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Abstract
The public health importance of Barrett’s oesophagus lies in its association with oesophageal
adenocarcinoma. The incidence of oesophageal adenocarcinoma has risen at an alarming rate over
the past four decades in many regions of the Western world and there are indications that the incidence
of this disease is on the rise in Asian populations where it has been rare. Much has been learned of
host and environmental risk factors that affect the incidence of oesophageal adenocarcinoma and
data indicate that patients with Barrett’s oesophagus rarely develop oesophageal adenocarcinoma.
Given that 95% of oesophageal adenocarcinoma arise in individuals without a prior diagnosis of
Barrett’s oesophagus, what strategies can be used to reduce late diagnosis of oesophageal
adenocarcinoma?

Barrett’s oesophagus has been defined as a condition in which the normal stratified squamous
epithelium of the esophagus is replaced by metaplastic columnar epithelium, although no
universally accepted definition currently exists1,2. The columnar-lined esophagus was
described by Norman Barrett in 19503, reported to be associated with gastroesophageal reflux
disease in 19534 and convincingly linked with oesophageal adenocarcinoma in 19755. Unless
detected early oesophageal adenocarcinoma is a lethal cancer with mortality greater than 85%
and for the past four decades its incidence has been increasing at an alarming rate in many
regions of the Western world6. The paradigm is that Barrett’s oesophagus arises as a
complication of symptomatic gastroesophageal reflux disease and predisposes to oesophageal
adenocarcinoma.

Treatment of Barrett’s oesophagus has been based on this paradigm. Clinical guidelines
initially endorsed endoscopic screening of individuals with symptomatic gastroesophageal
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reflux disease for Barrett’s oesophagus and endoscopic biopsy surveillance of Barrett’s
oesophagus7,8. Increased endoscopic detection and surveillance of Barrett’s oesophagus have
provided valuable insights into the natural history of this condition, and research has identified
challenges to reducing the incidence and mortality of oesophageal adenocarcinoma when
clinical decisions are made based on this paradigm. Here, we examine new data on the
epidemiology of Barrett’s oesophagus and oesophageal adenocarcinoma, the global
distribution of these conditions, the biology of [G]oesophageal specialized intestinal
metaplasia, and somatic genomic alterations and evolutionary dynamics that predispose to
oesophageal adenocarcinoma. A synthesis of these population, clinical, computational and
laboratory advances can guide future research for prevention and early detection of
oesophageal adenocarcinoma.

Barrett’s specialized intestinal metaplasia
The columnar epithelium of Barrett’s oesophagus has a crypt architecture similar to that of the
intestine, and it has been described as a specialized intestinal metaplasia1,2 (Figure 1). Recently
it has been proposed that Barrett’s specialized intestinal metaplasia represents a successful
adaptation to the harsh intraesophageal environment of chronic gastroesophageal reflux disease
because it has acquired a number of functions not present in the normal oesophageal squamous
epithelium9. Several studies are consistent with this hypothesis and indicate that the intestinal
metaplasia is a well differentiated epithelium with a number of acquired functions that
participate in mucosal defence (Figure 1)10-15.

The natural history of Barrett’s oesophagus
Results from surveillance cohorts indicate that the majority of individuals with Barrett’s
oesophagus do not develop oesophageal adenocarcinoma during endoscopic follow up17-22.
Meta-analyses estimate the incidence of oesophageal adenocarcinoma among individuals with
Barrett’s oesophagus to be 6-7/1000 [G]person-years23,24, and oesophageal adenocarcinoma
is an uncommon cause of death in persons with Barrett’s oesophagus25-28. Further, despite
endoscopic detection and surveillance of Barrett’s oesophagus, the vast majority of
oesophageal adenocarcinomas arise in patients who have no prior diagnosis of Barrett’s
oesophagus29-32. Thus, the paradox of current clinical management of Barrett’s oesophagus –
underdiagnosis of life threatening early disease, and [G]overdiagnosis of early benign changes
that will not affect the lifespan of the individual (Figure 2) – is similar to many other
premalignant or malignant diagnoses that follow indolent courses, including those of the
prostate, lung, thyroid, breast and kidney33-36.

Epidemiology and etiology
Oesophageal adenocarcinoma

The ultimate public health importance of Barrett’s oesophagus lies in its association with
oesophageal adenocarcinoma, a cancer whose incidence has risen substantially in the US,
Western Europe, Australia, and in other developed countries over the past four decades, with
little sign of abating6,41,42. There is disquieting evidence for an increasing incidence of
oesophageal adenocarcinoma in some Asian populations, such as those residing in
Singapore43, Japan44 and Iran45, where the disease has previously been uncommon, although
this trend is not evident in other countries46,47. In the US, incidence is highest in Caucasian
men where it is about eight times greater than Caucasian women and five times greater than
African-American men. However, substantial increases have been recorded for every group,
with the result that in the US oesophageal adenocarcinoma became the most common
histological type of oesophageal cancer in the late 1990s6. Mortality remains high, and most
with oesophageal adenocarcinoma survive less than one year after diagnosis48.
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Much has been learned about the etiology of oesophageal adenocarcinoma from
epidemiological studies over the past two decades. Symptomatic gastroesophageal reflux
disease is the strongest and best understood risk factor. The largest population-based case-
control studies have all observed four-fold or higher reported relative risks for those with the
most frequent symptoms39,40,49-51. It is important to note, however, that symptomatic
gastroesophageal reflux disease is infrequent or absent in 40% - 48% of persons who develop
oesophageal adenocarcinoma39,40.

Obesity, as measured by body mass index (BMI), also clearly increases risk of oesophageal
adenocarcinoma. This has been observed in both case-control and cohort studies6,49-60. Two
recent meta-analyses have estimated relative risks for developing cancer of between 2.4 and
2.8 for those with BMI>30 kg/m2 (obese) and between 1.5 and 1.8 for those considered
overweight (BMI=25.0-29.9 kg/m2)61,62. The importance of this relationship is magnified by
the alarming increase in obesity observed in many developed countries63. For example, based
on 2003-2004 National Health And Nutrition Examination Survey (NHANES) data, over 32%
of adults in the US are obese, along with 17% of children and adolescents64. These figures
represent substantial increases over a six-year period. Similar prevalence and trends in obesity
have been observed in Australia and elsewhere65. Cancer incidence modeling has confirmed
the importance of [G]period effects in the epidemiology of oesophageal adenocarcinoma and
suggests that they are consistent with obesity trends66. Preliminary evidence suggests a pattern
of interaction between gastroesophageal reflux disease and obesity, such that obese people
with frequent symptoms of gastroesophageal reflux disease had substantially higher
oesophageal adenocarcinoma risk (odds ratio (OR)=16.5, 95% CI=8.9-30.6) than people with
obesity but no reflux (OR=2.2, 95% CI=1.1-4.3) or reflux but no obesity (OR=5.6, 95%
CI=2.8-11.3) compared to people with healthy BMI and no reflux symptoms)49.

Additional but more modest risk factors for oesophageal adenocarcinoma include cigarette
smoking, which approximately doubles oesophageal adenocarcinoma risk49,50,52,60,67, and a
diet low in fruits and vegetables50,68-70. Alcohol does not appear to have an important role in
oesophageal adenocarcinoma71,72. Infection with H. pylori has been linked with reduced
oesophageal adenocarcinoma risk in many studies73-75; the underlying mechanisms are not
clear, although reduction in acid reflux in association with gastric atrophy has been suggested
to have a role76.

Based on data from a large multi-center U.S. study, it is estimated that the four major risk
factors – obesity (as measured by BMI), cigarette smoking, gastroesophageal reflux disease
and diet low in fruits and vegetables – individually account for 41%, 40%, 30% and 15% of
cases in the US population, respectively, and collectively account for 79% (95% CI=66-87%)
of cases77.

Barrett’s oesophagus
In contrast to oesophageal adenocarcinoma, the incidence and prevalence of Barrett’s
oesophagus are not known with precision. Probably the most accurate population estimates of
the prevalence of Barrett’s oesophagus in developed countries come from a random sample of
3,000 adults in two communities in Sweden who underwent endoscopy with biopsy: Barrett’s
oesophagus was detected in 1.6%37. Importantly, the prevalence of Barrett’s oesophagus
among persons reporting reflux symptoms (2.3%) was only modestly and non-significantly
greater than those without such symptoms (1.2%). Remarkably similar findings were reported
from an endoscopic study of 1,033 adults from two Italian villages, in whom 1.3% were found
to have Barrett’s oesophagus38. Again, reflux symptoms were a poor predictor of Barrett’s
oesophagus, as 46.2% of Barrett’s oesophagus cases did not report such symptoms.
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Even in countries in which increases in oesophageal adenocarcinoma incidence have not (yet)
been documented, such as Korea, it appears that Barrett’s oesophagus may be increasingly
common78. For example, among 992 consecutive upper endoscopies at four university
hospitals in Korea, 3.6% of individuals had histologically-proven Barrett’s oesophagus78.
Prevalence of risk factors for Barrett’s oesophagus, such as gastroesophageal reflux disease
and obesity, also appear to be increasing in some Asian countries43,79,80.

Further understanding of obesity’s effects on oesophageal adenocarcinoma must rely largely
on studies of precursors, such as Barrett’s oesophagus, as cancer case-control studies and
retrospective cohort studies typically are unable to accurately assess characteristics such as
percent body fat and fat deposition. A cross-sectional analysis of baseline data from a cohort
study of Barrett’s oesophagus was among the first to suggest that location of fat deposition
was more important than weight in predicting risk81. Recent results from case-control studies
of incident Barrett’s oesophagus strongly support the concept that abdominal adiposity, rather
than BMI, may be the defining characteristic which places persons at increased risk of Barrett’s
oesophagus, and presumably oesophageal adenocarcinoma82,83. For example, in a community-
clinic-based case-control study of persons with incident Barrett’s oesophagus compared to a
matched sample from the general population, persons in high categories of waist-to-hip ratio
(0.90 or greater for men, 0.85 or greater for women) experienced a 4.1-fold increase in risk
(95%CI = 1.7-10.0; [G]p-trend=0.003), whereas no increase was observed for increasing BMI
after mutual adjustment. Similar observations were reported from a population-based case-
control study of Barrett’s oesophagus83 and a case-control study nested in a large cohort in
which abdominal diameter data were available59. Supportive findings were observed in a small
clinical study (n=36 cases), in which visceral fat was assessed using CT scans; in models that
included data for both visceral fat levels and BMI, visceral fat levels explained most of the
association with risk of Barrett’s oesophagus84. As overweight men tend to have more visceral
fat than overweight women, these studies suggest a possible explanation for the marked
preponderance of men with oesophageal adenocarcinoma and Barrett’s oesophagus.

It has been hypothesized that abdominal obesity may increase risk of Barrett’s oesophagus and
oesophageal adenocarcinoma primarily by promoting reflux via increasing intragastric
pressure85. However, direct evidence for this pathway is surprisingly weak. For example, a
cross-sectional hospital study using [G]manometry observed a correlation coefficient of only
0.11 (p=0.05) relating gastric pressure to BMI or waist circumference86. Other observations
suggest moderate correlations between gastroesophageal reflux disease symptoms and BMI in
the U.S. but not in Europe87. In one of the first studies investigating possible mediators of the
obesity–Barrett’s oesophagus–oesophageal adenocarcinoma relationship, Kendall et al.
reported that high serum leptin, a hormone produced by visceral fat which may promote
carcinogenesis by mitogenic and angiogenic means, was associated with increased risk of
Barrett’s oesophagus, particularly among males88. In addition to altering levels of adipokines
such as leptin and adiponectin, obesity can increase concentrations of bioavailable IGF-1 and
insulin, growth factors which can directly promote cellular proliferation and reduce apoptosis,
as well as affect downstream signaling pathways involved in cell growth and proliferation89.

The strength of the relationship between cigarette smoking and Barrett’s oesophagus is less
clear than for oesophageal adenocarcinoma, with most90,91 but not all50,92 studies observing
a modest increase in risk among current smokers. Similar to oesophageal adenocarcinoma, risk
of Barrett’s oesophagus appears to be moderately decreased with increasing intake of fruits
and vegetables93,94.

Chronic inflammation
As described in Box 1, one aspect in common among the major risk factors for Barrett’s
oesophagus and oesophageal adenocarcinoma is the promotion of chronic inflammation, both

Reid et al. Page 4

Nat Rev Cancer. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the oesophageal epithelium and systemically. It has been hypothesized that telomere length
in leukocytes of individuals with Barrett’s oesophagus might serve as an integrative measure
of a person’s long-term history of inflammation and oxidative damage, since factors such as
insulin resistance, obesity and smoking have been shown to reduce telomere length95-97.
Longitudinal analysis of baseline blood samples in a Barrett’s oesophagus cohort revealed
shorter telomere length to be associated with increased risk of progression to oesophageal
adenocarcinoma (adjusted hazard ratio comparing extreme quartiles, 3.45, 95% CI=1.35-8.78)
95. These observations were replicated in a case-control study that found overall telomere
length, as well as 17p and 12q telomere lengths but not 11q and 2p telomere lengths, were
associated with increased oesophageal adenocarcinoma risk98. These results suggest the
importance of chronic systemic inflammation in the development of Barrett’s oesophagus and
oesophageal adenocarcinoma and raise the possibility that telomere length may be a useful
component to a biomarker panel designed to stratify risk in persons with Barrett’s oesophagus.

Box 1. Inflammation and oesophageal adenocarcinoma

Chronic inflammation appears to play a central role in the development of oesophageal
adenocarcinoma and its precursor lesions. Epidemiologic studies have identified three
major risk factors – abdominal obesity (visceral fat), gastroesophageal reflux and cigarette
smoking – as key driving forces for this cancer77. The refluxate contains numerous
substances in addition to gastric acid, including bile salts, pancreatic enzymes, and ingested
foods and their metabolites, which can cause acute and chronic inflammation of the
oesophageal epithelium with resulting oxidative stress99-101. Abdominal obesity, in
addition to promoting gastroesophageal reflux, is increasingly being recognized as causing
a state of low-level systemic inflammation, characterized by increased plasma levels of pro-
inflammatory cytokines and receptors, such as IL-6, TNF-alpha and sTNF-alpha receptor
2, C-reactive protein, and leptin63,102. In addition, cigarette smoking can cause
inflammation both systemically and within the oesophageal epithelium in response to
swallowed smoking products. In turn, a chronic state of systemic and localized
inflammation and oxidative stress promotes DNA damage, cellular proliferation and
telomere shortening, which can increase the risk of developing clones containing small and
large-scale genomic alterations, eventually leading to widespread chromosomal instability
and oesophageal adenocarcinoma103,104.

Host susceptibility
A genetic component to the development of gastroesophageal reflux disease, Barrett’s
oesophagus and oesophageal adenocarcinoma has long been suspected based on case reports,
familial clusters and clinical series105,106. For example, a family from the UK has been
described which includes a male index case with oesophageal adenocarcinoma, three brothers
with oesophageal adenocarcinoma or high-grade dysplasia in Barrett’s oesophagus, and six
children with Barrett’s oesophagus107. Similarly, a three-generation family of 24 in Spain has
been described, in which six developed oesophageal adenocarcinoma, four Barrett’s
oesophagus and six gastroesophageal reflux disease108. Two well-designed twin studies of
gastroesophageal reflux disease also indicated a heritability of 30-40%, lending further support
for genetic susceptibility in the oesophageal adenocarcinoma disease process109,110.
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Larger studies also suggest a genetic component to oesophageal adenocarcinoma and its
precursors111,112. For example, familial Barrett’s oesophagus was confirmed in 7.3% of
persons presenting with Barrett’s oesophagus or oesophageal adenocarcinoma113, which is
several-fold higher than would be expected based on population surveys37,38. A higher
frequency of a positive family history of Barrett’s oesophagus or oesophageal adenocarcinoma
among cases with these conditions (24%) compared to gastroesophageal reflux disease cases
without Barrett’s oesophagus (5%) has also been observed114. In clinical practice, a complete
family history is now recommended for physicians seeing patients with Barrett’s oesophagus
and oesophageal adenocarcinoma115, while linkage studies are being undertaken to better
understand the inheritance of these conditions115,116.

An increasing number of studies have used a candidate gene approach to identify gene variants
in pathways such as DNA repair, xenobiotic metabolism and inflammation that might alter the
risk of developing Barrett’s oesophagus or oesophageal adenocarcinoma117-125. For example,
a population-based study found that population heterogeneity for alcohol metabolism may have
masked an increased risk with increased alcohol intake118. Among drinkers, intermediate
metabolizers had a two-fold increase in risk of oesophageal adenocarcinoma and gastric cardia
adenocarcinomas, while fast metabolizers (homozygous for variant ADH3) had a four-fold
increased risk (OR=4.3; 95%CI=1.1-11.2). In another population-based study, relative risk of
oesophageal adenocarcinoma was examined in relation to five single nucleotide
polymorphisms in the DNA repair gene, MGMT. Among persons reporting frequent episodes
of gastroesophageal reflux disease, a substantially increased relative risk was observed for
those homozygous for the minor allele at the intronic locus rs12268840 (OR=15.5, 95%
CI=5.8-42), although the association of the variant with altered expression or enzyme activity
is unclear122. Another study examined variants in the NAD(P)H:quinone oxidoreductase 1
(NQO1) gene, which codes for a detoxifying enzyme of common dietary compounds. Those
with the TT genotype were observed to be less common than expected in Barrett’s oesophagus
and oesophageal adenocarcinoma cases, yielding a 4.5-fold decreased risk of developing
Barrett’s oesophagus (p=0.01) and a 6.2-fold decreased risk of oesophageal adenocarcinoma
(p=0.04), and suggesting that the NQO1 TT genotype may offer protection from reflux
complications126.

The COX-2 gene is of particular interest as it codes for an inducible form of cyclooxygenase
observed to be expressed at increased levels in Barrett’s oesophagus, oesophageal
adenocarcinoma, and a number of other cancers and their precursors. Cyclooxygenase has a
central role in inflammation and potentially carcinogenesis via production of prostaglandins,
which have a number of neoplastic properties127. Variants in the promoter region of the COX-2
gene have been observed to significantly increase risk of oesophageal adenocarcinoma128,
129; this is intriguing, given the number of observational studies indicating a preventive effect
of NSAIDs in the development of oesophageal adenocarcinoma130-134 (see below). Finally,
in a cohort study of Barrett’s oesophagus, bleomycin sensitivity was assessed in baseline
peripheral blood lymphocytes. Bleomycin-sensitive patients were at increased risk of
developing aneuploid cells (adjusted HR 3.71, 95% CI 1.44-9.53) and non-significantly greater
risk of oesophageal adenocarcinoma (adjusted HR 1.63, 95% CI 0.71-3.75)135. Trends for both
oesophageal adenocarcinoma (p<0.001) and aneuploidy (p<0.005) were particularly strong
among patients with 17p LOH involving TP53.

Together, the above results suggest the importance of taking into account genetic background
when evaluating risk and preventive factors in the development of Barrett’s oesophagus and
oesophageal adenocarcinoma and vice-versa. However, they all require replication and further
functional studies before this information can be used in a clinical setting. Results from ongoing
genome-wide association studies of Barrett’s oesophagus and oesophageal adenocarcinoma
will likely add new loci of interest for more directed study.
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Neoplastic progression in Barrett’s oesophagus
One of the fundamental goals of translational research in Barrett’s oesophagus is to distinguish
the small number of individuals who progress to oesophageal adenocarcinoma from the
majority who do not. Currently, periodic endoscopic biopsies with histological assessment of
dysplasia are used to assess the risk of progression to oesophageal adenocarcinoma in patients
with Barrett’s oesophagus. Dysplasia is also frequently used as a surrogate endpoint for
oesophageal adenocarcinoma in research studies. However, this approach poses substantial
challenges for both patient care and research (Box 2). Formal statistical criteria for evaluating
surrogate biomarkers were developed two decades ago136. Although some surrogates with
lower standards may be used for intermediate studies or biological pathway analysis137,
surrogate markers for studies that intend to contribute to the evidence base for clinical policy
need to accurately represent the true endpoint, oesophageal adenocarcinoma. Such markers
need to be in key causal pathway(s) to oesophageal adenocarcinoma, have substantial
predictive power to distinguish between those who will and will not develop oesophageal
adenocarcinoma, and be easily and objectively measured. Since neither high-grade dysplasia
nor any other grade of dysplasia in Barrett’s oesophagus has been demonstrated to be a valid
surrogate for oesophageal adenocarcinoma, this review will focus on well designed
longitudinal studies of neoplastic progression that have a definitive oesophageal
adenocarcinoma endpoint.

Box 2. Challenges for histology-guided oesophageal adenocarcinoma risk
assessment in individuals with Barrett’s oesophagus

• Assessment of dysplasia is subjective with substantial observer variation in
diagnosis between pathologists138,139.

• Large numbers of biopsies are required to reduce sampling error140,141.

• High-grade dysplasia is highly heterogeneous with regard to progression to
oesophageal adenocarcinoma, and rates of progression vary substantially in
different studies with reported five-year cumulative incidences of oesophageal
adenocarcinoma ranging from less than 10% to 59%18,21.

• Low-grade dysplasia has a low rate of progression to oesophageal
adenocarcinoma, non-robust reproducibility and frequently is not detected in
subsequent endoscopies17-19,21,139,142-144.

• Reports of increased progression from low-grade dysplasia to high-grade dysplasia
as a surrogate endpoint for oesophageal adenocarcinoma145 may be confounded
by diagnostic misclassification138,139, sampling141, biological heterogeneity, or
combinations of these factors.

• The lack of reproducible diagnostic classification138,139 confounds comparison of
results from different centres.

• Use of dysplasia as a surrogate marker for oesophageal adenocarcinoma in
molecular or imaging research for improved risk stratification can hardwire the
limitations of the dysplasia classification system into the molecular and imaging
markers146,147.

• Treatment of surrogate endpoints for oesophageal adenocarcinoma, such as low-
or high-grade dysplasia, may not be associated with decreased incidence of
advanced oesophageal adenocarcinomas or reduction in mortality148,149.

• Research on quantitative assessment of dysplasia150,151 and consensus
interpretations152 is being carried out to improve histological classification, but
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some results are inconsistent and no studies have yet demonstrated the sensitivity
and specificity expected of a practical diagnostic test.

In 1976, Nowell advanced the hypothesis that “Acquired genetic lability permits stepwise
selection of variant sublines and underlies tumor progression”153. Data from genomic154-156,
transcriptomic157-160 and proteomic161-163 studies have revealed the complexity of changes
that develop during neoplastic evolution to oesophageal adenocarcinoma, including genome-
wide chromosomal instability, disruption of regulatory pathways, and dynamic clonal
evolution (Box 3).

Fundamental properties
of neoplastic progression Measures of alterations Challenges for

translation

Genomic instability,
chromosomal alterations,
chromosome instability,
microsatellite instability,
mutations

Aneuploidy156,164,165, copy
number and LOH154,155,166,
microsatellite
alterations164

High dimensional
complexity of genomic
alterations and random,
neutral events

Disruption of regulatory
pathways

Transcription profiles157-
160, methylation
patterns146,167-171,
proteomics161-163, cellular
proliferation172, cell-cycle
abnormalities173-175

Redundancy and
dynamic adaptation of
networks

Changes in clonal
evolutionary dynamics

Clonal expansion176,
clone size177, genetic
divergence178, diversity
and generation of
variants178,179

Heterogeneity, changes
in rates, selection of
variants

Box 3. Opportunities for risk stratification, prevention and early detection

The complex patterns of chromosome instability and mutations, combined with disruption
of regulatory pathways, clonal evolution and generation of variants create challenges for
treatment of advanced oesophageal adenocarcinoma (see the table). Rapidly advancing
technology creates opportunities to measure fundamental, widely generalizable biomarkers
of progression for risk stratification, early detection and prevention. For example, the
presence or rate of chromosome instability can be measured on high-density, genome wide
platforms and may be a fundamental biomarker that captures the complexity of neoplastic
progression in Barrett’s oesophagus and many other conditions. Assessment of disruption
of regulatory pathways at the expression or protein levels could integrate genomic,
epigenetic and environmental influences on progression, and expression profiles have
received regulatory approval for selection of patients for specific therapies as well as
identification of carcinomas of unknown primary origin180,181. Evolutionary measures,
including clonal expansion and generation of diversity, may also be fundamental biomarkers
of progression that could be applicable to many conditions in addition to Barrett’s
oesophagus. The complexity of these abnormalities appears to be lower in premalignant
stages of Barrett’s oesophagus than in oesophageal adenocarcinoma, which could facilitate
development of diagnostic tests, although it is likely that no single measurement will prove
sufficient for cancer control. Early events found in high frequency in Barrett’s oesophagus
are unlikely to be useful as biomarkers of risk of progression to oesophageal
adenocarcinoma because the natural history of Barrett’s oesophagus indicates that
progression to and death from oesophageal adenocarcinoma are rare events. High frequency
early events in Barrett’s oesophagus could either be (1) part of the mucosal defence of
Barrett’s oesophagus as an adaptation to chronic gastroesophageal reflux disease (Figure
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1), (2) neutral alterations in regions susceptible to chromosome damage that undergo
expansion as hitchhikers (“passengers”) on early selected genetic or epigenetic “drivers”
or (3) necessary, but not sufficient for progression to oesophageal adenocarcinoma.
Abbreviation: loss of heterozygosity (LOH).

Genomic instability
Genomic instability appears to be a fundamental property of neoplastic progression that
develops before the onset of cancer. [G]Chromosome instability is the most common proven
source of genomic instability in human cancers, and it has been best evaluated in colon cancer,
where it constitutes about 85% of the genetic instability leading to cancer compared to
microsatellite instability, which comprises the remaining 15%182. A large body of evidence
now suggests that most oesophageal adenocarcinomas arise in association with a process of
gain or loss of whole chromosomes or large portions of chromosomes, as detected by DNA
content flow cytometry, cytogenetics, loss of heterozygosity (LOH), comparative genomic
hybridization (CGH), array CGH, and SNP arrays154-156,164-166. A recent 317K SNP array
study of 23 oesophageal adenocarcinomas reported an average of 97 copy number changes
(range 23-208) per cancer that ranged in size from small homozygous deletions to large
chromosome regions154. Copy gain, loss and copy neutral LOH averaged 13, 18 and 23MB,
respectively. All tumors had LOH involving most of chromosome 17p, and alterations were
identified in established tumor suppressor genes and oncogenes such as CDKN2A, TP53,
FHIT and MYC, as well as novel candidate gene regions. These results indicate the complexity
of genomic changes in oesophageal adenocarcinoma and suggest there will be both
opportunities and challenges for risk stratification, cancer prevention and early detection.

Chromosome abnormalities have been detected in Barrett’s oesophagus epithelium adjacent
to oesophageal adenocarcinomas, and distributions of cell populations with chromosome
abnormalities have been reported at the scales of individual cells, crypts, and biopsies within
Barrett’s oesophagus epithelia176,179,183,184. Spatial data at the level of biopsies in the Barrett’s
oesophagus epithelia led to the hypothesis that 9p LOH (as well as methylation and mutation
of CDKN2A) were early events in Barrett’s oesophagus that preceded 17p LOH and TP53
mutation, and later DNA content tetraploidy and aneuploidy176,183. In a long-term prospective
study of 243 Barrett’s oesophagus patients using oesophageal adenocarcinoma as an
outcome130, baseline biopsies were evaluated for the presence of 9p LOH, 17p LOH, DNA
content abnormalities (tetraploidy and aneuploidy), TP53 mutation and CDKN2A mutation and
methylation. After 10 years of follow up, all biomarkers contributed significantly to risk of
oesophageal adenocarcinoma in univariate analysis with the exceptions of CDKN2A
methylation and mutation. The chromosome instability panel of 9p LOH, 17p LOH and DNA
content abnormalities was the best predictor of oesophageal adenocarcinoma (relative risk (RR)
=38.7; 95% CI=10.8-138.5; p<0.001). The five-year cumulative incidence of oesophageal
adenocarcinoma was 79.1% in individuals with 9p LOH, 17p LOH and a DNA content
abnormality at baseline, whereas those with neither LOH nor DNA content abnormalities at
baseline had a zero percent cumulative incidence of oesophageal adenocarcinoma almost eight
years after the baseline endoscopy.

Although this study established that measures of chromosome instability can distinguish
individuals at high and low risk for progression to oesophageal adenocarcinoma it used a
constellation of technologies that are difficult to perform outside of research centres. Two
recent studies have reported that SNP and BAC arrays have high sensitivity and specificity to
detect DNA content aneuploidy, and SNP arrays provide a single platform to assess
chromosome instability, including copy change and LOH155,185. Patients whose Barrett’s
oesophagus biopsies contained copy number alterations involving more than 70 MB of the
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genome also had an increased risk of progressing to DNA content abnormalities or oesophageal
adenocarcinoma during follow up185.

Thus, substantial evidence indicates that chromosome instability is strongly associated with
progression from Barrett’s oesophagus to oesophageal adenocarcinoma. Rapid advances in
DNA technology provide opportunities for translation of 9p, 17p, and DNA content
abnormalities using clinically compatible platforms such as Pyrosequencing for LOH and
fluorescent in situ hybridization for copy number alterations184,186. SNP arrays permit
assessment of LOH, copy number and aneuploidy on a common platform in Barrett’s
oesophagus and oesophageal adenocarcinoma, demonstrating that chromosome instability was
common in persons with Barrett’s oesophagus that had progressed to oesophageal
adenocarcinoma as well as in advanced oesophageal adenocarcinomas155. Small [G]interstitial
deletions are observed frequently in persons with early stages of Barrett’s oesophagus who did
not undergo progression to oesophageal adenocarcinoma155,166. These small deletions do not
meet the definition of chromosomal instability155,182, and their roles in Barrett’s oesophagus
are not yet clear. They might be selected during the adaptation for mucosal defence in
gastroesophageal reflux disease (Figure 1), neutral alterations in regions susceptible to
chromosome damage that expand as hitchhikers (passengers), or necessary but not sufficient
for oesophageal adenocarcinoma (Box 3)155. Regardless, alterations in these small regions are
far too common in early stages to be sufficient for development of oesophageal
adenocarcinoma as evidence by the low rate of progression from Barrett’s oesophagus to
oesophageal adenocarcinoma23,24. Microsatellite instability is another potential source of
genome-wide instability in the development of oesophageal adenocarcinoma although it
appears to be much less common than chromosome instability perhaps accounting for 5% of
oesophageal adenocarcinomas164.

Epigenetic changes in Barrett’s oesophagus and oesophageal adenocarcinoma
There has been recent interest in epigenetic mechanisms, especially DNA methylation, in
development of oesophageal adenocarcinoma, and the promoter regions of several dozen genes
have been evaluated using candidate genes identified in other cancers167. A few [G]
longitudinal studies of epigenetic abnormalities also have been reported, using a mixture of
surrogate dysplasia and oesophageal adenocarcinoma endpoints and based on promoter regions
of a small number of genes146,147. Recent studies have used unbiased scans of the genome to
investigate DNA methylation in different tissue types and in cancers169,170, with one study of
colon cancer reporting that most methylation changes were not in promoters or CpG
islands171. Combining recent advances in genome-wide screens with spatial scale experiments
will likely lead to better understanding of the roles of methylation in tissue maintenance and
neoplasia in Barrett’s oesophagus and oesophageal adenocarcinoma169-171.

Clonal evolution and neoplastic progression in Barrett’s oesophagus
Although Nowell’s theory of clonal evolution is generally accepted153,187, few studies have
addressed clonal evolutionary dynamics, which may be fundamental biomarkers of cancer risk
applicable to a large number of neoplasms. Three studies carried out on overlapping cohort
sets have evaluated evolutionary parameters in neoplastic progression in Barrett’s oesophagus.
A spatial study reported that CDKN2A mutation and methylation, 9p LOH, TP53 mutations
and 17p LOH were all highly selected (drivers) for clonal expansion176. In contrast, all
microsatellite shifts and other LOH events behaved as neutral mutations. In some cases, neutral
mutations underwent large clonal expansions, but these expansions could typically be
explained by co-expansion as hitchhikers (passengers) on a clonal expansion driven by a known
selective mutation. A second study evaluated the relative importance of clonal expansion and
genetic instability and reported that the sizes of clones with 17p LOH or DNA content
tetraploidy and aneuploidy increased the risk of progression from Barrett’s oesophagus to
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oesophageal adenocarcinoma177. Sizes of clones with CDKN2A abnormalities were not
significant oesophageal adenocarcinoma risk factors when 17p LOH was included in the
model, suggesting that expansion of a genetically unstable clone increases risk of progression
of Barrett’s oesophagus to oesophageal adenocarcinoma. In a third study, increased clonal
diversity, assessed by number of clones, [G]Shannon Index and mean pairwise genetic
divergence between flow cytometry enriched fractions of Barrett’s oesophagus biopsies was
associated with increased risk of progression to oesophageal adenocarcinoma even when 17p
LOH and DNA content abnormalities were included in the model178. It is not yet clear whether
measures of diversity in crypts or single cells are associated with an increased risk of
progression to oesophageal adenocarcinoma.

Another interesting study observed marked genetic diversity at the crypt level in Barrett’s
oesophagus after dissecting individual crypts and evaluating them for LOH involving APC
(5q), CDKN2A (9p) and TP53 (17p) as well as mutations in CDKN2A and TP53179. In one
patient, a non-coding CDKN2A mutation was present in both a squamous oesophageal duct
and metaplastic Barrett’s oesophagus, suggesting a ductal origin of Barrett’s oesophagus. Such
careful attention to spatial scale advances our understanding of levels of diversity in Barrett’s
oesophagus that may be important in evolution of oesophageal adenocarcinoma or the
development of treatment resistance.

Cellular proliferation
Abnormal proliferation and cell cycle intervals have long been known to be associated with
Barrett’s oesophagus, and increased proliferative indices appear to be a physiological
adaptation to reflux in some studies173. In a small study, expression of minichromosome
maintenance proteins was reported to be associated with an increased risk of progression to
oesophageal adenocarcinoma174. In a recent case-control study of 29 patients who progressed
to oesophageal adenocarcinoma and six who progressed to the surrogate endpoint high-grade
dysplasia, p53 expression (as assessed by immunohistochemisty) was associated with an
increased risk of progression (OR = 11.7; 95% CI= 1.93-71.4), but expression of cyclin D1,
COX-2 and beta-catenin was not175. However, an earlier nested case-control study of 12
individuals who progressed to oesophageal adenocarcinoma from a cohort of 307 persons with
Barrett’s oesophagus reported that p53 immunopositivity was not associated with a significant
risk of progression (OR = 2.99; 95%CI = 0.57 – 15.76) and that cyclin D1 expression was
associated with progression (OR = 6.85; 95% CI = 1.57-29.91)188. The reasons for the
discrepancies are unknown and population differences, sample size and, in the case of p53,
clone size, type of TP53 mutation and other somatic genetic changes in the evolving Barrett’s
segment may all contribute177,189.

A cohort study of 362 patients with mean follow up of 6.3 years and 1,752 person years follow
up evaluated diploid cell proliferation and cell cycle intervals fractions (G1, S, 4N) assessed
at the baseline endoscopy as predictors of progression to oesophageal adenocarcinoma172.
Higher total proliferative or G1 fractions were not associated with progression to oesophageal
adenocarcinoma; increased S phase fractions were marginally associated with progression
(p=0.03); and increased 4N fractions, which were highly associated with biallelic inactivation
of TP53, were quite significantly associated with progression (p<0.0001). Thus, some
proliferative changes appear to be adaptive changes to reflux, whereas others are the
consequence of inactivation of tumor suppressors. Those that are highly associated with
inactivation of TP53, such as 4N fractions, are strong and significant predictors of progression
to oesophageal adenocarcinoma.
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Oesophageal adenocarcinoma prevention and early detection
The challenge remains to reduce the incidence and mortality of oesophageal adenocarcinoma.
No prevention or early detection strategy has yet been conclusively proven to reduce
oesophageal adenocarcinoma or all cause mortality in individuals with Barrett’s oesophagus.
Current approaches to oesophageal adenocarcinoma control are based largely on the
symptomatic gastroesophageal reflux disease-Barrett’s oesophagus-oesophageal
adenocarcinoma paradigm, but emerging data challenge many underlying assumptions
(Figures 1 and 2).

The usefulness of endoscopic screening for Barrett’s oesophagus and oesophageal
adenocarcinoma has come into question190. In 2008, the American College of
Gastroenterology Guidelines withdrew recommendations for endoscopic screening of patients
with gastroesophageal reflux disease140, and an American Gastroenterological Association
Institute technical review concluded there was no direct evidence supporting endoscopic
screening for either Barrett’s oesophagus or oesophageal adenocarcinoma in individuals with
gastroesophageal reflux disease191. An alternative research approach would be to develop a
general population risk model taking advantage of existing data from consortia of observational
and intervention studies as suggested previously for oesophageal adenocarcinoma (Figure 3)
192. Such a model could be used to guide health policy and provide education on when to
consult a medical provider (book in Other Information). Other measures derived from consortia
data, such as H. pylori status, anthropometric measures, and family history, could be used to
develop a primary care risk model to facilitate risk stratification and guide referral (Figure 3).
Recent research has also identified promising leads for assessing biomarkers in the primary
care setting, including blood tests95 and non-endoscopic oesophageal cytology193, which could
include biomarkers identifying persons with Barrett’s oesophagus who are at high risk for
progression to oesophageal adenocarcinoma. High sensitivity and especially specificity of the
primary care risk model, perhaps as afforded by such biomarkers, will be key in developing
programs of prevention and early detection that have a significant impact on oesophageal
adenocarcinoma incidence and mortality.

There are data to support the effectiveness of endoscopic biopsy surveillance for early detection
of oesophageal adenocarcinoma. Several retrospective studies have compared oesophageal
adenocarcinomas arising in individuals who have been in a surveillance program for Barrett’s
oesophagus to those with newly diagnosed oesophageal adenocarcinomas who had not been
in endoscopic surveillance30,32,140,200-206. Oesophageal adenocarcinomas were detected at
earlier stages in the surveillance populations compared to those not in surveillance, and patients
in surveillance generally, but not always, also had significantly improved survival. However,
most of these studies had small sample sizes, some had short follow-up intervals and none were
randomized control trials.

The leading chemoprevention candidate for oesophageal adenocarcinoma is currently aspirin,
as protective associations have been reported consistently in population-based case-control and
cohort studies as well as in meta-analyses130,132-134,196. Inhibition of COX-2 has also been
reported to decrease the incidence of oesophageal adenocarcinoma in an animal model of
Barrett’s oesophagus207. In Ireland, a population-based study of persons with reflux
oesophagitis, Barrett’s oesophagus, oesophageal adenocarcinoma and population controls
observed that use of aspirin and other non steroidal anti-inflammatory drugs (NSAIDs) was
associated with a significantly reduced risk of Barrett’s oesophagus and oesophageal
adenocarcinoma131. Other population-based case-control studies have observed regular aspirin
or other NSAID use to be associated with similar reductions in oesophageal adenocarcinoma
incidence208,209. A prospective cohort study of individuals with Barrett’s oesophagus reported
that current users of aspirin and other NSAIDs had a reduced rate for progression to
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oesophageal adenocarcinoma compared with never users134. Current users also had reduced
progression to DNA content aneuploidy and tetraploidy compared with never users. Current
use of aspirin and other NSAIDs has also been associated with a marked risk reduction in
patients with multiple chromosome instability abnormalities at baseline with NSAID non-users
having a 79% 10-year cumulative incidence of oesophageal adenocarcinoma compared to 30%
for current NSAID users (p<0.001)130. It should be noted that one small trial of the COX-2
inhibitor, celecoxib, evaluated changes in a number of surrogate endpoints after 48 weeks of
treatment, initially reporting no difference in the proportion of biopsies with dysplasia, total
surface area of Barrett’s oesophagus, prostaglandin levels, cyclooxygenase-1/2 mRNA levls
or methylation of several tumor suppressor genes210. However, a subsequent analysis using
more detailed data available on a subset of the trial participants found a significant decrease
in total Barrett’s area among those taking celecoxib211. Taken together, these results suggest
that the anti-inflammatory effects of aspirin and other NSAIDs may exert both early and late
effects on neoplastic progression.

Proton pump inhibitors, a class of medications that substantially reduces gastric acid
production, came into widespread use in the early to mid-1990s for treatment of symptoms of
gastroesophageal reflux, among other indications. Several observational studies have
examined the association between use of these drugs and surrogate endpoints for oesophageal
adenocarcinoma, but with conflicting results. One recent retrospective cohort study examined
pharmacy records to estimate use of proton pump inhibitors in 344 individuals without any
dysplasia at initial endoscopy, reporting no association with the development of any dysplasia,
but a statistically significant reduction in risk of high grade dysplasia and/or oesophageal
adenocarcinoma212. A potential limitation of the study, beyond the use of non-cancer
endpoints, is the fact that more than 40% of the cohort were initially seen before proton pump
inhibitors were generally available (1982-1992); thus any difference in risk of progression over
time experienced by the cohort would bias the observed association with use of proton pump
inhibitors. Another study examined the occurrence of regression of Barrett’s oesophagus
among 188 persons taking proton pump inhibitors213. They found no evidence of reduction in
lenth of the Barrett’s segment after a mean of 5.1 years of treatment. As in vitro studies suggest
a possible antiproliferative effect of acid exposure in Barrett’s cell lines, mediated through p53,
clinical trials are clearly needed to address the long-term effects of proton pump inhibitors on
risk of oesophageal adenocarcinoma214.

A randomized trial of aspirin and two doses of proton pump inhibitors for Barrett’s oesophagus
without high-grade dysplasia is currently underway in the UK that includes all cause mortality
outcome and may shed additional light on the effectiveness of aspirin and proton pump
inhibitors as chemopreventive agents in persons with Barrett’s oesophagus without high-grade
dysplasia215. A randomized trial of high-risk individuals might also be considered in light of
evidence that aspirin and other NSAIDs also act at an advanced stage of neoplastic
progression130. Additional candidate preventive measures, including weight loss, increased
physical activity, smoking cessation, and increased intake of plant-based foods, may help
reduce the incidence of oesophageal adenocarcinoma in the general population, and in high-
risk persons defined by genetics, lifestyle or biomarkers. However, all remain to be
demonstrated as effective in a prevention trial.

More aggressive approaches to prevention, including treating patients with Barrett’s
oesophagus with photodynamic therapy (PDT) and radiofrequency ablation (RFA) have been
evaluated in multicenter randomized trials with incomplete blinding and surrogate dysplasia
primary endpoints148,149,198. The PDT trial reported a decreased incidence of oesophageal
adenocarcinoma as a secondary endpoint, with a non-significant increase in T2 and T3
oesophageal adenocarcinomas in the PDT arm, but patients who developed advanced cancers
were excluded as treatment failures and oesophageal adenocarcinoma mortality may have been

Reid et al. Page 13

Nat Rev Cancer. Author manuscript; available in PMC 2011 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



underestimated148,149. Adverse events, such as photosensitivity, strictures, nausea/vomiting
and pain, were also quite common (94%). The RFA trial had only surrogate primary and
secondary endpoints, small sample size and short post-ablation follow up of only a few months
in many patients. Although there was a decrease of borderline significance in the incidence of
oesophageal adenocarcinoma among patients with high-grade dysplasia in the treatment arm
during the short follow-up period (p=0.04), a trial with substantially larger sample size, longer
follow up and primary endpoints of oesophageal adenocarcinoma incidence and mortality is
needed to validate the effect. No patient with low-grade dysplasia developed oesophageal
adenocarcinoma, consistent with the known low risk, transient nature and lack of robust
reproducibility of this diagnosis (Box 2). In addition, approximately 10% of patients receiving
RFA for non-nodular dysplasia had adverse events requiring additional medical care including
upper gastrointestinal bleeding, chest pain requiring hospitalization, and strictures requiring
dilation, compared to none in the control arm. Endoscopic mucosal resection (EMR) is
frequently performed in the setting of nodular dysplasia for effective selection of patients for
endoscopic therapy prior to RFA, and the combination of EMR and RFA can result in a
constellation of adverse events affecting more than 20% of patients, including bleeding,
oesophageal laceration, oesophageal perforation, oesophageal stricture requiring dilatation,
fever and chest pain requiring hospitalization216. Although the length of follow up in the RFA
trial was insufficient to assess recurrence of Barrett’s oesophagus after therapy, the
neosquamous epithelium after ablation is prone to undergo the fate of its precursor, the native
oesophageal squamous epithelium, which lacks the mucosal defences of specialized intestinal
metaplasia (Figure 1) and recurrence of Barrett’s oesophagus has been reported in up to two-
thirds of patients217.

Conclusions and perspective
The incidence of oesophageal adenocarcinoma has risen more rapidly than any other cancer
in Western countries, and there is evidence for increasing incidence in regions of Asia where
the diagnosis was previously almost unknown. Current approaches for controlling oesophageal
adenocarcinoma incidence and mortality largely based on endoscopic investigation of
symptomatic gastroesophageal reflux disease and histology-guided surveillance and treatment
of persons with Barrett’s oesophagus have significant limitations (Figure 2, Box 2). New
oesophageal adenocarcinoma prevention strategies will be needed to overcome these
limitations and decrease the current high mortality associated with oesophageal
adenocarcinoma (Figure 3).

Advances have been made over the past decade in our understanding of host and environmental
factors associated with oesophageal adenocarcinoma, including the role of obesity as well as
the protective associations of aspirin and other NSAIDs. These and other factors can guide
development of population risk models192. Advances have also been made that can assist
development of primary care risk models, including family history, H. pylori testing, non-
endoscopic cytology, and blood tests. With rapid advances in DNA array technology, more
precise and higher resolution measurements of both the constitutive genome and the evolving
neoplastic genome are now possible with platforms that can be translated into the clinic setting.
However, the complexity of the process of neoplastic progression suggests that no single
measure will likely be sufficient for practical clinical oesophageal adenocarcinoma risk
stratification over a person’s lifetime (Box 3).

A significant remaining challenge is that no intervention, including lifestyle modification,
chemoprevention, or medical or surgical treatments, has yet been convincingly shown to reduce
oesophageal adenocarcinoma incidence and/or mortality. Consortia with multidisciplinary
expertise in population, genomic, computational, clinical and other sciences will be required
to effectively address these challenges with the goals of developing personal risk stratification
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based on interactions among environmental factors, the constitutive genome and the evolving
neoplastic genome and delivering personalized care in the form of interventions tailored to an
individual’s oesophageal adenocarcinoma risk.

At a glance

The paradigm that Barrett’s oesophagus develops as a consequence of symptomatic
gastroesophageal reflux disease and predisposes to oesophageal adenocarcinoma has
dominated clinical thought for more than three decades. However, current approaches for
controlling the incidence and mortality of oesophageal adenocarcinoma largely based on
endoscopic investigation of individuals with symptomatic gastroesophageal reflux disease,
and histology-guided surveillance and treatment of individuals with Barrett’s oesophagus
have significant limitations.

Barrett’s oesophagus rarely progresses to oesophageal adenocarcinoma, and a theory has
recently been proposed that mucosal defences in most patients with Barrett’s oesophagus
represent successful adaptations to the harsh intra-oesophageal environment of chronic
gastroesophageal reflux disease. Several mucosal defences that arise in Barrett’s
oesophagus have been identified, including secretion of bicarbonate and mucous,
expression of claudin-18 tight junctions, overexpression of defence and repair genes, and
resistance to prolonged and repeated acid exposure.

The incidence of oesophageal adenocarcinoma has been rising at an alarming rate in the
US, Western Europe, Australia, and in other developed countries over the past four decades,
and there is disquieting evidence of increased incidence of oesophageal adenocarcinoma in
some Asian populations.

Four risk factors, gastroesophageal reflux disease, obesity, cigarette smoking and poor diet,
account for the majority of oesophageal adenocarcinomas. Obesity may act at early and late
stages of progression and interact biologically with gastroesophageal reflux disease,
although a substantial proportion of the effect of obesity is likely to be through other
pathways.

Neoplastic progression to oesophageal adenocarcinoma is characterized by genomic
instability, including chromosome instability in most cases, disruption of regulatory
pathways and temporal evolution of clones that may be modulated by host and
environmental risk and protective factors. Proper measurement and quantification of the
complexity of these alterations creates opportunities and challenges for improved risk
stratification, prevention and early detection.

Aspirin and other non steroidal anti-inflammatory drugs have been consistently reported to
have a protective association with oesophageal adenocarcinoma in case-control and cohort
studies as well as meta-analyses; they may be useful in patients at both early and late stages
of progression.

No intervention, whether based on lifestyle modification, chemoprevention, or medical or
surgical treatments, has yet been convincingly demonstrated in a randomized trial to reduce
incidence and/or mortality of oesophageal adenocarcinoma; this remains a particularly
crucial area of unmet research need. New oesophageal adenocarcinoma prevention
strategies are proposed to overcome these limitations.
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Glossary terms

Oesophageal
specialized
intestinal
metaplasia

Specialized intestinal metaplasia is a differentiated epithelium with
crypt architecture that resembles the epithelium of the intestine, rather
than that of the oesophagus.

Person-years The denominator used in calculation of an incidence rate. It takes into
account both the number of persons being observed and the period of
observation. For example, 1,000 persons observed for 4 years would
yield 4,000 person-years.

Overdiagnosis Diagnosis of a disease or condition by screening that would not have
been detected during the lifespan of the individual without screening.

Period effects In statistical modeling of temporal trends of a disease, period effects
are attributed to causes linked to calendar year, as opposed to age or
year of birth.

p-trend A statistical test to determine whether an association between an
exposure and a disease is consistent with a monotonic relationship.

Gastric manometry A test to measure electrical and motor activity in the stomach.

Chromosomal
instability

An increased rate of gain or loss of whole chromosomes or large
fractions of chromosomes182.

Interstitial deletion A deletion of variable size that does not involve the terminal parts of
a chromosome.

Longitudinal
studies

Observational studies in which the disease (and perhaps exposure)
experience of a group of individuals is observed over multiple time
points.

Shannon Index combines both the number and relative abundance of clones. It is also
known as the information content or entropy and is calculated as

where pi is the relative frequency of clone i.
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Figure 1. Barrett’s specialized intestinal metaplasia and mucosal defence
(A) Specialized intestinal metaplasia is a well differentiated epithelium with crypt architecture
in which putative stem cells residing at the base give rise to proliferating transient amplifying
cells and differentiated cells that are sloughed into the lumen. This architecture has been
proposed to be tumor suppressive because mutations occurring in transient amplifying or
differentiated non-stem cells would be shed from the body before they could accumulate the
serial mutations leading to cancer10. (B) The intestinal metaplasia also secretes anions,
including bicarbonate, at levels more than fivefold greater than oesophageal squamous
epithelium11. (C) Specialized intestinal metaplasia also secretes thick adherent mucus not
present in normal squamous oesophageal cells12. Ultrastructural studies have shown that mucus
secretion can be disrupted in Barrett’s oesophagus at increased risk of progression to
oesophageal adenocarcinoma, including those with evidence of chromosomal instability and
aneuploidy16. (D) Barrett’s oesophagus has claudin-18 tight junctions that provide greater
protection against acid permeation than the claudin-18 deficient tight junctions of the
oesophageal squamous epithelium13. (E) Barrett’s oesophagus also overexpresses genes
involved in mucosal defence and repair14, and (F) Barrett’s oesophageal cells maintain
physiologic intracellular pH following prolonged and repeated reflux exposure15.
Abbreviation: Barrett’s oesophagus (BE).
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Figure 2. The paradox of Barrett’s oesophagus
Recent research has identified multiple factors that contribute to underdiagnosis of life
threatening early oesophageal adenocarcinoma (A-E) and overdiagnosis of benign Barrett’s
oesophagus that will follow an indolent course for the lifetime of the individual (F).
Abbreviations: Gastroesophageal reflux disease (GERD), Barrett’s oesophagus (BE),
oesophageal adenocarcinoma (EA).
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Figure 3. Prevention and control of oesophageal adenocarcinoma
A new strategy is proposed to build on research advances and overcome the limitations inherent
in current approaches to controlling EA incidence and mortality (see Figure 2 and Box 2). A
key goal is to cost-effectively classify persons into increasingly high-risk target populations
(left side of figure), based on comprehensive risk models using the increasing amount and
sophistication of information available in each setting. Each stratum then can be offered
programs of prevention and early detection appropriate for their absolute risk of developing
EA. A key to success of such an approach is substantial improvement of specificity at each
stratum, most likely aided by blood and tissue-based biomarkers of risk, which will allow
identification of the large fraction of persons who are unlikely to develop EA, allowing them
to avoid or minimize worrisome, costly and risky endoscopic surveillance and interventions.
At each level of risk, research needed to create effective prevention programs is listed on the
right side of the figure. As suggested by Khoury, et al.199, such translational research typically
involves developing and validating tests, risk models and prediction tools, and implementing
corresponding preventive interventions in the target population/setting, followed by an
evaluation component (not shown) to identify tools and interventions in need of improvement.
Abbreviations: EA, oesophageal adenocarcinoma; BE, Barrett’s oesophagus.
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