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Abstract
Purpose of Review—To highlight key studies providing rationale for and utility in targeting
glycolysis for the treatment of hematological malignancies.

Recent Findings—Several therapeutic strategies are capitalizing on the diagnostic utility of FDG-
PET that relies on increased glycolysis and glucose utilization in tumor cells. While aerobic
glycolysis was initially proposed by Warburg to be due to mitochondrial impairment, recent studies
have shown a preferential switch to glycolysis in tumor cells with functional mitochondria. Increased
glucose consumption can be advantageous for a tumor cell through stimulation of cellular
biosynthetic, energetic, and pro-survival pathways. We now have a greater appreciation for the
utilization of glucose in specific metabolic pathways that in some aspects can be complemented with
other nutrients such as glutamine. Targeting glucose consumption for the treatment of hematological
malignancies seems to be a promising field that will require characterization of tumor cell specific
targets to inhibit glucose uptake and/or glycolysis. It is imperative to further our understanding of
the tumor cell metabolome to target cellular bioenergetics in the treatment of cancer.

Summary—Targeting the glycolytic pathway for the treatment of hematological malignancies has
sufficient rationale given the utility of FDG-PET in diagnostic imaging. Further research is required
in developing tumor cell specific therapeutics.
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Introduction
Hematological malignancies account for approximately ten percent of diagnosed cancers (1).
These cancers of lymphoid and myeloid origin, while having diverse genomic profiles,
demonstrate deregulation of core molecular and biochemical pathways. In the nineties,
alkylating agents, antimetabolites, anthracyclines, topoisomerase inhibitors, anti-microtubule
drugs and steroids formed the spectrum of available therapeutics. The emergence of newer
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targeted therapeutics like imatinib, bortezomib, and rituximab coupled with advances in
autologous stem cell transplantation have tremendously increased the average lifespan of
patients living with these diseases. What continues to be a caveat in the treatment of all cancers
is the development of resistance and the emergence of a more aggressive cancer. Therefore,
the discovery of novel approaches targeting pathways that become increasingly important
during disease progression is necessary.

The Warburg Effect
Nearly 80 years, ago Otto Warburg made the seminal observation that tumor cells consume
surprisingly high amounts of glucose and use the less efficient glycolytic pathway (as depicted
in Figure 1) to generate adenosine triphosphate (ATP) even in the presence of oxygen (2).
Normal cells preferentially use the mitochondrial tricarboxylic acid (TCA) cycle for the
oxidative degradation of glucose and generation of ATP, resorting to glycolysis only under
conditions of oxygen deprivation such as under muscle fatigue. In the mid 1800s, Louis Pasteur
studied yeast fermentation processes and demonstrated the ability of oxygen to inhibit
glycolysis, facilitating mitochondrial oxidative degradation of glucose (3). While Warburg
believed the preferential use of glycolysis even in the presence of oxygen by tumor cells was
due to defects in the mitochondrial respiratory pathways required for oxidation of glucose,
recent studies have shown that tumor cells do contain functional mitochondria (4) yet still
produce excessive lactate, suggesting that the enhanced glycolytic flux may confer a growth
advantage.

In support of this notion, interference with lactate dehydrogenase activity (the enzyme
responsible for conversion of lactate to pyruvate) in tumor cells forces a reversion to glucose
catabolism via oxidative phosphorylation and results in reduced tumorigenicity (4). Forcing
tumor cells to revert to the use of oxidative metabolism by overexpression of mitochondrial
frataxin, a protein regulating mitochondrial iron transport and respiration (5), or with chemical
inhibitors like dichloroacetate, also reduces tumor growth in mouse xenograft studies (6).
Recently, requisite events preceding the switch from oxidative phosphorylation (OXPHOS) to
aerobic glycolysis in neoplastic cells have been shown to involve expression of the embryonic
form of pyruvate kinase, which appears to be required for tumor formation. This isoform is
uniquely regulated by tyrosine kinase activity and is thought to divert glucose to anabolic
processes, thus facilitating tumor growth (7). Several studies have demonstrated the role of
mitochondrial uncoupling proteins in limiting catabolism of pyruvate in the TCA cycle and
increasing fatty acid oxidation thereby promoting the Warburg effect (8,9). Progressive
oncogenic transformation by serial transduction of a set of viral oncogenes in an in vitro cell
line model of tumorigenesis was also found to correlate with a progressive switch to glycolysis
and increasing sensitivity to glycolytic pathway inhibitors (10). Several mechanisms have now
been shown to contribute to the Warburg effect i.e. mitochondrial defects, adaptation of the
cancer cells to hypoxic microenvironments, oncogenic signals and abnormal expression of
metabolic enzymes (11). The intimate association between transcriptional control of glycolytic
genes and the activity of classical oncogenes and tumor suppressors, including myc, p53, N
and K Ras and Hif1α further underscores the prevalence of de-regulated cellular metabolism
in cancer cells (12). These observations have stimulated a renewed interest in strategies that
target metabolism and cellular bioenergetics unique to cancer cells.

Benefits of enhanced glycolysis
A high glycolytic rate and enhanced glucose uptake can provide several benefits to a
proliferating tumor cell. Although OXPHOS generates more ATP per molecule of glucose,
glycolysis can provide ATP at a higher rate provided glucose supply is unlimited (13,14). In
addition glucose can provide intermediates such as ribose sugar for nucleotide synthesis and
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NADPH used in the reductive biosynthesis of lipids and fats through the oxidative pentose
phosphate pathway. In tumor cells much of the carbon that enters the TCA cycle is extruded
as citrate resulting in a truncated TCA cycle that is used for synthesis of lipids and fatty acids
(15). Glucose can contribute to maintaining mitochondrial integrity by promoting the
association of hexokinase II with the mitochondria, thereby preventing the release of
cytochrome C (16,17) as well as by regulating various effectors of cell death i.e. regulation of
pro-survival Mcl-1 (18), pro-apoptotic BAD (19), and pro-apoptotic Bax (20). Lactate, the by-
product of glycolysis, is thought to promote tumor invasion and metastasis via degradation of
extracellular matrices (21). In summary, glucose plays a critical role in sustaining tumor cell
growth, thus providing a rationale for the development of therapeutic strategies to preferentially
kill cancer cells by targeting glycolysis.

Hematopoietic malignancies and glucose utilization
While most of our knowledge on deregulated tumor cell metabolism comes from solid tumors,
large-scale gene-expression analyses reveal the selective upregulation of genes encoding
constituents of the glycolytic pathway in hematopoietic malignancies (22). Acute
lymphoblastic leukemia cells demonstrate upregulation of genes facilitating glycolysis such
as GLUT 1, GLUT4 and monocarboxylic acid transporter SLC16A2 (23). A study on the
molecular pathogenesis of chronic myelogenous leukemia showed that transformation of
normal hematopoietic cells with the BCR-ABL oncogene results in increased glucose
metabolism and intracellular ROS levels, which is likely mediated through AKT/mTOR
signaling (24). In certain leukemia cell lines, it has been demonstrated that co-culture with
mesenchymal stem cells induces the expression of uncoupling protein 2 which further
exacerbates the glycolytic phenotype of these cells (25). Probably the most crucial evidence
pointing towards the preferential utilization of glycolysis and excessive glucose consumption
in hematopoietic malignancies lies in the successful imaging of these tumors through 18fluoro-
deoxyglucose positron emission tomography (FDG-PET) (26,27). While proliferating primary
lymphocytes also utilize the glycolytic pathway to convert 90% of glucose derived carbon to
lactate (28,29), their tumor cell counterparts consume higher amounts of glucose for the very
same reasons outlined above. PET has primarily been used in the detection and diagnostic
staging of Hodgkin’s disease, aggressive non-Hodgkin’s lymphomas and in multiple myeloma
(26,30)

Irrespective of whether altered metabolism and increased glucose consumption in
hematopoietic malignancies are a cause or consequence of the disease, the fundamental role
of glucose in maintaining energy homeostasis and apoptotic resistance provides sufficient
rationale to explore inhibition of glucose utilization as a treatment strategy for these cancers.

Targeting Glycolysis in the Clinic
The wealth of compelling data pointing to glycolytic inhibition as a viable therapeutic strategy
in cancer combined with the relevance of the “Warburg effect” to myriad forms of malignancy
have led to the development of numerous compounds targeting this critical growth-related
pathway. In addition to the ability to increase tumor cell sensitivity to a variety of traditional
chemotherapeutics, interference with glucose metabolism has also recently been shown to
induce a cytoprotective effect in nonmalignant tissue (31). Achieving both these benefits
through the inclusion of anti-glycolytic agents in combinatorial drug regimens could result in
a significant widening of the therapeutic window associated with traditional
chemotherapeutics. Despite existing evidence for the glucose avidity of certain hematological
malignancies, nearly all glycolysis-targeted therapies have been tested exclusively in solid
tumors (32). Therefore, the following overview of the clinical development of three of the most
prominent glycolytic inhibitors (as depicted in Figure 1) will focus on the successes and failures
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in this class of neoplasms with the understanding that expansion to the treatment of
hematopoietic malignancies remains plausible, if not promising.

Lonidamine
Lonidamine, 1-(2,4-dichlorobenzyl)-1-H-indazole-3-carboxylic acid, is a glycolysis-targeting
compound which has exited clinical trials and gained approval in Europe for the treatment of
various solid tumors. Lonidamine acts as an inhibitor of hexokinase and exhibits selectivity
for the mitochondria-bound form of the enzyme, which appears to play a prominent role in
increasing glycolytic flux in both proliferating normal and neoplastic cells (33,34). Binding of
hexokinase to the outer mitochondrial membrane enhances the activity of the enzyme by
modifying its interaction with a necessary substrate in two ways: first, by ensuring a constant
source of ATP generated by the electron transport chain, and second, by increasing the affinity
of hexokinase for the ATP molecule (35). Three clinical trials have recently come to completion
utilizing lonidamine in combination with other chemotherapeutics, with the authors of these
studies reporting varying degrees of success. In a phase II clinical trial evaluating the
administration of both lonidamine and diazepam to patients with recurrent glioblastoma
multiforme, 50% of patients exhibited disease stabilization following treatment including one
case in which progression did not occur for 12 months (36). Authors of a phase II study designed
to examine the efficacy of paclitaxel, cisplatin, and lonidamine co-administration to patients
with advanced ovarian cancer observed an 80% overall response rate, including 40% complete
responses and 40% partial responses (37). However, this trial was designed as a single-arm,
uncontrolled study making the contribution of lonidamine to the overall success difficult to
ascertain. A larger phase III study completed in previously untreated breast cancer patients
revealed a 9% increase in overall response rate in patients receiving epirubicin plus lonidamine
in comparison with epriubicin alone which bordered on reaching statistical significance (38).
In comparing toxicity results between these three studies, all reported the occurrence of myalgia
and the phase III study effectively linked this occurrence to the addition of lonidamine to the
therapeutic regimen.

2-Deoxy-D-glucose
The most widely employed compound to investigate glycolytic inhibition in in vitro studies,
2-deoxy-D-glucose (2DG) has exhibited broad activity in tumor cell lines as a single agent and
in combination with other chemotherapeutics (24,39). This anti-metabolite with nearly
complete structural identity to glucose is taken up into cells via glucose transporters and
subsequently phosphorylated by hexokinase. However, as this molecule is not a recognizable
substrate for the next enzyme in the glycolytic pathway, phosphoglucose isomerase,
phosphorylated 2DG accumulates to high levels in the cytosol and inhibits hexokinase activity.
Unlike lonidamine, this drug does not appear to display selectivity for different hexokinase
isoforms and derives its selectivity (however minimal) for tumors simply through increased
glucose consumption rates. According to the NIH website clinicaltrials.gov, there are currently
three clinical trials utilizing this drug which are ongoing or have recently reached completion.
Authors of a phase I trial conducted by Threshold Pharmaceuticals employing 2DG in
combination with docetaxel in patients with advanced solid tumors observed disease
stabilization in 6 of 18 evaluable patients and one partial response (40). However, grade 3
hyperglycemia limited dose escalation above 88 mg/kg in certain patients. This observation is
particularly concerning given previous animal studies in which much higher dosages of 500–
2000 mg/kg were required to achieve tumor growth inhibition in xenograft tumors in immuno-
compromised mice (41). This compound has also been shown to stimulate Akt phosphorylation
in vitro and antagonize the anti-tumor activity of a radio-immunotherapeutic in vivo, effects
which further degrade the therapeutic value of 2DG (42,43). It was recently announced that
Threshold Pharmaceuticals is no longer pursuing clinical development of this compound.
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Dichloroacetate
An alternative strategy to blocking flux through the glycolytic pathway by directly targeting
individual constituent enzymes consists of forcing the entry of pyruvate into the mitochondria
for oxidative catabolism in the TCA cycle, thus antagonizing rapid conversion to lactate in the
cytosol. Pyruvate dehydrogenase is a mitochondrial enzyme which converts pyruvate to acetyl
CoA. The activity of this enzyme is negatively regulated by pyruvate dehydrogenase kinase
(PDK), the expression of which is cooperatively induced by HIF1α and c-myc (44).
Dichloroacetate (DCA) is a small molecule inhibitor of PDK which can effectively induce a
metabolic switch from aerobic glycolysis to glucose oxidation, decreasing mitochondrial
hyperpolarization and rendering tumor cells more sensitive to apoptosis induction (6). This
compound has previously been used in the clinic for the treatment of lactic acidosis and exhibits
an appealing toxicity profile when dosed chronically, making it an ideal candidate for cancer
treatment (45). Currently, a phase I trial in Canada is accepting patients with recurrent or
metastatic solid tumors.

Future Directions for Anti-Glycolytic Therapies
While many compounds targeting glycolysis have generated much enthusiasm due to in
vitro potency, widespread successes have not yet been realized in in vivo settings. A recurring
theme in clinical trials investigating compounds within this class of drugs is the high prevalence
of dose-limiting toxicities, presumably due to on-target effects in nonmalignant tissue.
Therefore, it appears that a significant hurdle that must be overcome in targeting tumor cell
metabolism is increasing the selectivity of these pharmaceuticals for malignant tissue versus
normal. The fact that lonidamine displays an inherent selectivity for tumor (or at least actively
proliferating) cells seems to at least partially account for its success in the clinical arena.
Identification of tumor-specific metabolic alterations should provide a therapeutic window
wide enough to substantially inhibit glucose utilization by malignant cells without impairing
the metabolism of normal cells. The monocarboxylate transporters, which function to export
cytoplasmic lactate, have generated interest recently as potential targets due to their relatively
selective upregulation in a variety of tumors (46,47). Additionally, our lab has shown that the
purine nucleoside analogue 8-amino-adenosine (8-NH2-Ado) is capable of interfering with
glucose transporter (GLUT) localization to the plasma membrane in myeloma cells,
representing yet another level at which tumor selectivity may be achieved (Submitted paper:
Shanmugam M, McBrayer S et al. unpublished data). With current drug development efforts
aimed at improving selectivity, glycolysis inhibition as a strategy for cancer treatment may
experience a broader utility in the future.

In addition to identifying tumor-specific glycolytic targets, it will also be imperative to identify
new means of capitalizing on the metabolic stress induced by this therapeutic approach. A
critical cellular process that is initiated to counteract metabolic stress and could provide
resistance to glycolysis inhibition in vivo is autophagy. Sequestration of intracellular organelles
and their subsequent breakdown through the autophagic pathway provides metabolic substrates
such as amino acids which can be used as a reserve fuel source for tumor cells (48,49). We
have demonstrated in our studies that myeloma cells can resist apoptosis following 8-NH2-
Ado-induced glucose deprivation through induction of autophagy (Submitted paper:
Shanmugam M, McBrayer S et al. unpublished data). Consistent with this observation, co-
treatment of cells with inhibitors of this pathway results in a synergistic apoptotic response.
Therefore, evaluating the relationship between various glycolytic inhibitors and autophagy
inhibitors could produce marked increases in therapeutic efficacy due to the potentiation of
cytostatic effects and conversion to cytotoxic outcomes.
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Conclusions
While considering targeting the glycolytic pathway in the treatment of cancer one must take
into account compensatory contributions of other cellular metabolites. This is particularly
important given the fact that specific TCA cycle intermediates generated by glucose
metabolism can also be generated by glutaminolysis. Therapeutics targeting the glycolytic
pathway have been shown to synergize with specific therapeutics (41). Further characterization
of other classes of drugs that may synergize with the inhibition of glycolysis will aid in
enhancing sensitivity to current therapeutics. Targeting the very basis for clinical imaging of
cancer (i.e. glucose uptake) can provide new therapeutic options that may be less prone to the
development of resistance.
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Figure 1. Metabolic alterations promoting tumor cell aerobic glycolysis and associated therapeutic
targets
Tumor cells increase glucose consumption through enhanced expression and activity of glucose
transporters and hexokinase. Hexokinase carries out the initial phosphorylation of glucose,
which is required to retain glucose molecules within the cell. In normal cells, glucose is
converted to pyruvate in a series of reactions in the cytosol. Pyruvate, the end product of these
reactions, enters the mitochondria and is converted to acetyl-CoA, which is used in the
tricarboxylic acid cycle (TCA) cycle to drive ATP synthesis via oxidative phosphorylation. In
tumor cells, glucose-derived pyruvate is preferentially converted to lactate in the cytosol and
subsequently extruded from the cell through monocarboxylate transporters. Pyruvate
molecules which do enter the mitochondria in this context are used largely to fuel a truncated
TCA cycle wherein citrate is siphoned out of the mitochondria to stimulate fatty acid
biosynthesis. Glutamine can then be used to replenish subsequent metabolites in the TCA cycle
through conversion to α-ketoglutarate. Specific enzyme targets for lonidamine, 2-
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deoxyglucose (2-DG), 8-amino-adenosine, dichloroacetate (DCA), and α-cyano-4-
hydroxycinnamate are indicated. Bold arrows indicate enhanced activity in tumor cells.
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