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Graves’ disease, an autoimmune process associated with thyroid dysfunction, can also manifest as remodeling of
orbital connective tissue. Affected tissues exhibit immune responses that appear to be orchestrated by resident
cells and those recruited from the bone marrow through their expression and release of cytokines and surface
display of cytokine receptors. Cytokines are small molecules produced by many types of cells, including those
of the ‘‘professional’’ immune system. Aberrant cytokine expression appears to play an important role in
the pathogenesis of many human diseases, including thyroid autoimmunity. The skewed pattern of cytokine
expression in the thyroid, including the T helper cell bias, may condition the response to apoptotic signals and
determine the characteristics of an autoimmune reaction. Furthermore, chemoattractant cytokines, including
IL16, RANTES, and CXCL10, elaborated by resident cells in the thyroid and orbit may provoke mononuclear cell
infiltration. Other cytokines may drive cell activation and tissue remodeling. Thus cytokines and the signaling
pathways they activate represent attractive therapeutic targets. Interruption of these might alter the natural
course of Graves’ disease and its orbital manifestations.

Introduction

Graves’ disease (GD) represents both the most common
cause of hyperthyroidism and an archetypical exam-

ple of antibody-mediated autoimmunity. It is associated
with an inflammatory process in the orbit known as thyroid-
associated ophthalmopathy (TAO). Abnormalities in the lev-
els of several abundant cytokines have been documented in
thyroid and orbital tissues in GD. Cytokines are small mol-
ecules synthesized by many different cell types and playing
important roles in health and disease (1,2). Some are ex-
pressed as membrane-bound proteins while others are re-
leased as soluble molecules targeting high-affinity receptors
on the surfaces of adjacent cells. They function as elaborate
networks and therefore the aggregate contribution of many
different molecular mediators represents the basis for the
pattern of tissue reactivity found in disease (Fig. 1). The
profile of cytokines appears to define the nature of organ-
specific immune responses. Their central roles in inflamma-
tion suggest that they, their receptors, and the signaling
pathways they utilize are potentially attractive therapeutic
targets for autoimmune diseases of the thyroid.

GD and the Thyroid

Thyroid tissue becomes hyperplastic, hypertrophied, and
infiltrated with B and T lymphocytes in GD. CD4þ cells

predominate and these are accompanied by moderate B cell
germinal center formation (3,4). GD is generally characterized
by a Th2 pattern of cytokine production. Intrathyroidal lym-
phocytes secrete cytokines such as interleukin (IL)-4, IL-5,
IL-10, and IL-13, all of which tend to support antibody-
mediated immune responses. This cytokine milieu may result
from the contributions of both residential cells such as thyr-
ocytes, endothelium, and fibroblasts and by cells recruited to
the gland, including T cells. We postulate that epithelium and
the other residential elements of the thyroid play important
roles in defining the pattern of inflammation and tissue re-
modeling found in GD.

A key aspect of tissue remodeling concerns the process of
apoptosis. Thyrocytes from individuals with GD express
both Fas and FasL (5,6). The cytokine profile found in thyroid
tissue in autoimmunity may contribute to the exaggerated
susceptibility to apoptosis seen in Hashimoto’s thyroiditis
and in other destructive processes. Conversely, the relative
resistance to apoptosis found in GD may be conditioned by a
different pattern of cytokine expression. Th1-type cytokines
predominating in Hashimoto’s thyroiditis such as interferon
(INF)-g, IL-2, and tumor necrosis factor (TNF)-a are associated
with cell-mediated immunity. These promote Fas-mediated
apoptosis through the induction of enzymes known as
caspases. In contrast, through their expression of FasL,
thyrocytes, intrathyroidal macrophages, and dendritic cells
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promote apoptosis in infiltrating lymphocytes displaying
Fas (6,7). Th2-type cytokines protect thyrocytes in GD by up-
regulating anti-apoptotic proteins, such as cFLIP and Bcl-xL
(5,6,8). Thus, while the role of cytokines in apoptosis is com-
plex and incompletely understood, cytokine profiles in GD
and Hashimoto’s thyroiditis might account for the clinical
presentations that distinguish the two processes.

We suspect that thyrocytes participate in immune
responses by virtue of their capacity to both produce cyto-
kines and to respond to them. IL-1, IL-6, IL-8, transforming
growth factor (TGF)-b, IL-16, CXCL-10, CXCL-19, and regu-
lated upon activation, normal T cell expressed and secreted
(RANTES) are synthesized by thyrocytes in vitro (9–12). Of
these, IL-16 and RANTES represent potent T lymphocyte
chemoattractant molecules, and their production by thyr-
ocytes may be an important basis for lymphocyte trafficking
to the diseased thyroid (10,13,14). Thyrocytes, orbital fibro-
blasts, and adipocytes in culture secrete CXCL10 in response
to INF-g and TNF-a, effects attenuated by peroxisome pro-
liferator-activated receptor (PPAR)-g agonists (15). CXCR3 the
cognate receptor for CXCL10 is expressed at high levels on
lymphocytes (16) and endothelial cells (17), suggesting an-
other mechanism involving CXCL10 through which recruit-
ment of lymphocytes to the thyroid and orbit in GD might
occur. Serum CXCL10 levels are elevated in patients with
TAO (15,18). They are particularly high in recent-onset GD
and during the active phase of TAO (19).

Cross-talk between thyrocytes and infiltrating lympho-
cytes can occur through a number of signaling pathways.
Prominent among these is CD40 and its cognate ligand CD154
(also known as CD40 ligand). CD40, a member of the TNF-a
receptor superfamily, was originally discovered on B cells
where it functions in lymphocyte activation. Elevated levels

of CD40 are found in situ in GD on thyrocytes (20) and its
engagement in cultured cells has been shown to induce IL-6
production (21). A single nucleotide polymorphism (SNP) of
the CD40 gene has been associated with susceptibility to GD
(22). This SNP enhances translational efficiency of CD40
mRNA and increases modestly (15–32%) B-cell surface dis-
play of the protein (23). The threshold of cell activation might
decline as a result.

Cytokines can modulate thyroid epithelial cell growth and
function (24,25). IL-1, TNF-a, and INF-a, -b, and -g have been
shown to inhibit thyrotropin (TSH) dependent [125I] uptake
and thyroid hormone release by cultured human thyrocytes
(26,27). These cytokine effects are synergistic and reversible.
Gerard et al. (28) demonstrated that treatment of thyrocytes
with the Th1 cytokine combination IL-1a=INF-g resulted in
reduced thyroid peroxidase (TPO) protein and mRNA ex-
pression. TPO is a critical thyroidal enzyme responsible for
iodine organification, the first step in thyroid hormone syn-
thesis. Effects of cytokines on other key thyroidal functions
such as sodium-iodide symporter expression (29), thyro-
globulin production, and cAMP generation (30) have also
been reported. In addition, IL-1b induces production of hya-
luronan by primary thyroid epithelial cells and thyroid
fibroblasts, a process that may contribute to the development
of goiter in GD (31). It is likely that the intrathyroidal milieu of
molecular mediators, including cytokines and anti-thyroid
antibodies modulate thyroid function and goiter formation.
Furthermore, INF-g enhances the expression of major histo-
compatibility complex (HLA) class I and class II on thyro-
cytes (25), potentially enhancing antigen presentation (24).
Additionally, HLA-DR3, a class II molecule exhibits high af-
finity binding with TSH-receptor (TSH-R) peptides (32).
Complexing of HLA-DR3 with TSH-R may modify TSH-R

FIG. 1. Cytokine-mediated
cellular interactions in auto-
immune thyroid disease.
Resident cells recruit those
of the ‘‘professional’’ immune
system by elaborating che-
moattractant cytokines. These
cells infiltrate target tissue and
contribute to the cytokine
milieu. The cytokine profile
is dependent on the T cell
subtype recruited. Cytokine
actions are mediated pre-
dominantly through their
ligating cognate receptors.
Autoantibodies also target
and activate cells through
their occupancy of cell sur-
face receptors, including
TSHR and IGF-1R. PGE2

and hyaluronan production
is provoked by pro-
inflammatory cytokines.
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surface expression and TSH-R epitope presentation to the
immune system.

Systemic cytokine administration can result in thyroid
dysfunction. INF-a, used in the treatment of hepatitis, can
result in hypothyroidism (33,34). However, it can also pro-
voke hyperthyroidism and the generation of thyroid stim-
ulating immunoglobulins (TSI) (35). Patients developing
detectable TSI following INF-a therapy rarely manifest clini-
cal TAO (36). Thyroid dysfunction appears to occur more
frequently in patients with antecedent anti-TPO antibodies
(36,37) and is often irreversible (33). IL-2 administration can
also result in hypothyroidism likely via lymphocyte activa-
tion and secondary cytokine release (38,39). Surprisingly
perhaps, INF-g therapy does not culminate in autoimmune
thyroid disease (40). The mechanisms through which systemic
cytokines disrupt thyroid function have yet to be identified,
but may be related to direct effects on iodine organification.
Alternatively, they may enhance auto-antibody generation
(38,41,42).

The Role of Cytokines in the Pathogenesis of TAO

Orbital connective tissue remodeling in TAO results from
cytokine-dependent fibroblast activation (43). A key feature
of the histopathology found in TAO is the accumulation
of glycosaminoglycans, including hyaluronan. Infiltration of
connective tissue and extra-ocular muscle with immuno-
competent cells, such as T and B lymphocytes and mast cells
drives the tissue reactivity in TAO (44,45). The T cell pheno-
type predominating the active phase remains controversial
(46). Cytokines abundant in affected tissue have yet to be
adequately characterized but TNF-a, IL-1a and INF-g were
detected (47). mRNA encoding TNF-a, IL-1b, INF-g, IL-4, IL-6,
and IL-10 could also be detected in muscle and orbital fat (48).
Changes in the relative abundance of these cytokines during
the disease course have been suggested but these are not
convincingly documented.

In culture, fibroblasts from orbital tissue respond to several
cytokines (49,50). The anatomic site-selective involvement
of the orbit appears to be based, at least in part, on the un-
usual susceptibility of orbital fibroblasts to pro-inflammatory
molecules. When they are treated with IL-1b or leukoregulin,
a T cell–derived cytokine, expression of prostaglandin endo-
peroxide H synthase (PGHS)-2 is up-regulated in orbital fi-
broblasts (49,51) and results in increased prostaglandin
(PG)E2 production. While cytokines modestly increase PGHS-
2 gene transcription, they more substantially enhance PGHS-2
mRNA stability. The induction of PGE2 by IL-1b is blocked by
INF-g and IL-4 (52). This surprising result suggests that de-
spite the transition from Th1 to Th2 predominance as TAO
progresses from the active to chronic phase, modulation by
these cytokines could be maintained.

The impact of PGE2 on immunity is currently debated, but
the prostanoid biases naı̈ve (Th0) T cell development toward
the Th2 phenotype at the expense of Th1-type cells (53). This
would shift the profile of cytokines synthesized from IFN-g
responses to those mediated by IL-4, IL-5, and IL-13. PGE2

also influences B cell and mast cell development. Th1 cyto-
kines appear to predominate in active disease while Th2 may
characterize late (chronic and stable) TAO (54,55). Further-
more, Xia et al. (56) found a correlation between Th1 domi-
nance and the clinical activity score (CAS).

Like thyrocytes, orbital fibroblasts express high levels of
CD40. This receptor is displayed on the cell surface (57), and
its levels are induced by IFN-g. When CD40 is ligated with its
cognate ligand, CD154, signal transduction cascades are ac-
tivated, leading to the up-regulation of specific downstream
genes (57,58), including IL-6, IL-8, PGHS-2, and hyaluronan
synthesis. Orbital fibroblasts from patients with GD prolifer-
ate when incubated with autologous T cells, an effect de-
pendent on CD40–CD154 signaling (46). The CD40–CD154
bridge has been a major focus in the quest for effective therapy
of many diseases. Its interruption may represent a therapeutic
strategy for chronic inflammatory diseases such as rheuma-
toid arthritis.

Recently, fibroblasts, like thyrocytes, were shown to ex-
press high levels of the T cell chemoattractants IL-16 and
RANTES when activated by cytokines like IL-1b (59). In a
subsequent study, IgG isolated from patients with GD
(GD-IgG) induced particularly high levels of both IL-16 and
RANTES in fibroblasts of these same donors (60). Based on the
results of these studies, the fibroblast may be a key site for the
expression of T cell–activating cytokines, and GD-IgG may act
on fibroblasts to initiate T cell trafficking to affected tissues. A
recent observation concerns the identity of the self-antigen
recognized by GD-IgG. Pritchard and colleagues (61) found
that these IgGs bind to the insulin-like growth factor-1 re-
ceptor (IGF-1R), leading to the activation of fibroblasts. Thus,
it appears that a second autoantigen, the IGF-1R may be in-
volved in the pathogenesis of GD.

Cytokines As Potential Therapeutic Targets

Elevation in the levels of abundant cytokines in thyroid and
orbital tissues in GD provides a rationale for exploring the
therapeutic benefit that disrupting the relevant pathways
might yield. Yet virtually no well-controlled and sufficiently
powered studies have been conducted despite the availability
of several cytokine-disrupting agents. A case might be made
for blocking the TNF-a pathway, a potent pro-inflammatory
cytokine produced by monocytes, macrophages, and T lym-
phocytes. TNF-a protein and mRNA appear to be over--
expressed in orbital connective tissue in TAO (47,62). This
cytokine can induce intercellular adhesion molecule (ICAM)-1
expression in orbital fibroblasts (63). Moreover, serum levels
are elevated in patients with hyperthyroid GD although they
normalize following restoration of the euthyroid state (64). A
polymorphism in the TNF-a gene promoter has been associ-
ated with increased incidence of GD (65,66). Thus, targeting
TNF-a signaling might prove clinically useful for GD, par-
ticularly in cases of troublesome TAO. Three Food and
Drug Administration–approved TNF-a inhibitors, each with a
distinct mechanism of action, are currently available. These
have revolutionized the treatment of rheumatoid arthritis
and inflammatory bowel disease. Paridaens et al. (67), in a
prospective but uncontrolled study, examined the effects of
etanercept in patients with GD. This TNF-a inhibitor was
administered to 10 euthyroid patients with active TAO. Prior
to therapy, subjects had a mean CAS of 4. Following 12 weeks
of anti-cytokine therapy, the mean CAS improved to 1.6.
The majority of clinical improvement involved the soft tis-
sues. The degree of proptosis was unaffected. Overall, 60%
of the subjects reported moderate to marked improvement.
Durrani et al. (68) report a single patient presenting with
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sight-threatening TAO who appeared to benefit from in-
fliximab treatment. Despite a potentially central role in the
pathogenesis of TAO, no studies examining the potential
therapeutic benefits of interrupting the IL-1b pathway have as
yet been reported. This cytokine elicits a number of responses
in orbital fibroblasts and thyrocytes (10,51,63,69). Further-
more, it can be detected in the autoimmune thyroid gland (70)
and orbital tissues in TAO (62). Chen et al. (71) studied 95
subjects with GD and 163 healthy controls and found an IL-1b
gene promoter polymorphism that was associated with GD.
Anakinra represents a recombinant IL-1 receptor antagonist
used successfully to treat patients with rheumatoid arthritis.
Thus, although no convincing evidence currently supports
their use, agents targeting TNF-a and IL-1b would appear to
be good therapeutic candidates for TAO.

Summary

Altered actions and levels of several cytokines have been
reported in GD and TAO. Nonetheless, little understanding
currently exists concerning their specific roles in disease
pathogenesis. Additional studies into the complex interplay
between cytokines, residential cells and ‘‘professional’’ im-
mune cells recruited to the thyroid and orbit in GD should
provide additional clues as to how these molecular networks
provoke and sustain disease. Cytokines and their receptors
continue to represent potentially attractive targets for thera-
peutic intervention in aggressive and sight-threatening forms
of TAO.
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