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INTRODUCTION
Despite decades of research, the biological pathways that initiate rheumatoid arthritis (RA) are
unknown (1,2). Without knowing the specific pathways that lead to RA, it is very difficult to
develop novel therapies. Because genetic mutations are inherited prior to disease onset, human
genetics provides prima facie evidence that a pathway is important in pathogenesis. Moreover,
because human genetic strategies can be applied genome-wide, they offer an unbiased search
of the human genome for insight into RA pathogenesis.

Since the 1970’s, more than 20 RA risk loci have been identified (Table 1). The first locus
associated with RA risk was the major histocompatibility (MHC) locus, identified by mixed
lymphocyte cultures between RA patients and controls (3,4). Subsequently, Peter Gregersen
and colleagues advanced the hypothesis that the multiple RA risk alleles within the HLA-
DRB1 gene share a conserved amino acid sequence (5). This is now widely known as the
“shared epitope” hypothesis, and the risk alleles are known as shared epitope (SE) alleles (6).
With the sequence of the human genome (7) and improved understanding of human genetic
diversity (8) came many additional genetic discoveries (9). Between 2003 and 2005, common
alleles within the PADI4, PTPN22 and CTLA4 genes were found to be reproducibly associated
with risk of RA (10–12). More recently, genome-wide association studies (GWAS) – which
in the contemporary form test hundreds of thousands of single nucleotide polymorphisms
(SNPs) across the genome – have been systematically performed in large case-control
collections. These GWAS have identified more than 20 common alleles (where an allele is one
of the two base pairs of a SNP) that confer a 10–20% increase in disease risk per copy of the
risk allele (13–23). Collectively, these risk alleles explain approximately 15–20% of the overall
disease burden (15,16).

The purpose of this review is to place these genetic discoveries in the context of current and
future therapeutic strategies for patients with RA. More specifically, our review will focus on
(1) a brief overview of genetic studies, (2) human genetics as an approach to identify the
Achilles’ heel of disease pathways, (3) humans as the model organism for functional studies
of human mutations, (4) pharmacogenetic studies to gain insight into the mechanism of action
of drugs, and (5) next-generation patient registries to enable large-scale genotype-phenotype
studies.
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Brief overview of human genetics: from SNP to causal allele
There are approximately 10 million common SNPs in the human genome (8). A fundamental
challenge in human genetics is to systematically test each of these 10 million common SNPs
for its role in disease. Advances in genomic technology have made this feasible (24).
Contemporary GWAS test several hundred thousand SNPs across the entire human genome,
most of which are common (minor allele frequency >5%) in the general, healthy population.
To test the remaining >9 million common SNPs, the GWAS approach relies on the correlation
structure of nearby SNPs (24). That is, 9 out of 10 SNPs are highly correlated, and testing 1
SNP serves to tag the remaining 9 nearby SNPs. This concept is known as linkage
disequilibrium (LD).

But the properties of LD that make it powerful for gene mapping also underscore the challenges
that remain once a SNP is associated with disease risk: it is unknown if the SNP genotyped
(and associated with risk in the genetic study) is the actual causal allele, or whether the
genotyped/associated SNP is simply in LD with the causal allele. (Here we define causal allele
as the single genetic mutation that is responsible for disrupting gene function and giving rise
to the phenotype of interest.) Given the sheer number of common alleles, the genotyped/
associated SNP is most likely just a proxy for the actual causal allele. An example of the
correlation structure of an RA risk locus is shown in Figure 1 (14).

It should also be noted that there is often more than one gene in the region of LD that harbors
the genotyped/associated SNP, which makes it difficult to pinpoint definitively which gene is
the causal gene. On the other hand, there may be no nearby gene in the region of LD. Here, we
define causal gene as the single gene that is altered by a mutation to give rise to the phenotype
of interest (e.g., risk of RA). For convenience, the best biological gene, based on its known
function, is often nominated as the “causal gene”. Figure 1 illustrates that there are three genes
in a region of LD at the locus on chromosome 9, two of which are very strong biological
candidate genes: TRAF1 (encoding tumor necrosis factor receptor–associated factor 1) and
C5 (encoding complement component 5). Thus, we refer to this as the TRAF1-C5 RA risk
locus.

For most of the >20 RA risk alleles shown in Table 1, the causal mutation and the causal gene
have yet to be identified. Outside of the MHC, the one exception is PTPN22, where the
associated mutation alters protein structure and function (25,26). Although it may be reasonable
to nominate the most likely biological candidate gene to be the causal gene, direct evidence is
not yet available.

There are at least two reasons why it is important to identify (or “fine-map”) the causal
mutation. First, knowing the causal mutation will help guide functional studies. For drug
discovery, it is crucial to understand if the risk allele is a gain-of-function or loss-of-function
allele. Second, knowing the causal allele provides more accurate estimates of risk, that could
facilitate disease prediction. If the associated SNP is highly but not perfectly correlated with
the causal allele, then risk estimates will be deflated.

A limitation of contemporary GWAS is that they only test common SNPs. For every common
allele (defined as having an allele frequency of >5% in the general population), there is at least
one – and likely many more – rare alleles (frequency <5%) (8). In addition, there are other
forms of genetic variation besides SNPs, including copy number variants (where a gene may
be duplicated or deleted). Next-generation sequencing and genotyping technologies will be
required to identify and test rare variants and structural variants.
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Drug discovery: risk alleles identify the Achilles’ heel of biological pathways
There are several effective drugs used to treat patients with active RA. Nonetheless, there are
still needs that are unmet in the current pharmacological armamentarium. First, no single drug
is effective in all patients – and most drugs induce disease remission in only one-third of
patients. As a consequence, identifying the right medication for each patient continues to be a
painstaking exercise in trial and error. Because irreversible erosive damage occurs early in the
disease course, it is important to start RA patients on the right drug at disease onset to minimize
long-term disability. Second, even for those drugs that are effective, many have unacceptable
side effects (e.g., increased susceptibility to potentially life-threatening infections). Third,
many of the drugs are extremely expensive, which places a large burden on families and the
health care system. And finally, there is no drug that prevents or cures RA. Such a drug would
radically change clinical practice.

How might human genetics help fill these unmet needs?—An important concept is
human mutations that confer a modest increase in the risk of disease pinpoint critical
components of disease pathways. To understand why, first consider two extreme examples of
human mutations and their effect on biological pathways. If a gene is absolutely essential to a
pathway, then a human mutation that alters gene function will likely be highly deleterious to
the person carrying the mutation. Consequently, such a mutation is subject to negative
evolutionary selection. In contrast, if a gene is not important at all to a pathway, then a human
mutation will not exert any meaningful phenotype. Now consider the desired target of a drug.
If a drug targets a pathway that is essential to survival, then the drug will likely have untoward
side effects. And if a drug targets a pathway that is inconsequential, it will have no biological
effect. Finally, consider common genetic variants that predispose to disease. They must affect
the Achilles’ heel of a critical disease pathway since they predispose to disease, but at the same
time these mutations have survived negative selection, and therefore have modest effects.
These mutations are not so severe that they are highly deleterious to the individual who carries
them, but they are also within a gene that is important to a disease-relevant biological pathway.

Effectively, human evolution has done the natural experiment, by introducing 10 million
common mutations throughout the genome in an unbiased manner. It is up to geneticists to
determine which of those 10 million common mutations are relevant to disease.

There is precedent for the concept that common alleles with a modest effect on disease risk
identify effective drug targets. In each example below, the drug was developed before the
genetic association was established. Still, these examples suggest that other human genetic
mutations might identify the Achilles’ heel of a biological pathway, and that in turn these
genetic mutations identify effective drug targets.

In RA, a common allele within the CTLA4 gene is known to increase risk of RA by ~15% per
copy of the risk allele (which corresponds to an odds ratio (OR) of ~1.15) (12,23). Abatacept,
which is a fusion protein composed of the extracellular domain of CTLA4 and an
immunoglobulin domain, is very effective in treating RA patients with active disease (27).
Following T-cell activation, CTLA4 expression is upregulated. The protein product traffics to
the T-cell membrane, where it binds and inhibits co-stimulatory molecules CD80–CD86
(which are also known as B7 proteins) on the surface of antigen presenting cells (APCs) (28).
Abatacept is thought to exert its effect through a high-affinity binding site for B7 molecules
on the surface of APCs, thereby inhibiting the co-stimulatory signal to T-cells (29). Alternative
splicing produces two CTLA4 protein isoforms: a full-length protein and a shorter, soluble
isoform that is secreted from activated T-cells. Functional studies demonstrate that the
CTLA4 risk allele results in lower mRNA levels of the soluble isoform of CTLA4 (30).
Interestingly, common alleles in the co-stimulatory genes CD28 and CD40 have also been
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implicated in RA pathogenesis, indicating that these pathways are critical in RA pathogenesis
(16,31).

There are also examples in non-autoimmune diseases in which common alleles of modest effect
on phenotype identify effective drug targets. A common allele in the HMGCoA reductase gene
is associated with LDL cholesterol levels in the general population (32). Statins are highly
effective cholesterol-lowering drugs that inhibit this enzyme, which is the rate-limiting enzyme
of the mevalonate pathway of cholesterol synthesis. A common allele of PPARG is associated
with risk of type 2 diabetes (T2D) (33).

Thiazolidinediones, a class of drugs used to treat T2D, act by binding to the PPARG gene
product inside the cell nucleus. Another class of drugs to treat T2D, sulfonylureas, bind to an
ATP-dependent potassium channel on the cell membrane of pancreatic beta cells. A common
allele in the gene that codes for this receptor, KCNJ11, is associated with risk of T2D (34).
Common alleles in genes associated with bone mineral density (RANKL and OPG) identify
drugs (e.g., denosumab) that show promise in clinical trials (35–37).

Genotype to function: humans as the model organism for translational immunology
In order to turn genetic studies into effective medications, a major challenge is to take the
expanding list of RA risk alleles and understand the effect on gene function. For example, it
is important to understand whether the risk allele increases or decreases gene function (i.e.,
whether it is a gain-of-function or loss-of-function) and to understand the most relevant cell
type. Armed with this insight, it should be possible to target novel therapies to clinically
relevant biological pathways.

In order to go from genotype to function, there is a growing awareness of the importance of
conducting experiments in human tissues of immunological relevance (38,39). Essentially, a
goal should be to use humans as the model organism for translational immunology. To do this,
novel resources are becoming available.

Biorepositories have now been established to study the functional consequences of common
genetic mutations in blood cells from healthy control subjects (40). Human immune cells are
easily accessible through a simple blood draw. These immune cells are of direct relevance to
pathogenesis of RA and other autoimmune diseases (1,41). Human immune cells derived from
healthy control subjects have been used successfully to gain insight into function of common
mutations at several autoimmune genes: the missense mutation at PTPN22 has been shown to
alter secretion of IL2 from T-cells stimulated via the T-cell receptor (25); a common multiple
sclerosis risk mutation at CD58 can explain ~40% of the variance of CD58 cell surface
expression on peripheral blood mononuclear cells (PBMCs) (42); and a common type 1
diabetes mutation in IL2RA alters IL2RA cell surface expression on CD4+ memory T-cells
(43).

Another novel approach is to generate induced pluripotent stem (iPS) cells from patients who
carry specific genetic mutations. First described in 2006 (44), several studies have shown that
iPS cells can be derived from patients with human mutations (45). Protocols have been
developed to differentiate human embryonic stem cells into B-cells, T-cells, natural killer (NK)
cells, and other immune lineages (46–53). Whether iPS cells derived from patients with RA
will be useful for functional studies of human genetic mutations is a hypothesis that needs to
be rigorously tested.

Pharmacogenetics: insight into mechanisms of treatment failure
While the general mechanism of action of many RA drugs is known – for example, drugs that
target the inflammatory cytokine tumor necrosis factor-alpha (TNF) – it is still not known why
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some patients respond and other patients do not. Given that most RA drugs induce remission
in only one-third of patients, it would be very useful to identify genetic predictors of treatment
response. Moreover, the exact mechanisms of action of other drugs, including the most
commonly prescribed RA drug, methotrexate (MTX), are not entirely clear. Once these
mechanisms are illuminated, it should be possible to develop more effective drugs.

The field of pharmacogenetics is at a much earlier state than the field of genetic predictors of
disease risk (54). In short, there is no reproducible genetic variant that is associated with
response to any drugs used to treat RA. Several studies have identified alleles in the enzyme
5,10- methylenetetrahydrofolate reductase (MTHFR) that reduce enzyme activities (C677T
and A1298C) and that have suggestive associations with efficacy or toxicity of MTX. However,
these studies have been small and have not achieved overwhelming evidence of statistical
significance (55–61). Several studies have identified alleles associated with response to anti-
TNF therapy (reviewed in (54)). As with the MTX studies, these studies have identified only
suggestive, but no confirmed associations.

Although it might be possible to use human genetics to help target the right therapy to the right
patient – so-called personalized medicine – the predictive value of common alleles of modest
effect sizes are likely to have little discriminating value (62). As an example, a composite
genetic risk score (GRS) based on all known RA susceptibility alleles is able to risk-stratify
patients across a 10-fold range. However, a GRS has little clinical application in patients
without symptoms (as there are no preventative measures). Once alleles that influence
treatment response are identified, it will be important to determine whether or not they add to
predictive models of treatment response.

Next-generation patient registries: enabling large-scale genotype-phenotype studies
Currently, the main bottleneck in pharmacogenetic and other genotype-phenotype studies is
access to large sample collections that have both DNA and detailed clinical data. The largest
pharmacogenetic studies to date, conducted by the Biologics in Rheumatoid Arthritis Genetics
and Genomics Study Syndicate (BRAGGSS) based in the United Kingdom, have analyzed just
over 1,000 RA patients (63–65). Most genetic studies of patient outcomes (e.g., cardiovascular
events, infections, malignancy) are conducted on fewer patients. In contrast, the largest genetic
association studies of RA susceptibility have been conducted in >20,000 combined case-
control samples (16).

Traditional patient registries and clinical trials – the workhorse for sample collection over the
past decades – are unlikely to achieve the size required to obtain thousands of patient samples
with DNA and detailed clinical data. Novel approaches – next-generation registries – will be
required to break this bottleneck. In theory, it should be possible to collect data as part of routine
patient care. Medical informatic tools are available to collect basic clinical information (e.g.,
components of the DAS28, medications, adverse events) every time a physician sees a patient
(66,67). Increased utilization of electronic medical records (EMRs) (68) and novel approaches
to mine clinical data from EMRs (69) represents one exciting approach to expand sample
collections.

CONCLUSIONS
The greatest impact of human genetics will likely be insight into the Achilles’ heel of biological
pathways that lead to RA and a better understanding of mechanism of action of drugs to treat
RA. For drug discovery, it will be important to understand the functional relevance of the risk
alleles identified to date (and the many alleles that remain to be discovered). This will require
using humans as a model organism for translational immunology. For pharmacogenetic studies,
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novel resources are required to build large patient registries with detailed clinical data linked
with biospecimens for genomic studies.

Panel A shows results for SNPs genotyped across 1 Mb as part of the original genome-wide
association scan in samples from 1522 case subjects with anti–CCP-positive rheumatoid
arthritis and 1850 control subjects. Each diamond indicates a genotyped SNP; the color of each
diamond is based on the correlation coefficient (r2) with the CEU HapMap with the most
significant SNP in our study (rs3761847). The blue diamond indicates the P value for all
samples in our study (the original scan plus replication samples), as determined by the
Cochran–Mantel–Haenszel method in both NARAC and EIRA samples. The recombination
rate (in centimorgans per megabase) with the CEU HapMap is shown in light blue along the
x axis; the red arrow indicates the block of linkage disequilibrium shown in Panel B. The blue
arrows indicate gene location. Panel B shows the linkage-disequilibrium (LD) structure across
200 kb of the TRAF1–C5 locus, based on pairwise r2 with the CEU HapMap. The intron–exon
structure of each gene is at the top of the figure. Putative functional SNPs in linkage
disequilibrium with either rs3761847 or rs2900180 are indicated by hatched bars, in which red
indicates r2>0.80 and pink indicates r2=0.20 to 0.80; the specific SNPs, frequency, pairwise
r2 with the CEU HapMap, and the putative annotated function are listed at the bottom of the
figure. CpG denotes cytidine and guanosine joined by a phosphodiester bond.
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Figure 1.
Case–Control Association Results and Linkage Disequilibrium (LD) Structure in the TRAF1–
C5 Locus.
Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, et al. TRAF1-C5 as a
Risk Locus for Rheumatoid Arthritis -- A Genomewide Study. N Engl J Med 2007; 357(12):
1199–209.
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