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Abstract

Objective—An electroencephalographic brain-computer interface (BCI) can provide a non-
muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other
neuromuscular disorders. We present a novel P300-based BCI stimulus presentation — the
checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column
paradigm (RCP) introduced by Farwell and Donchin (1988).

Methods—Using an 8x9 matrix of alphanumeric characters and keyboard commands, 18
participants used the CBP and RCP in counter-balanced fashion. With approximately 9 — 12 minutes
of calibration data, we used a stepwise linear discriminant analysis for online classification of
subsequent data.

Results—Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%.
Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP,
23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly
different waveforms. Initial tests with three advanced ALS participants produced similar results.
Furthermore, these individuals preferred the CBP to the RCP.

Conclusions—These results suggest that the CBP is markedly superior to the RCP in performance
and user acceptability.

Significance—The CBP has the potential to provide a substantially more effective BCI than the
RCP. This is especially important for people with severe neuromuscular disabilities.
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1. Introduction

Brain-computer interfaces (BClIs) facilitate reestablishing communication and environmental
control for people whose motor and communicative abilities have been impaired by severe
neuromuscular disease (Wolpaw & Birbaumer, 2006). For example, although cognitive
function is usually spared, the motoneuron death associated with amyotrophic lateral sclerosis
(ALS) ultimately renders people physically incapacitated as they lose all voluntary muscle
control. These people may become “locked-in” to their bodies, unable to communicate, and
completely dependent upon caregivers to attend to their basic needs. Importantly, however,
the use of a BCI can mitigate the isolation and dependence they experience by providing a
mode of communication not contingent on neuromuscular activity.

BCls translate volitional modulation of brain signals into computer commands, which can be
recorded from the scalp using electroencephalography (EEG,; e.g., Farwell & Donchin, 1988;
Wolpaw & McFarland, 2004), from the dura mater or cortical surface using
electrocorticography (ECoG,; e.g., Leuthardt, et al., 2004), or from neurons within the cortex
(e.g., Hochberg et al., 2006). A common signal for BCI is the P300 event-related potential
(ERP). The P300 ERP is a positive deflection in the EEG over parietal cortex that occurs
approximately 300ms after an “oddball” stimulus: a rare but meaningful stimulus among a
series of frequently occurring stimuli. Because the P300 occurs amid other ongoing EEG
activity, several P300 responses must usually be averaged for the response to be recognized
(Fabiani et al., 1987; Polich, 2007; Pritchard, 1981).

Farwell and Donchin (1988) introduced the first P300-based BCI paradigm. In this paradigm,
a computer presents a 6x6 matrix of letters and commands on-screen and participants attend
to the item they wish to select. Groups of matrix items are flashed randomly. Only flashes of
groups containing the attended item should elicit a P300. In this original implementation of a
P300 BCI, and in most subsequent implementations, items are grouped for flashing as rows
and columns; hence, the row-column paradigm, or RCP. The computer identifies the attended
item as the intersection of the row and column that elicited the largest P300.

1.1. Improving the RCP

The RCP has been tested in various configurations to achieve efficient communication that is
practical for in-home use. For example, researchers have explored various electrode montages
(Krusienski et al., 2006), stimulus properties such as inter-stimulus interval (ISI) and matrix
size (Sellersetal., 2006), and various signal processing methods (Kaper et al., 2004; Krusienski
et al., 2006; Lenhardt et al., 2008; Serby et al., 2005).

Others have modified the RCP paradigm. For example, Martens et al. (2009) compared the
RCP speller to an apparent motion paradigm where motion occurs in rows and columns.
Similarly, Hong et al. (2009) compared the RCP to an apparent motion and color onset
paradigm that also presents the color and motion stimuli in a row/column arrangement. Takano
etal. (2009) recently investigated RCP accuracy using three different luminance and chromatic
flash patterns: a white/grey pattern (luminance condition); a green/blue isoluminance pattern
(chromatic condition); and a green/blue luminance pattern (luminance chromatic condition).
The luminance chromatic condition produced online accuracy higher than the luminance or
chromatic condition alone. Salvaris and Sepulveda (2009) compared changes to the
background/foreground colors, item size, and distances between items. Their results
demonstrated that, although no single paradigm was best for everybody, a white background
produced the highest mean offline classification accuracy, and small symbol sizes produced
the lowest mean classification accuracy. Finally, Guger et al. (2009) compared the RCP to a
paradigm in which single items flash at random. They found that the RCP yielded higher
accuracy and bit rate than the single item flash paradigm, even though the P300 responses were
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larger for the latter. In sum, none of these alternative paradigms substantially improves P300-
based BCI performance.

Two additional studies have used stimuli that are not presented in a RCP format. Allison
(2003) presented random groups of items in an arrangement referred to as a “splotch”
presentation, somewhat similar to the method presented in this article. The splotch presentation
reduced the number of flanking items that flash with the target, and participants reported that
they preferred the method; however, no data with regard to BCI performance were reported.
Hill et al. (2009) also tested a variation of a random stimulus presentation using an offline
leave-one-out cross validation. Their results suggested that the random presentation did not
perform as well as the standard RCP; however, no statistical analyses were performed to test
the performance difference.

1.2. RCP and BCl errors

The RCP remains subject to errors that slow communication, cause frustration, and diminish
attentional resources. Importantly, these errors appear to have two primary causes.

First, errors typically occur with the greatest frequency in locations adjacent to the attended
item (i.e., the target item) and almost always in the same row or column (Fazel-Rezai, 2007).
This inherent RCP error occurs because each time a target item flashes, a P300 is produced for
every item in the row or column. However, only the intersection of the target row and column
is unique to the target item. Errors arise when flashes of non-target rows or columns that are
adjacent to the target, attract the participant’s attention, thereby producing P300 responses. We
refer to these relatively systematic errors as “adjacency-distraction errors” (or the “adjacency-
distraction problem™). This phenomenon is well documented in the spatial attention literature.
For example, in a standard flanker task, response time significantly increases when nearby
items belong to a response class different from the target class (e.g., Sanders & Lamers,
2002). In the RCP, when adjacency-distraction errors occur with sufficient frequency, the
distractions cause one of the four adjacent items (or another item in the same row or column
of the target) to be selected unintentionally.

Second, in order to conform to the oddball paradigm, sets of items must be intensified in random
order. This allows target items to, at times, flash consecutively. That is, when a row flash is
followed by a column flash (or vice versa), and the target item is at the intersection of that
particular row and column, the target item flashes twice in immediate succession. Due to the
rapid rate of intensification, double flashes can cause errors of two types. One, if the target
item is involved in a double flash, the second flash may go unnoticed by the participant, so that
it does not produce a P300 response. Two, even if the second flash is perceived, the P300
responses to the two flashes overlap temporally. This can reduce P300 amplitude or change its
morphology (Martens et al., 2009; Woldorff, 1993). We refer to these errors as “double-flash
errors” (or the “double-flash problem”).

1.3. Is there a better alternative to the RCP?

Further RCP research could possibly help severely disabled BCI users, who desire speed,
accuracy, and ease of use. However, the kinds of errors that are inevitably associated with the
RCP can still make it frustrating for users and burdensome for their caregivers (Vaughn et al.,
2006). Moreover, with the RCP, some people are not able to achieve accuracy high enough for
practical BCI use (Sellers & Donchin, 2006). In recognition of these issues, we sought to create
an alternative stimulation paradigm that is faster, more accurate, and more reliable than the
RCP.
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To achieve this goal, we designed an alternative to the RCP that is called the checkerboard
paradigm, or CBP. We used an 8x9 matrix containing 72 items. In the RCP, the eight columns
and nine rows flash at random (Fig. 1A). In contrast, in the CBP, the standard 8x9 matrix is
virtually superimposed on a checkerboard (Fig. 1B, left), which the participants never actually
see. The items in white cells of the 8x9 matrix are segregated into a white 6x6 matrix and the
items in the black cells are segregated into a black 6x6 matrix. Before each sequence of flashes,
the items in Figure 1B (left) randomly populate the white or black matrix, respectively, as
shown in Figure 1B (middle). The virtual checkerboard layout controls for adjacency-
distraction errors, because adjacent items cannot be included in the same flash group. The end
result is that the participants see random groups of six items flashing (as opposed to rows and
columns) because the virtual rows and columns depicted in Figure 1 (middle) flash. For
example, the top row of the white matrix includes the items: 2, Bs, Shift, H, Sp, EC. In this
example, the participant is shown the standard 8x9 matrix Figure 1B (right) and the six items
from the top row of Figure 1B (middle, top) flash. In other words, the standard matrix never
changes; only the pattern of flashing items is changed. During one sequence, the six virtual
rows in the white matrix (Fig. 1B, middle) flash in order from top to bottom followed by the
six virtual rows in the black matrix. Then the six virtual columns in the white matrix flash in
order from left to right followed by the six virtual columns in the black matrix.

Due to the fact that the randomized virtual rows of each matrix flash first (12 flashes) and then
the virtual columns of each matrix flash (12 flashes), any given matrix item cannot flash again
for a minimum of six intervening flashes and a maximum of 18 intervening flashes. This
eliminates the double-flash problem. After all rows and columns in both matrices have flashed
(i.e., 24 flashes, comprising one complete sequence), the program re-randomizes the positions
of the items in each virtual matrix and the next sequence of flashes begins. In addition, the
CBP almost completely avoids overlapping target epochs because six intervening flashes
correspond to 750 ms and we used classification epochs of 800 ms. Simply eliminating the
double-flash problem does not ensure that enough time will be presented between target items
to keep the target epochs from overlapping, and this has been shown to cause deleterious effects
to the P300 (Squires, et al., 1976). By maximizing the time between successive flashes of the
target item, the CBP should increase the amplitude of the P300 responses (Polich, et al.,
1991) and should also improve BCI speed and accuracy.

1.4. The present study

In this study, our hypothesis is that the CBP will produce superior performance as compared
to the RCP because it avoids the adjacency-distraction and double-flash errors to which the
RCP is prone. In addition to comparing the two paradigms, we also sought to optimize the
stepwise linear discriminant analysis (SWLDA,; Draper & Smith, 1981) classifier to achieve
the highest online speed and accuracy (i.e., bit rate) possible. Moreover, the expansion to an
8x%9 matrix allows the inclusion of both alphanumeric keys and function keys, giving the
participant more control and communication options. The larger matrix should also produce
larger P300 amplitudes for the target items because the probability of the target stimulus
occurring is reduced. This relationship is found in standard oddball experiments (e.g., Duncan-
Johnson & Donchin, 1977) and also in BCI applications (Allison & Pineda, 2003; Sellers et
al., 2006). Finally, while the larger matrix increases the time needed for each selection, it should
increase the information transferred per selection.

2. Methods
2.1. Participants

Eighteen able-bodied adults (11 men, 7 women) were recruited from the East Tennessee State
University undergraduate participant pool. All were naive to BCI use. None had uncorrected
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visual impairments or any known cognitive deficit. The study was approved by the East
Tennessee State University Institutional Review Board and each person gave informed consent.

In addition, three people with ALS (two women, one man) were recruited. They were all
ventilator-dependent and were still able to move their eyes. Two were otherwise totally
paralyzed (i.e., locked-in) while one retained a slight eyebrow twitch. The study was approved
by the New York State Department of Health Institutional Review Board and each person gave
informed consent.

2.2. Data acquisition, processing

Each participant sat in a comfortable chair approximately 1m from a computer monitor that
displayed the 8x9 matrix. The EEG was recorded with a standard 32-channel electrode cap
(with tin electrodes; Electro-Cap International, Inc.). All channels were referenced to the right
mastoid and grounded to the left mastoid, and impedances were reduced below 10.0 kQ before
recording. The signals were amplified and digitized by two g.tec (Guger Technologies) 16-
channel USB biosignal amplifiers (amplification to +/- 2V before ADC; high-pass and low-
pass filters 0.5 Hz and 30 Hz, respectively; digitization rate 256 Hz). Only electrodes Fz, Cz,
P3, Pz, P4, PO7, PO8, and Oz (Sharbrough et al., 1991) were used for BCI operation
(Krusienski, et al., 2008). The general-purpose BCI software platform BC12000 (Schalk, et al.,
2004) controlled stimulus presentation, data collection, and online processing. Data acquisition
and processing was identical for the ALS users with the exception that they used either a single
8-channel or 16-channel g.tec amplifier with the same characteristics described above, and
they sat in their wheelchairs.

2.3. Experimental paradigm

Each participant completed two experimental sessions on separate days within a one-week
period. Sessions were counter-balanced such that half of the participants began with the RCP
session and the other half began with the CBP session. Each session consisted of a calibration
phase and an online test phase. Classification coefficients were generated with data collected
during the calibration phase and were subsequently applied during the online test phase. In
each phase, participants were provided with strings of items to select. The string is displayed
at the top of the monitor with the next item-to-spell (the target item) indicated in parentheses
at the end of the string (Fig. 1A). For example, if the assigned string was “WADSWORTH,”
it would appear at the beginning of the run as: WADSWORTH (W). The participant’s task was
to attend to (or count) the number of times the item in parentheses flashed. After each target
item was presented, a 3.5-sec pause ensued before the next target item appeared in parentheses
(e.g. WADSWORTH (A)). This process repeated until the string of items was complete (one
run). We used data from five such runs (four words and one numeric string) to train the feature
weight classifier. For both the RCP and CBP, each set of items flashed for 62.5 ms, followed
by a 62.5 ms inter-stimulus interval. Thus, a set flashed every 125 ms (i.e., 8 flashes/sec). For
each of 38 item selections, five complete sequences (i.e., including 10 flashes of the target
item) occurred. One RCP sequence included 17 flashes (8 columns; 9 rows), and one CBP
sequence included 24 flashes (12 columns; 12 rows). As a result, each RCP selection took
10.63 sec, and each CBP selection took 15.00 sec. Thus, for each participant, 8 min, 53.25 sec
of calibration data were collected for the RCP, while 11 min, 39.50 sec were collected for the
CBP. However, the number of target items was the same for the two paradigms. Given that the
goal is to classify after a minimal number of target presentations, we opted to present the same
amount of targets per sequence rather than holding time constant and presenting additional
targets in the RCP. Because the CBP presented more non-target stimuli, it is possible that it
would produce a more efficient classifier than the RCP. Due to this discrepancy we conducted
an analysis using only 2850 non-targets as input to the CBP classifier (the same amount used
in the RCP), effectively controlling for the difference in presentation time.
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The online test phase was identical to the calibration phase except for two differences. First,
the number of sequences/selection was changed from five to a participant-specific number
(described in Section 2.5.). Two, item selections were classified using SWLDA feature weights
generated from the calibration data and visual feedback of the selections was provided to the
participant directly below the item to be selected (in the grey area underneath the target string,
Fig. 1A).

For the ALS users, the procedure was different in the following respects. First, in each session
they used different numbers of character selections. User 1 was presented a variable number
of characters in each session. Users 2 and 3 were each presented with 19 selections, although
they were not the same selections. In addition, the users’ stimulus onset asynchrony (SOA)
was different. SOA for User 1 and 2 was 250 ms (187.5-ms flash) and SOA for User 3 was
125 ms, (62.5-ms flash). Finally, the time between selections was increased from the 3.5 s used
in the able-bodied participants to 4.75 s in Users 1 and 2 and 9 s in User 3.

2.4. Classification

As described in Krusienski et al. (2008), independent SWLDA classifiers were derived for the
RCP and CBP (Draper & Smith, 1981). In the RCP calibration phase, each item selection
included 85 flashes (i.e., 85 800-ms data segments from 10 target flashes and 75 non-target
flashes). Thus, the RCP calibration phase consisting of 38 item selections, included data from
3230 flashes (380 targets and 2850 non-targets). In the CBP calibration phase, each of the 38
item selections included data from 4560 flashes (380 targets and 4180 non-targets). We used
the SWLDA algorithm to determine the signal features that best discriminated between target
and non-target flashes (MATLAB version 7.6 R2008a, stepwisefit function).

For online classification, epochs from each stimulus item were averaged before applying the
SWLDA classification coefficients. In the RCP, the coefficients were applied to the
spatiotemporal features of each row and column and then summed. The intersection of the row
and column with the highest scores was selected and presented to the participant as feedback.
In the CBP, the coefficients were applied to the specific spatiotemporal features of each of the
72 items and summed. The item with the highest score was selected and was presented to the
participant as feedback.

For the ALS patients the procedure was the same; however given the differences in the amount
of available data, more calibration data was used as input to the SWLDA analysis.

2.5. Determining the optimal number of sequences

Due to the P300 response’s relatively low signal-to-noise ratio, each item must be flashed
multiple times and the results averaged (Cohen & Polich, 1997). During calibration, the number
of target item flashes was constant across participants and presentation methods. Item sets were
flashed in random sequences with two flashes of the target item per sequence, and thus 10
target item flashes in the five sequences used for each selection.

During the online testing phase, we optimized the number of sequences from each participant’s
maximum written symbol rate (WSR, or symbols/min; Furdea et al., 2009). This metric
represents the number of item selections a participant can correctly make in one minute, taking
into account error correction. For practical purposes, people using the P300 speller need to
correct errors. For a word processing application, this requires a backspace option. An error
takes one extra item selection to erase it by using backspace and one more extra selection to
choose the correct item. Assuming that the participant attempts to correct all errors, the WSR
can be determined from the number of bits transmitted per trial (B; McFarland, et al., 2003).
First, the Symbol Rate (SR) is determined from B:
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B
“logy, N

where N is the number of possible items used to calculate B. The WSR can then be determined
as follows:

2SR-1
R §R>0.5

= T
WSR‘{ 0 SR<O05

where T is the time to select one item. This metric only counts correctly selected items and
excludes backspaces because they do not contribute to the final conveyed message. A WSR
<0.5 indicates that a participant will, on average, make more errors than s/he is able to correct.
Consequently, the final message will contain an abundance of uncorrected errors and will likely
be indecipherable. Therefore, this range is assigned a WSR of zero. Importantly, the WSR
provides a realistic (i.e., ecologically valid) measure of actual written communication rate that
is useful for determining a suitable number of flashes for practical application of the P300
speller.

The time per selection and the classification accuracy both influence WSR. For each
participant, the number of sequences that yields the highest WSR was determined. The
SWLDA coefficients used online were derived from all 38 items. However, to determine the
optimal number of sequences for a given participant, we generated two SWLDA classifiers;
the first used the first 22 items of the calibration phase data as a training set and the last 16
items for a test set. The second classifier used the last 24 items of the calibration phase data as
a training set and the first 14 items as a test set. We then determined the number of sequences
that produces the highest WSR for each classifier, averaged the values, and rounded to the next
highest sequence in the RCP and the next highest half sequence in the CBP. Fig. 2 shows for
one participant the estimated accuracies and WSRs for 1, 2, 3, 4, and 5 sequences, using the
CBP. For this example, the optimal number of sequences is two with an accuracy of 93% and
a WSR of 7.5 selections/min. As accuracy increases with number of sequences, the WSR
increases accordingly, until accuracy asymptotes at 100% (or some other value), and then the
WSR steadily decreases as additional sequences are added. Thus, according to the present
analysis, two sequences were optimal for this participant, and this number was used online.
Given that more data were used to derive the classifier used online than for determining the
optimal number of sequences, we expected that the optimal number of sequences would be
overestimated. Thus, our estimate of WSR was a conservative one.

2.6. Practical bit rate

Correcting an error requires a minimum of two additional selections (first a backspace, then a
correct selection). Sellers et al. (2006) conducted a simulation (using 10,000 item selections)
to determine how many selections would be necessary to complete a sequence of 10 correctly
selected items with accuracy rates of 50 — 100%. With 51% accuracy, fully 500 selections were
necessary to complete the 10-item sequence. Thus, while bit rate is an objective measure of
information transfer rate, the importance of accuracy should not be overlooked (Sellers et al.,
2006; Wolpaw, et al., 2000; Wolpaw, et al., 2002).

To investigate performance with error correction taken into account, we conducted an analysis
of bit rates for the RCP and the CBP. To determine an ecologically valid metric of performance
that each participant would likely achieve if correcting mistakes, we defined a formula for an
error-corrected bit rate or “practical bit rate.” For every error made, a penalty of two additional
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selections would incur. However, if there is the same likelihood of making an error during the
correcting process as in the original attempt (either while selecting the backspace or the
replacement item) then additional corrections would be required. Assuming that the probability
of making an error is “p” and the participant is attempting to communicate “N” correct
selections, the total number of selections required to achieve success is given by the infinite
series:

N+2N)p+2Q2(N)p)p+22Q2N)p)PIP+ ... =N ) 2p)
i=0

N
This series converges to 7 _ 2p provided that 2p < 1, which holds whenever p < 0.5.

Based on this formulation, we determined the expected number of total selections required by
each participant in order to successfully complete all 38 selections in the test conducted, and
calculated the practical bit rate from this result to determine the expected performance of each
participant in a practical application where error correction is necessary. The value used for
the probability of an error p was 1-accuracy.

3.1. Online accuracy and bit rate

Table 1 shows the number of sequences, accuracy, selections/min, and bit rate for each
participant with each paradigm. Online accuracy was significantly higher for the CBP, 91.52%,
than for the RCP, 77.34%, t(17)=3.23, p=0.005. (An offline analysis matching the number of
non-target stimuli for each paradigm produced similar results, i.e., CBP accuracy of 91.22%
and RCP accuracy of 77.34%, and the p value for the t-test between the CBP and RCP was
0.005.) In addition, the number of sequences was significantly lower for the CB paradigm.
However, it took longer to present one CBP sequence than one RCP sequence. Therefore,
selections/min is a better indicator of performance than number of sequences. Importantly,
despite the fact that each CBP selection took longer, selections/min was not significantly
different for the two paradigms.

While online bit rate was not significantly different for the CBP, 23.17 bits/min and the RCP
19.85 bits/min, the difference did approach significance t(17)=1.93, p=0.071. The bit rate
calculation in Table 1 includes the 3.5-sec pause between selections and thus shows the actual
online bit rate. Many other studies have excluded such inter-selection time in calculating bit
rate (e.g., Kaper et al., 2004;Meinicke et al., 2002;Serby et al., 2005). For comparison to such
studies, Table 2 shows the selections/min and bit rates with the time between selections omitted.

3.2. Practical bit rate and simulated error correction performance

The online bit rate was not significantly different between the two paradigms, and due to the
use of the copy-spelling mode, participants did not correct errors. Thus, to simulate error
correction we used the practical bit rate metric. The results of these analyses demonstrated that
the selections/min and bit rate are reduced compared to the original values. However, the
decrease in performance was larger for the RCP, 3.24 bits/min, than for the CBP, 0.58 bits/
min. The estimated practical bit rate and selections/min are shown in Table 3. Most importantly,
the CBP practical bit rate, 22.59 bits/min, was significantly higher than the RCP practical bit
rate, 16.61 bits/min, t(17)=2.50, p=0.02.
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3.3. Error analysis

We hypothesized that the CBP would improve performance by reducing the selection of items
adjacent to the target item (adjacency-distraction errors). Fig. 3 (left panel) illustrates the
topographical distribution of errors in relation to the target item for the RCP. All target items
have been centered in the matrix; the numbers in the black cells represent the number of correct
selections for each paradigm. The numbers in other cells correspond to the locations of errors
relative to the target location. First-degree errors (dark grey) are those that occurred directly
adjacent to the target item in the RCP, 40.65%, and second degree errors (light grey) are those
that occurred anywhere else within the same row or column, 44.52%. Only 14.83% of the 155
RCP errors occurred outside of the target row or column. This result confirms Fazel-Rezai’s
(2007) findings, albeit with a much larger data set.

In the CBP, we defined first-degree errors as the cells diagonal to the target item, since those
items could flash with the target item. We defined second-degree errors as those that occurred
in any location of the target’s virtual matrix. We were successful in reducing the number of
first degree errors, only 5.17% of the errors were first-degree errors (dark grey; Fig. 3 right
panel), and we reduced the overall error rate by 14.18%. However, in the CBP, adjacent cells
can never flash together; therefore, only grey cells can flash with the target (in this illustration).
Therefore, for the CBP, 35 of the 72 matrix items represent locations of possible second-degree
errors as opposed to only 11 possible second-degree errors for the RCP. We found that the
majority of CBP errors, 74.14%, were second-degree errors, as opposed to errors located in
the opposite matrix, 25.85%. In other words, for the CBP, 43 of the 58 errors were items capable
of flashing with the target. This result suggests that, for the CBP, temporal proximity to the
target item is much more important than spatial proximity to the target item. In contrast, in the
RCP, spatial proximity and temporal proximity occur together.

3.4. Waveform morphologies

The RCP and the CBP produced waveforms that differ in several respects. Our analyses focused
on four electrodes, (Cz, Pz, Po7, and P08), since these reliably capture most of the P300 energy
in BCI applications (Kaper et al., 2004; Krusienski et al., 2008). Fig. 4 depicts the averaged
waveforms for each of the 18 participants. We averaged these data across the 38 item selections
of the calibration phase in order to keep the amount of data contributing to each average
constant across all participants. Fig. 5 shows, for each of the four electrodes, target grand means
(top row) and non-target grand means (bottom row). We examined amplitude and latency
differences between targets and non-targets at each electrode location by paired t-test.

For the target responses located at electrode Cz, we found that the latency of the negative peak
occurred significantly earlier for the CBP, 455 ms, than for the RCP, 486 ms, t(17)=3.36,
p=0.004. In addition, we found that the amplitude of the negative peak was significantly larger
for the CBP, -4.13 pV, than for the RCP, -2.86 pV, t(17)=4.65, p=0.0002. For the target
responses located at electrode Pz, we found that the amplitude of the positive peak at
approximately 200 ms was significantly larger for the CBP, 2.78 uV, than for the RCP, 2.00
uV, t(17)=3.16, p=0.006. We also found that the latency of the negative peak occurred
significantly earlier for the CBP, 450 ms, than for the RCP, 499 ms, t(17)=3.25, p=0.005. In
addition, the amplitude of the negative peak was significantly larger for the CBP, -3.09 pV,
than for the RCP, -1.98 uV, t(17)=4.56, p=0.0003.

For the target responses at Po7 and Po8, the negative peaks at about 190 ms were larger for
the RCP, -1.03 uV and -1.29 pV, than for the CBP, -0.46 pV and -0.52 pV, t(17)=2.40, p=0.03
and t(17)=3.91, p=0.001. The positive peak at electrode location Po7 and Po8 occurred earlier
for the CBP, 286 ms and 272 ms, than for the RCP, 336 ms and 347 ms, t(17)=2.18, p=0.04
and t(17)=3.82, p=0.001. In addition, at P08, the latency of the late negative peak occurred
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significantly earlier for the CBP, 484 ms than for the RCP, 551 ms, t(17)=5.02, p=0.0001. As
at electrode locations Cz and Pz, at electrode locations Po7 and Po8 the late negative peaks
were significantly larger for the CBP, -1.83uV and -1.80 pV, than for the RCP, -1.02uV and
-1.11 pV, t(17)=4.22, p=0.0006 and t(17)=3.23, p=0.005.

Fig. 5(bottom) depicts the non-target responses for each of the four electrode locations. An 8-
Hz oscillation is evident in both paradigms. This oscillation, which is at the frequency of the
stimulus presentation, is a typical finding. (A comparable but less apparent oscillation is evident
in the target responses, particularly for the RCP paradigm.) We compared the absolute
maximum peak-to-peak values for the non-target responses over the 800-ms epoch for each
electrode. The absolute amplitude was significantly less for the CBP at location Cz and Po8,
0.50 uV and 0.40 pV, than for the RCP, 0.64 uV and 0.63 uV, t(17)=3.22, p=0.005 and t(17)
=2.84, p=0.01.

3.5. Data from BCl users with ALS

Given the success of the CBP as compared to the RCP in non-ALS participants, the logical
next step was to test the method in people with ALS. Our initial users were three people (two
women, one man) who had P300-based BCI systems in their homes. We tested one person
severely disabled by ALS (remaining muscle movement limited to brow twitch and eye
movements) on the RCP for 1 session, and we compared its accuracy to the CBP for the next
30 sessions, the person used the CBP and average accuracy was 89% (Fig. 6; User 1). The
purpose of providing BCI’s to people with ALS is to give them the best communication option
possible. Thus, upon finding that the CBP improved accuracy by 27% after a single session
we did not conduct additional RCP sessions. Two additional people locked-in by ALS recently
switched to the CBP from the RCP after extended experience (i.e., both over 2.5 years) with
the RCP. We compared the CBP performance to an equal number of successive RCP sessions
that were completed immediately prior to switching from the RCP to the CBP (Fig. 6; User 2
and User 3). For example, User 2 had completed 57 sessions of CBP; therefore, we compared
the 57 preceding RCP sessions to the following 57 CBP sessions (similarly for User 3 with 39
CBP sessions). The results were quite dramatic. In the present study, non-disabled participants’
average performance increased by 14.18% for the CBP versus the RCP. In contrast, as shown
inFig. 6, the three people with ALS using home BCls obtained an average performance increase
of 24.60% with the CBP. To adopt a more conservative measure by removing User 1 (because
only one RCP session was performed), the mean increase in accuracy was still approximately
23% (31% for User 2 and 15% for User 3). The p-values in Figure 6 are based on paired t-tests
for the 57 (User 2) and 39 (User 3) sessions pre- and post-switch from RCP to CBP sessions.
The practical bit rate with the CBP for Users 1, 2, and 3was 13.49, 3.27, and 10.0, respectively.
The practical bit rate was not computed for the RCP sessions because stimulus presentation
parameters (i.e., SOAs and numbers of sequences) were manipulated continually to optimize
performance. However, the CBP used the same number of sequences as the optimized RCP,
thus each CBP character selection required additional time. In the non-ALS group, the mean
number of sequences was 0.9 less in the CBP; thus, the accuracy values for the ALS group
may be slightly inflated as compared to the non-ALS group in the current study.

4. Discussion

The primary goal of this study was to test a new presentation method for a P300-based BCI,
the checkerboard paradigm (CBP), and compare it to the standard row/column (RCP) P300-
based paradigm. Several general points bear mentioning. Foremost, both paradigms achieved
relatively high accuracy and bit rates. With either paradigm, the P300-based BCI could be
calibrated in approximately 10 min, similar to the results reported by Guger et al. (2009). The
8x9 matrix implemented here emulates most of the functions of a standard keyboard, which
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should provide disabled users more control of the tasks they wish to perform, and should
thereby increase the usefulness of the BCI. The calculation of practical bit rate introduced here
may be a worthwhile addition to other BCI performance measures because it should allow
direct performance comparisons between studies. The WSR is a reasonable metric for BCI
calibration. Using the WSR, a fixed number of stimuli are presented before classification.
Others have used dynamic classifiers that stop when a classification criterion is met (e.g.,
Lenhardt et al., 2008; Serby et al., 2005); however, on average, the dynamic classifiers do not
achieve online classification accuracy or practical bit rates as high as those reported here.

By disassociating the rows and columns, the CBP reduced error rates, presumably by
eliminating adjacency-distraction errors. The CBP also increased the time between target
flashes, thereby eliminating double-flash errors and nearly eliminating overlapping target
epochs, which can be a substantial problem (Martens et al., 2009; Woldorff, 1993). Because
we manipulated both of these factors concurrently, it is not clear which change was more
important; however, the reduction in these two forms of errors appears to be responsible for
the observed improvement in overall performance for the CBP over the RCP. Additional
experimentation is required to determine the exact contribution of these paradigm changes (i.e.,
disassociating the rows and columns, or increasing the time between target flashes). An
experiment that includes conditions manipulating the two factors independently and
concurrently could determine the contribution of each factor to the increase in accuracy and
bit rate. This is an important issue to clarify, which may allow further improvements of the
system. Nonetheless, whether these factors are working separately or conjointly, the end result
is an improved paradigm which was our primary goal when designing the CBP.

Additionally, informal polling of participants indicated that they found the CBP more appealing
than the RCP, similar to the participants in the Allison (2003) “splotch” study. While the CBP
vs. RCP performance difference may contribute to this preference, the preference has practical
implications and is therefore important. Most participants also reported that they experienced
less visual fatigue with the CBP because it was easier to focus attention on the target items.
Finally, and most importantly, preliminary data suggested that people severely disabled by
ALS perform significantly better using the CBP than the RCP.

4.1. Online accuracy and bit rate

Online accuracy should be the gold standard for evaluating BCI performance. Offline
simulation and cross-validation can be extremely valuable techniques when developing and
testing new algorithms. However, if the ultimate goal is to create a practical system for clinical
use, online evaluation should be the standard evaluation method. An offline leave-one-out
cross-validation evaluation is not sufficient because it does not test online performance. While
the present study used cross-validation to calculate the WSR, it was then tested online.

In other words, only online performance can provide tangible evidence of any BCI system’s
validity. Two primary reasons are responsible for this. One, leave-one-out cross-validation
does not account for the temporal dependency necessary during online classification. That is,
for online classification, only prior data can be used regardless of whether the data were
collected one second or one year prior to the online classification. Two, offline analyses only
estimate potential online performance; while they may show that a paradigm is likely to work,
only online testing can establish that for certain (Klobassa et al., 2009).

In this study, online accuracy was significantly higher by 14.18% for the CBP compared to the
RCP. While the difference in online bit rate did not reach statistical significance (CBP 23.17
bits/min; RCP 19.85 bits/min) this was largely due to the fact that the CBP takes about 30%
longer to present one sequence of stimuli. Because bit rate is an objective measure of
information transfer rate, this makes it an attractive option to be used for comparing BCI
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performance. However, in a BCI application, accuracy should be considered in addition to bit
rate. For example, Meinicke et al. (2002) reported a maximum bit rate of 84.7 bits/min in a
P300-based offline analysis. Their analysis, however, excluded the time between item
selections and the accuracy level was less than 50%. This is not sufficient for BCI control,
especially for any system intended for actual clinical use. Bit rate alone is not an adequate
metric for BCI performance. An additional, more clinically relevant metric is needed.

4.2. Simulated error correction performance and online performance comparison

In an attempt to provide a realistic estimation of actual performance, we introduced a formula
to estimate the practical bit rate. Practical bit rate takes error correction into account, whereas
bit rate only takes accuracy into account. In a paper that focuses on the problem of using bit
rate as the preferred or only performance metric, Dal Seno et al. (in press) have presented a
general metric called “BCI Utility” and show that it predicts BCI performance better than bit
rate (also see Bianchi et al., 2007).

In the current study, the practical bit rate calculation for the CBP was 22.59 bits/min. This
value isonly 0.58 bits/min less than the online bit rate (which does not take errors into account);
the small reduction in bit rate was due to the high mean rate of accuracy, 91.52%. In contrast,
the practical bit rate calculation for the RCP was 16.61 bits/min. This value is 3.24 bits/min
less than the online bit rate because mean accuracy was only 77.34% in the RCP. Accuracy
could be improved in the RCP by presenting more sequences of items. This may come with a
cost of reducing bit rate because longer presentation times would reduce bit rate even though
higher accuracy would increase bit rate. In this study, the number of selections per minute
between the CBP and RCP were not significantly different. The number of sequences was
limited to five per character presentation in both paradigms; accordingly, we cannot evaluate
what the exact effects of including additional sequences would have been on the practical bit
rates of the paradigms due to the non-linear relationship between bit rate and accuracy.
Although, given the current data, the additional time needed to increase RCP accuracy would
decrease the number of selections per minute, which should still result in a significantly higher
practical bit rate for the CBP.

Although they did not correct for errors (similar to this study), Lenhardt et al. (2008) reported
the highest P300 online accuracies and bit rates prior to this study. They recognized the need
to present data accounting for the time between items. Thus, they used two metrics to calculate
the time needed to complete 22 item selections using a 6x6 matrix. They defined “average
theoretical time” as the time to complete the series of item selections with the time between
item selections removed. This metric is not directly relevant to practical applications. In
contrast, their “average real time” is relevant for applications, since it calculates the time to
complete the series including the time between item selections. Therefore, a comparison of
their average real time metric and online performance reported here is a valid comparison.
Lenhardt et al. (2008) reported average real time in minutes to complete the 22 item sequence;
we have converted their results to selections/min to correspond to our online selections/min
(Table 1). In their fastest condition, 3.37 min were necessary to complete 22 item selections,
which is a rate of 6.52 selections/min, and corresponds to a practical bit rate of 10.48 bits/min.
However, mean accuracy was 65.53% in this condition; thus this level of accuracy is not
sufficient for effective communication, as 70% is typically assumed to be required (Kiibler et
al., 2001; Kiibler et al., 2009; Sellers et al., 2006). In their most accurate condition, 87.50%,
5.36 minutes were necessary to complete 22 item selections, which results in 4.10 selections/
min, and corresponds to a practical bit rate of 15.92 bits/min. In comparison, CBP accuracy
was 91.52% and produced 4.36 selections/min, which corresponds to a practical bit rate of
22.59 bits/min (using an 8x9 72-item matrix twice as large as their 6x6 36-item matrix).
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4.3. Error analysis

The CBP should reduce errors for two primary reasons. First, the CBP should be less susceptible
to adjacency-distraction errors than the RCP, since non-target items in scattered groups of items
are less likely to attract attention than non-target items in entire rows or columns from the
flanker effect (e.g., Sanders & Lamers, 2002), or from the Gestalt law of grouping (e.g.,
Prinzmetal, 1981). As expected, 85.17% of the errors in the RCP occurred in the same row or
column as the target item (Fazel-Rezai, 2007).

Second, errors should be reduced because the CBP eliminates double-flash errors that result
from overlapping stimulus epochs or when participants do not perceive the second target
presentation, both of which generally serve to reduce the amplitude of the target response in
the standard RCP (Martens et al., 2009; Woldorff, 1993). The combination of these two
important effects of the paradigm change resulted in a significant reduction in error rate for
the CBP as compared to the RCP. It also dissociated the errors from the rows and columns,
which made errors appear random (Fig. 3). In the RCP, temporal and spatial relationships
between the target item and non-target items occur together. Thus, as discussed above, the CBP
eliminated one problematic effect of double-flash errors and reduced adjacency-distraction
errors. With the CBP, errors were much more likely to come from the same virtual matrix than
from the opposite virtual matrix. This result suggests that, in the CBP, the temporal relationship
between the target item and non-target items is more significant than the spatial relationship
between the target item and non-target items. The relationship between the temporal and spatial
effects in the CBP and methods to minimize the errors that might result from the relationship
between them requires further investigation.

4.4. Waveform morphologies

Fig. 4 shows target responses for each of the 18 participants’ at electrode locations Cz, Pz, Po7,
and Po8. While some individual variation is evident, the individual participants’ averaged
waveforms conform to the grand means shown in Fig. 5, which shows that both the target and
non-target waveforms differ in several respects between the RCP and the CBP. Most notably
for the target responses, the late negative peak is much larger in the CBP than in the RCP at
electrode locations Cz and Pz, and electrode location Pz has a larger positive peak at about 200
ms. It is possible that the larger amplitude responses contributed to the higher accuracy of the
CBP by increasing the signal-to-noise ratio. These results are also consistent with previous
P300 research (including P300 BCI research) which shows that P300 amplitudes are higher
when the probability of the target item is lower, as in the CBP (e.g., Duncan-Johnson &
Donchin, 1977;Allison & Pineda, 2003;Sellers et al., 2006).

At electrode locations Po7 and Po8, a larger late negative peak is also apparent for the CBP
paradigm and the main positive peak is earlier for the CBP, whereas the RCP has larger negative
peaks at electrode locations Po7 and Po8 at about 200 ms, particularly at location Po8. This
result is similar to those reported by Hong et al. (2009). While the locations we investigated
are more occipital (relative to the P3 and P7 parietal electrodes they assessed), the amplitudes
produced in the RCP are quite similar to theirs.

Regarding the non-target waveforms, the bottom panel of Fig. 5 shows an attenuated response
at all electrode locations in the CBP; however, the amplitude differences were statistically
lower than the RCP for only two electrodes, Cz and Po8. The non-target oscillating pattern
corresponds to the stimulus presentation rate of 8 Hz. It is possible that the lower amplitude
non-target responses contribute to higher classification accuracy rates in an analogous fashion
to the higher amplitude target responses observed at electrode locations Cz and Pz.
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4.5. Data from BCIl users with ALS

Although the data from BCI users with ALS are only preliminary, they are encouraging. Figure
6 shows that average performance for the ALS group was much lower than the non-ALS group
while using the RCP; however, upon switching to the CBP, ALS group performance was only
slightly lower than the non-ALS group performance. Overall, these three users improved their
classification accuracy rates by an average of 24.60% after switching from the RCP to the CBP.
The data suggest that the CBP improvements may be more pronounced for ALS participants
(or for those with lower performance for any reason) than for non-disabled participants, whose
accuracy rates improved 14.18% in the current study. One of the users was already able to
achieve accuracy sufficient for BCI control. For the two others, the improvement brought them
into an accuracy range sufficient for effective BCI control; previously their accuracy was not
consistently sufficient for effective control. Thus, the CBP is potentially of considerable
practical importance for people severely disabled by ALS. It may help to restore their ability
to communicate. For example, User 1 writes poetry with the BCI, for User 2 it is the only means
of independent communication, and User 3 uses it for work and environmental control.

4.6. Conclusions

Brain-computer interfaces allow severely disabled people a mode of communication that does
not rely on muscles. The CBP is the first P300-based BCI to demonstrate a significant increase
in performance over the RCP. The online CBP performance presented here may be the highest
online P300-based BCI performance to date. Online performance and “practical bit rate” as
defined here are important measures to consider if the ultimate goal is to develop practical BCI
systems for severely disabled people. Moreover, for BCI technology to be embraced on a large
scale, researchers must develop useful and desired applications that can meet the needs of the
disabled community (Vaughan et al., 2006). As the next logical step, the current results should
be replicated in a study of a much larger group of people with ALS or other severe motor
disabilities.
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Fig. 1.

A: The Row-Column paradigm (RCP) for the 8x9 matrix, with one row flashing. B: The
Checkerboard paradigm (RCP) for the 8x9 matrix. On the left is the checkerboard pattern. In
the middle are the two virtual 6x6 matrices derived from the checkerboard. On the right is the
matrix as presented to the participant with the top row of the white 6x6 virtual matrix flashing.
See text for details.
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Optimizing the number of stimulus sequences. The top panel shows, for one participant,
accuracy (the number of correct target selections) estimated after each of the five flash
sequences. The bottom panel shows the corresponding written symbol rates (WSRs). For this
participant, the optimal number of sequences is two, and this provides 7.5 selections/min, using
the CBP.
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Error distributions for the RC paradigm (left) and CB paradigm (right). All target items have
been centered in each matrix; the number in the black cell is the number of correct selections
for each paradigm. Numbers listed in other cells represent the number of errors occurring in

each cell relative to the target location.
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Fig. 4.

Target waveforms for electrode locations Cz, Pz, Po7, and Po8 for each of the 18 participants;
RC paradigm data are presented in black and CB paradigm data are presented in grey.

(Amplitude units are pV, scaling is participant specific.)
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Fig. 5.

Grand mean waveforms for all 18 participants at electrode locations Cz, Pz, Po7, and Po8.
(Amplitude units are pVs). The top row consists of target responses for both paradigms, and
the bottom row consists of non-target responses for both paradigms. RC paradigm data are
presented in black and CB paradigm data are presented in grey.
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Fig. 6.

Preliminary data from three people severely disabled by ALS. The data were collected in each
user’s home and the BCI system was operated by a caregiver. The three users began with the
RC paradigm and switched to the CB paradigm (User 1 only completed 1 RC session). For

Users 2 and 3, mean accuracy was compared for equal numbers of session before and after the

switch from the RCP to the CBP.
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Selections/min and bit rate (bits/min) for the RC and CB paradigms, excluding the 3.5-sec pause between

Table 2
selections.
Participant RCsel/min  CBsel/min RC bitrate CB bit rate
1 5.65 571 34.84 31.71
2 5.65 5.00 13.70 25.19
3 9.41 10.00 49.75 50.37
4 5.65 5.00 19.89 25.19
5 5.65 6.67 19.89 31.99
6 7.06 571 39.17 28.78
7 7.06 571 41.17 35.26
8 7.06 5.00 35.56 25.19
9 5.65 4.44 11.83 21.33
10 5.65 5.00 10.05 29.16
11 7.06 5.00 22.16 26.43
12 5.65 8.00 16.69 44.39
13 5.65 4.44 10.93 22.39
14 7.06 10.00 43.55 61.70
15 7.06 571 37.31 35.26
16 5.65 4.00 27.10 17.39
17 7.06 6.67 33.88 35.24
18 5.65 4.44 25.81 20.31
Mean 6.41 5.92 27.40 3151
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Selections/min and practical bit rates (bits/min) for the RC and CB paradigms taking error correction into account.

Participant RCsel/min  CBsel/min RC bitrate CB bit rate
1 4.28 3.86 26.38 23.80
2 0.45 3.07 2.76 18.94
3 5.16 5.02 31.82 31.00
4 1.79 3.07 11.07 18.94
5 1.79 3.56 11.07 21.94
6 4.50 3.40 27.79 20.98
7 4.77 431 29.44 26.62
8 3.97 3.07 24.50 18.94
9 0.00 2.61 0.00 16.11
10 0.00 3.69 0.00 22.75
11 1.58 3.28 9.77 20.21
12 1.12 4.92 6.91 30.34
13 0.00 2.80 0.00 17.27
14 5.04 6.38 31.09 39.35
15 4.24 431 26.15 26.62
16 3.15 2.05 19.40 12.68
17 371 4.07 22.86 25.10
18 2.92 2.42 18.01 14.95
Mean 2.69 3.66 16.61 22.59
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