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Synopsis
Interaction with the immune system is one of the most well-established non-classical effects of
vitamin D. For many years this was considered to be a manifestation of granulomatous diseases such
sarcoidosis, where synthesis of active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is known to be
dysregulated. However, recent reports have supported a role for 1,25(OH)2D3 in mediating normal
function of both the innate and adaptive immune systems. Crucially, these effects appear to be
mediated via localized autocrine or paracrine synthesis of 1,25(OH)2D3 from precursor 25-
hydroxyvitamin D3 (25OHD3), the main circulating metabolite of vitamin D. As such, the ability of
vitamin D to influence normal human immunity will be highly dependent on the vitamin D status of
individuals, and may lead to aberrant response to infection or autoimmunity in those who are vitamin
D-insufficient. The potential health significance of this has been underlined by increasing awareness
of impaired vitamin D status in populations across the globe. The following review article will
describe in more detail some of the recent developments with respect to vitamin D and the immune
system, together with possible clinical implications.
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Introduction
Historical perspective

Non-classical actions of vitamin D were first recognized thirty years ago when receptors for
active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) were detected in various neoplastic cells lines
23,59. Other studies immediately following this showed that binding of 1,25(OH)2D3 to the
vitamin D receptor (VDR) promoted antiproliferative and prodifferentiation responses in
cancer cells 1,18, highlighting an entirely new facet of vitamin D action. The spectrum of non-
classical responses to vitamin D was then extended to include actions on cells from the immune
system 2,13. This interaction was further endorsed by the observation that some patients with
the granulomatous disease sarcoidosis present with elevated circulating levels of 1,25
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(OH)2D3 and associated hypercalcemia 11,72. In these patients the high serum 1,25(OH)2D3 is
due to increased activity of the enzyme 25-hydroxyvitamin D-1α-hydrooxylase (1α-
hydroxylase). However, in contrast to normal subjects where 1α-hydroxylase is classically
localized in the kidney, the increased synthesis of 1,25(OH)2D3 in patients with sarcoidosis
involves 1α-hydroxylase activity in disease-associated macrophages 4,6,9. Thus, it was
concluded that the immune system had the potential to both synthesize 1,25(OH)2D3 and elicit
autocrine or paracrine responses from immune cells expressing the vitamin D receptor 38.

Despite these early advances, the precise nature of the interaction between vitamin D and the
immune system remained unresolved for many years. Some pieces of the puzzle were easier
to complete than others. For example, it became evident that dysregulation of 1,25(OH)2D3
was not restricted to sarcoidosis but was a common feature of many granulomatous disorders
and some forms of cancer 39. Likewise, at least in vitro, it was possible to potently regulate a
range of immune cell functions using 1,25(OH)2D3 or its synthetic analogs 35,97. However,
the key remaining question concerned whether or not vitamin D could act as a physiological
regulator of normal immune responses. Answers to this question began to appear about five
years ago and new information on the fundamental nature of vitamin D sufficiency/
insufficiency has provided a fresh perspective on non-classical actions of vitamin D. As a
consequence, there is now a much broader acceptance that vitamin D plays an active role in
regulating specific facets of human immunity. This will be detailed in the following review
together with discussion on the possible impact of vitamin D insufficiency and vitamin D
supplementation on normal immune function and human disease.

Vitamin D and innate immunity
Macrophages, vitamin D and cathelicidin

Consistent with the earlier seminal observations of extra-renal 1α-hydroxylase activity in
patients with sarcoidosis, the effects of vitamin D on macrophage function have been central
to many of the new observations implicating vitamin D in the regulation of immune responses.
In common with natural killer cells (NK) and cytotoxic T-lymphocytes (cytotoxic T-cells),
macrophages and their monocyte precursors play a central role in initial non-specific immune
responses to pathogenic organisms or tissue damage – so called cell-mediated immunity. Their
role is to phagocytose pathogens or cell debris and then eliminate or assimilate the resulting
waste material. In addition, macrophages can interface with the adaptive immune system by
utilizing phagocytic material for antigen presentation to T-lymphocytes (T-cells).

For many years, the key action of vitamin D on macrophages was thought to be its ability to
stimulate differentiation of precursor monocytes to more mature phagocytic macrophages 1,
2,45,93. This concept was supported by observations showing differential expression of VDR
and 1α-hydroxylase during the differentiation of human monocytes macrophages 49. The latter
report also emphasized early studies showing that normal human macrophages were able to
synthesize 1,25(OH)2D3 when stimulated with interferon gamma (IFNγ) 46. Localized
activation of vitamin D, coupled with expression of endogenous VDR was strongly suggestive
of an autocrine or intracrine system for vitamin D action in normal monocytes/macrophages.

However, confirmation of such a mechanism was only obtained in 2006 when Robert Modlin
and colleagues carried out DNA array analyses to define innate immunity genes that were
specifically modulated in monocytes by Mycobacterium tuberculosis (M. tb). In a seminal
investigation both the VDR and the gene for 1α-hydroxylase (CYP27B1) were shown to be
induced following activation of the principal pathogen recognition receptor for M. tb, toll-like
receptor 2/1 (TLR2/1) 56. Subsequent experiments confirmed that precursor 25OHD3 was able
to induce intracrine VDR responses in monocytes that had been treated with a TLR2/1 activator.
In particular, the TLR2/1–25OHD3 combination stimulated expression of the antibacterial
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protein cathelicidin, so that vitamin D was able to promote monocyte killing of M. tb 56.
Notably, the ability to promote expression of the antibacterial protein following a TLR2/1
challenge was directly influenced by the 25OHD3 status of the donor serum used for monocyte
culture 56. More recently, we have shown that vitamin D supplementation in vivo can also
enhance TLR2/1-induced cathelicidin expression 5. Cathelicidin was identified several years
ago as a target for transcriptional regulation by 1,25(OH)2D3-liganded VDR, in that its gene
promoter contains a functional vitamin D response element (VDRE) 30,100. Interestingly, this
VDRE occurs within a small interchangeable nuclear element (SINE) sequence which only
appears to be present in the cathelicidin gene promoter of higher primates, suggesting that
vitamin D regulation of this facet of innate immunity is a relatively recent evolutionary
development 30.

Recent reports have underlined the importance of cathelicidin as a target for vitamin D but also
suggest that this mechanism may be more complex than initially thought. As yet, the precise
signal system by which TLR activation induces expression of VDR and 1α-hydroxylase
remains unclear. Promoter-reporter analysis of the events involved in transcriptional regulation
of CYP27B1 suggest that TLR4-mediated induction of the enzyme involves JAK-STAT, MAP
kinase and nuclear factor kappB (NF-κB) pathways, and that these synergize with IFNγ-
mediated induction of CYP27B192. However, other studies have proposed that TLR2/1
induction of 1α-hydroxylase occurs indirectly as a consequence of TLR2/1 induced
interleukin-15 (IL-15) which is a potent inducer of CYP27B1 and 1α-hydroxylase activity
50. In a similar fashion, interleukin 17A (IL-17A) has been shown to enhance 1,25(OH)2D3-
mediated induction of cathelicidin, although this response does not appear to involve
transcriptional regulation of 1α-hydroxylase or increased VDR sensitivity 77. One pathway
that has been poorly studied in this regard concerns the enzyme 24-hydroxylase, which is
conventionally considered to function by inactivating 1,25(OH)2D3. The gene for 24-
hydroxylase (CYP24) is potently induced by 25OHD3 following TLR2/1 activation of
monocytes 56 but, as yet, it is unclear whether this involves the non-metabolic splice variant
form of CYP24 known to be expressed by macrophages 82.

Regulation of the antibacterial protein by 1,25(OH)2D3 has been described for a wide variety
of cell types other than macrophages, including keratinocytes 84,85,100, lung epithelial cells
104, myeloid cell lines 30,85,100 and placental trophoblasts 54. In some cases 54,84, this appears
to involve an intracrine response similar to that reported for monocytes. However, the
mechanisms controlling local synthesis of 1,25(OH)2D3 in these cells vary considerably. In
keratinocytes, low baseline expression of 1α-hydroxylase is enhanced following epidermal
wounding by transforming growth factor beta (TGFβ) 84. The resulting rise in 1,25(OH)2D3
concentrations upregulates expression of TLR2 and TLR4 by keratinocytes, thereby priming
these cells for further innate immune responses to pathogens or tissue damage 84. By contrast,
in trophoblasts, induction of cathelicidin and subsequent bacterial killing by 25OHD3 appears
to be due to constitutive 1α-hydroxylase activity, which is not further enhanced by TLR
activation 54. The latter may be due to the rapid non-immune induction of 1α-hydroxylase and
VDR which occurs within the placenta during early gestation 24.

Although most of the studies of vitamin D-mediated innate immunity have focused on the role
of 1,25(OH)2D3-bound VDR as a pivotal transcriptional regulator of cathelicidin, it is also
important to recognize that other ligands may interact with the VDR 58. For example, recent
studies of bilary epithelial cells have shown that cathelicidin expression can be induced in a
VDR-dependent fashion by bile salts 19. This provides a mechanism for maintaining bilary
sterility, although additive effects of 1,25(OH)2D3 also highlight a novel therapeutic
application for vitamin D in the treatment of primary bilary cirrhosis. Conversely, other
compounds may act to disrupt normal 1,25(OH)2D3-VDR-mediated immunity. The polycyclic
aromatic hydrocarbon benzo(A)pyrene, a prominent product of cigarette smoking, has been
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shown to attenuate vitamin D-mediated induction of macrophage cathelcidin in a VDR-
dependent fashion by stimulating expression of 24-hydroxylase, and vitamin D catabolism
64. The precise mechanism by which this occurs has yet to be determined but these data suggest
that some toxic compounds are actively detrimental to vitamin D-mediated immunity.

The observations detailed above show clearly that vitamin D is a potent stimulator of
mechanisms associated with pathogen elimination. In subsequent sections the clinical
importance of this with respect to vitamin D insufficiency and immune-related diseases is
discussed in more detail. However, one key question that immediately arises from the current
observations is why there is a need to involve the vitamin D system in the TLR-induction of
innate immunity. As previously described, VDR-mediated transcriptional regulation of
cathelicidin is a relatively recent evolutionary change and was presumably advantageous when
primates (including early Homo sapiens) were exposed to abundant sunlight, thereby priming
high serum levels of vitamin D. Other benefits of incorporating vitamin D into innate immune
regulation include the fact that it is associated with key feedback control pathways. As already
mentioned, vitamin D has its own catabolic enzyme in the form of 24-hydroxylase which
sensitively attenuates responses to 1,25(OH)2D3 and, in the case of the CYP24 splice variant,
may also attenuate synthesis of this vitamin D metabolite 82. However, vitamin D may also
provide feedback regulation of immune activation pathways in that 1,25(OH)2D3 has been
shown to potently downregulate expression of monocyte TLR2 and TLR4, thereby suppressing
inflammatory responses that are normally activated by these receptors 83. Thus, by utilizing
both CYP24 and TLR regulatory mechanisms, vitamin D may help to promote appropriate
innate immune responses whilst preventing an over-elaboration of innate immune responses
and the tissue damage frequently associated with this.

Dendritic cells and antigen presentation
In addition to the phagocytic acquisition and elimination of pathogens and cell debris, innate
immunity also involves the presentation of resultant antigen to cells involved in the adaptive
arm of the immune system (see Figure 1). Although several cells are able to do this, the most
well-recognized group of professional antigen presenting cells (APCs) are dendritic cells
(DCs). Expression of VDR by purified tissue DCs was first reported in 198715. Subsequent
studies using populations of DCs isolated from skin (Langerhans cells) provided evidence that
1,25(OH)2D3 could act to attenuate antigen presentation 20. However, it was not until the later
advent of in vitro monocyte-derived DC models that the effects of vitamin D metabolites on
antigen presentation were fully elucidated. In 2000 parallel studies by the Adorini and Kumar
groups showed that 1,25(OH)2D3

76 and its synthetic analogs 34 inhibited the maturation of
monocyte-derived DCs, thereby suppressing their capacity to present antigen to T-cells. Based
on these observations, it was proposed that vitamin D could act to promote tolerance and this
was endorsed by studies of pancreatic islet transplantation in which lower rejection rates were
observed in 1,25(OH)2D3-treated mice 32. Crucially this response to 1,25(OH)2D3 appeared
to be due to decreased DC maturation and concomitant enhancement of suppressor or
regulatory T-cells (Treg) 32. Further studies have underlined the importance of Treg generation
68 as part of the interaction between vitamin D and the immune system and this is discussed
in greater detail in later sections of this review.

Although regulation of DC maturation represents at potential target for 1,25(OH)2D3 and its
synthetic analogs as treatment for autoimmune disease and host-graft rejection, another
perspective was provided by the observation that DCs express 1α-hydroxylase in a similar
fashion to macrophages 25,40. Data from monocyte-derived DCs showed that 1α-hydroxylase
expression and activity increases as DCs differentiate towards an a mature phenotype 40.
Functional analyses showed that treatment with 25OHD3 suppresses DC maturation and
inhibits T-cell proliferation, confirming the existence of an intracrine pathway for vitamin D
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similar to that observed for macrophages 40. Interestingly, mature DCs showed lower levels
of VDR than immature DCs or monocytes 40. This reciprocal organization of 1α-hydroxylase
and VDR expression may be advantageous in that mature antigen-presenting DCs may be
relatively insensitive to 1,25(OH)2D3, thereby allowing induction of an initial T-cell response.
However, the high levels of 1,25(OH)2D3 being synthesized by these cells will be able to act
on VDR-expressing immature DCs and thus prevent their further development 41. In this way,
paracrine action of locally produced 1,25(OH)2D3 will allow initial presentation of antigen to
T-cells whilst preventing continued maturation of DCs and over-stimulation of T-cells.

Although DCs are heterogeneous in terms of their location, phenotype and function, they are
broadly divided into two groups based on their origin. Myeloid (mDCs) and plasmacytoid
(pDCs) express different types of cytokines and chemokines and appear to exert
complementary effects on T-cell responses, with mDCs being the most effective APCs 57 and
pDCs being more closely associated with immune tolerance 91. It is therefore interesting to
note that 1,25(OH)2D3 preferentially regulates mDCs, suggesting that the key effect of vitamin
D in this instance is to suppress activation of naïve T-cells. Although in this study pDCs showed
no apparent immune response to 1,25(OH)2D3, this does not preclude a role for vitamin D in
the regulation of tolerogenic responses. One possibility is that local, intracrine, synthesis of
1,25(OH)2D3 will be more effective in achieving these responses. Alternatively, 1,25
(OH)2D3 synthesized by pDCs may regulate tolerance through paracrine effects on VDR-
expressing T-cells. This is discussed in further detail in the following section.

Vitamin D and adaptive immunity
Vitamin D and T-cell function

Resting T-cells express almost undetectable levels of VDR, but levels of the receptor increase
as T-cells proliferate following antigenic activation 44,66,78. As a consequence, initial studies
of the effects of vitamin D on T-cells focused on the ability of 1,25(OH)2D3 to suppress T-cell
proliferation 44,66,78. However, the recognition that CD4+ effector T-cells were capable of
considerable phenotypic plasticity, suggested that vitamin D might also influence the
phenotype of T-cells. Lemire and colleagues first reported that 1,25(OH)2D3 preferentially
inhibited T-helper 1 (Th1) cells which are a subset of CD4+ effector T-cells closely associated
with cellular, rather than humoral, immune responses 52. Subsequent studies confirmed this
observation and demonstrated that the cytokine profile of 1,25(OH)2D3-treated human T-cells
was consistent with Th2 cells, a subset of CD4+ T-cells associated with humoral (antibody)-
mediated immunity 14,70. The conclusion from these observations was that vitamin D promotes
a T-cell shift from Th1 to Th2 and thus might help to limit the potential tissue damage associated
with Th1 cellular immune responses. However, the validity of this generalization was called
into question by studies using mouse T-cells in which 1,25(OH)2D3 was shown to inhibit
cytokines associated with both Th1 (IFNγ) and Th2 (interleukin-4, IL-4). Subsequent analysis
of immune cells from the VDR gene knockout mouse added further confusion by showing that
these animals had reduced (rather than the predicted elevated) levels of Th1 cells 69. Thus,
whilst in vitro vitamin D appears to broadly support a shift from Th1 to Th2 in CD4+ cells, it
seems likely that in vivo its effects on T-cells are more complex.

The T-cell repertoire has continued to expand with the characterization of another effector T-
cell lineage distinct from Th1 or Th2 cells, termed Th17 cells because of their capacity to
synthesize interleukin-17 (IL-17) 36,101. Th17 cells play an essential role in combating certain
pathogens but they have also been linked to tissue damage and inflammation 12,48. The precise
role of vitamin D as a regulator of Th17 cells has yet to be fully elucidated but it is interesting
to note that studies of animal models of the gastrointestinal inflammatory disease colitis have
shown that treatment with 1,25(OH)2D3 reduces expression of IL-1721, whilst loss of 1,25
(OH)2D3 as a result of CYP27b1 gene ablation leads to elevated levels of this cytokine 55.
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Thus, it possible that vitamin D exerts some of its effects on inflammation and autoimmune
disease through the regulation of Th17 cells.

A fourth group of CD4+ T-cells, exert suppressor rather than effector functions and are known
as regulatory T-cells or Tregs. In view of its early recognition as a suppressor of T-cell
proliferation, it was anticipated that vitamin D would have effects on Tregs, and indeed in 2002
O’Garra and colleagues demonstrated that 1,25(OH)2D3, in conjunction with glucocorticoids,
potently stimulated the generation of interleukin-10 (IL-10)-producing CD4+/CD25+ Tregs
10. Subsequent reports indicated that 1,25(OH)2D3 alone can induce Tregs 31, and it appears
that preferential differentiation of Tregs is a pivotal mechanism linking vitamin D and adaptive
immunity, with potential beneficial effects for autoimmune disease and host-graft rejection
33,62,89. This immunosuppressive mechanism is likely to be mediated by the induction of
tolerogenic DCs as described in the previous section of the review 7,22,32, but direct effects on
T-cells may also be important 95. In this latter study, it was notable that 1,25(OH)2D3 increased
both IL-10-secretion and TLR9 expression by Tregs, suggesting a novel link between innate
and adaptive immune responses 95.

Relative to the wealth of literature on CD4+ effector cells, our understanding of the effects of
vitamin D on CD8+ suppressor T-cells remains somewhat limited. In contrast to CD4+ cells,
CD8+ show poor antiproliferative response to 1,25(OH)2D3

78,98,99. However, VDR expression
appears to be abundant in CD8+ cells suggesting that they are still potential targets for 1,25
(OH)2D3. Indeed subsequent reports have shown that 1,25(OH)2D3 actively regulates cytokine
production by CD8+ cells 103, and can also regulate the proliferation of CD8+ cells following
specific immune stimuli 43. Despite this, 1,25(OH)2D3 does not appear to have a significant
impact on animal disease models such as experimental autoimmune encephalomyelitis where
CD8+ cells have been implicated 65.

Although many of the studies linking 1,25(OH)2D3 with adaptive immunity have focused on
changes in T-cell proliferation and phenotype, it is important to recognize that other facets of
T-cell function may also be affected by the hormone. In particular recent studies have shown
that vitamin D can exert powerful effects on the homing of T-cells to specific tissues. Initial
studies suggested that 1,25(OH)2D3 acts to inhibit migration of T-cells to lymph nodes 94.
However, more recent reports have demonstrated an active role for vitamin D in promoting
homing of T-cells to the skin via upregulation of chemokine receptor 10 (CCR10), the ligand
for which, CCL27, is expressed by epidermal keratinocytes 87. Notably this T-cell homing
response was induced by 25OHD3 as well as 1,25(OH)2D3 and the author suggested that both
DCs and T-cells were possible sources of the local 1α-hydroxylase activity 87. In contrast to
its positive effect on epidermal T-cell homing, vitamin D appears to exert a negative effect on
chemokines and chemokine receptors associated with the GI tract 87. However, it seems likely
that this is will be highly T-cell selective as newer studies using the VDR gene knockout mouse
have demonstrated aberrant GI migration of a subset of CD8+ cells, and this effects appears to
be closely linked to the increased risk of colitis in VDR knockout mice 105.

Vitamin D and B-cell function
Like T-cells, active but not inactive B-cells express the VDR 79. Consequently, initial studies
indicated that 1,25(OH)2D3 could directly regulate B-cell proliferation 86 and immunoglobulin
(Ig) production 79. Subsequent work contradicted this, suggesting instead that the ability of
1,25(OH)2D3 to suppress proliferation and immunoglobulin (Ig) production was due to indirect
effects mediated via helper T-cells 51. However, more recent reports have demonstrated that
1,25(OH)2D3 does indeed exert direct effects on B cell homeostasis 17. In addition to
confirming direct VDR-mediated effects on B cell proliferation and Ig production, this study
also highlighted the ability of 1,25(OH)2D3 to inhibit the differentiation of plasma cells and
class switched memory cells, suggesting a potential role for vitamin D in B cell-related
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disorders such as systemic lupus erythamtosus. Notably, expression of CYP27b1 was also
detected in B-cells, indicating that B-cells may be capable of autocrine/intracrine responses to
vitamin D 17. Indeed, this may be common to lymphocytes in general as CYP27b1 expression
has also been detected in T-cells 87.

Vitamin D, the immune system and human health
For many years vitamin D status was defined simply by whether or not the patient in question
exhibited symptoms of the bone disease rickets (osteomalacia in adults). However, an entirely
new perspective on vitamin D status has arisen from the observation that serum levels of the
main circulating form of vitamin D (25OHD3) as high as 75 nM correlate inversely with
parathyroid hormone 16. This, has prompted the introduction of a new term - vitamin D
‘insufficiency’ - defined by serum levels of 25OHD3 that are sub-optimal (< 75 nM) but not
necessarily rachitic (< 20 nM) 42. Unlike serum concentrations of 1,25(OH)2D3, which are
primarily defined by the endocrine regulators of the vitamin D-activating enzyme, 1α-
hydroxylase, circulating levels of 25OHD3 are a direct reflection of vitamin D status, which
for any given individual will depend on access to vitamin D either through exposure to sunlight
or through dietary intake. The net effect of this is that vitamin D status can vary significantly
in populations depending on geographical, social or economic factors. As a result of these new
parameters for vitamin D status, a consensus statement from the 13th Workshop on Vitamin D
concluded that vitamin D insufficiency was a worldwide epidemic. Moreover, recent studies
have shown that in the last ten years alone, serum vitamin D levels have on average fallen by
20% 28. The key question now being considered is what is the physiological and clinical impact
of global vitamin D insufficiency beyond classical bone diseases such as rickets?
Epidemiological studies have highlighted possible links between vitamin D insufficiency and
a wide range of human diseases 42. The final section of the review will describe four of the key
clinical problems which have been linked to the immunomodulatory properties of vitamin D.

Vitamin D and tuberculosis
The observation that vitamin D acts to promote innate immune responses to TLR-activation
by M. tb 56, has provided a new perspective on observations made many decades ago
concerning the beneficial effects of UV light exposure on the disease TB. As a consequence
this has become the most well studied facet of the interaction between vitamin D and innate
immunity 60. Initial studies to assess the effects of 25OHD status on ex vivo macrophage
function have shown that supplementation with a single oral dose of 2.5 mg vitamin D enhances
the ability of recipient macrophages to combat BCG infection in vitro 61. The potential benefits
of vitamin D as treatment for tuberculosis (TB) have been further endorsed by a study which
showed that adjunct vitamin D supplementation (0.25 mg vitamin D/day) of TB patients
receiving conventional therapy for the disease reduced the time for sputum smear conversion
from acid fast bacteria (AFB) positive to AFB-negative status 67. A recent double-blind
randomized placebo-controlled trial showed that vitamin D supplementation had no effect on
clinical outcomes or mortality amongst TB patients, although it should be emphasized that
none of the supplemented patients in this study showed a significant rise in serum vitamin D
levels 102.

Vitamin D and multiple sclerosis
Several epidemiology studies have reported association between vitamin D insufficiency and
the incidence and/or severity of the autoimmune disease multiple sclerosis (MS) (reviewed in
80. These observations have been supported by analysis of animal models such as the
experimental autoimmune encephalomyelitis (EAE) mouse, which shows increased disease
severity under dietary vitamin D restriction 88. Conversely administration of 1,25(OH)2D3 to
EAE mice confers disease protection through effects on cytokine synthesis and apoptosis of
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inflammatory cells 75,90. Some effects of 1,25(OH)2D3 on EAE appear to be dependent on
IL-10 activity 89.

Vitamin D and type 1 diabetes
In common with MS, published reports suggest that there is a link between vitamin D deficiency
and another autoimmune disease, type 1 diabetes (reviewed in 63). Low circulating levels of
25OHD3 have been reported in adolescents at the time of diagnosis of type 1 diabetes 53, and
other data have documented the beneficial effects of vitamin D supplementation in protecting
against type 1 diabetes 37. Another strand of evidence linking vitamin D with type 1 diabetes
stems from the extensive genetic analyses that have explored the physiological impact of
inherited variations in the genes for various components of the vitamin D metabolic and
signaling system. Previous studies have indicated that some VDR gene haplotypes confer
protection against diabetes 81 and more recently this has been expanded to show that genetic
variants of the CYP27b1 gene also affect susceptibility to type 1 diabetes 8. Finally, in a similar
fashion to animal model studies for MS, in vivo use of the non-obese diabetic (NOD) mouse
as a model for type 1 diabetes has shown increased disease severity under conditions of dietary
vitamin D restriction 29.

Vitamin D and Crohn’s disease
Several strands of evidence have linked vitamin D to the dysregulated immune responses
observed with inflammatory bowel diseases such as Crohn’s disease. Firstly, epidemiology
suggests that patients with Crohn’s disease have decreased serum levels of 25OHD3

73,74,96.
Secondly, studies in vivo using various animal models indicate that 1,25(OH)2D3 plays a
crucial role in the pathophysiology of experimentally-induced forms of inflammatory bowel
disease 26,27,47,55. Finally, expression of 1α-hydroxylase has been detected in the human colon
106, with the vitamin D-activating enzyme being upregulated in disease-affected tissue from
patients with Crohn’s disease 3. In the case of the latter, dysregulated colonic expression of
1α-hydroxylase was associated with increased circulating levels of 1,25(OH)2D3 indicating
that, as with sarcoidosis, localized synthesis of this vitamin D metabolite can spill-over into
the general circulation under conditions of persistent disease 3. Intriguingly, current studies
have implicated aberrant innate immune handling of enteric microbiota as an initiator of the
adaptive immune damage associated with Crohn’s disease 71. It is thus tempting to speculate
that effects of vitamin D on this disease may involve both the activation of innate immunity,
together with the suppression of adaptive immunity and associated inflammation.

Conclusions
It is almost thirty years since an interaction between vitamin D and the immune system was
first documented. Although this was initially proposed as a non-classical effect of vitamin D
associated with granulomatous diseases, our current view is now considerably changed. Recent
studies have demonstrated a potential physiological role for vitamin D in regulating normal
innate and adaptive immunity. Future studies will now need to focus on the clinical implications
of vitamin D-mediated immunity and, in particular, the possible beneficial effects of
supplementary vitamin D with respect to infectious and autoimmune diseases.
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Figure 1. Effects of vitamin D on innate and adaptive immunity
Schematic representation of the principal innate and adaptive immune responses to a
pathogenic challenge, and the positive or negative regulation of these responses by vitamin D.
TLR, toll like receptor; DC, dendritic cell, Mφ, macrophage; T-cell, T-lymphocyte; cyto T-
cell, cytotoxic T-cell; B-cell, B-lymphocyte; Treg, regulatory T-cell.
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