1.01 1.04 1.57

6 1.02 1.05 2.32

7 1.00 1.39 1.37

8 1.15 1.75 2.08

9 1.02 0.83 4.42
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Table 9

Number of iterative refinements for Problems 1–9

Problem CGNR CGMN CARP-CG CAV

1 2 2 2 4

2 2 2 78 –

3 1 1 1 9

4 2 2 2 –

5 5 2 3 9

6 2 2 2 2

7 1 4 2 6

8 2 99 23 –

9 2 2 57 14

–: Algorithm failed
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Algorithm 1

Kaczmarz’s algorithm
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Algorithm 2

Cimmino’s algorithm
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Algorithm 3

Component-averaging (CAV)
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Algorithm 4

Conjugate gradient normal residual (CGNR)
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Algorithm 5

Symmetric successive overrelaxation (SSOR)-preconditioned conjugate gradient (CGMN)
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Algorithm 6

Conjugate gradient accelerated component-averaged row projections (CARP-CG)
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Algorithm 7

CPU-GPU iterative refinement
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