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ABSTRACT

DNA-binding proteins perform vital functions
related to transcription, repair and replication. We
have developed a new sequence-based machine
learning protocol to identify DNA-binding
proteins. We compare our method with an extensive
benchmark of previously published structure-
based machine learning methods as well as a
standard sequence alignment technique, BLAST.
Furthermore, we elucidate important feature inter-
actions found in a learned model and analyze how
specific rules capture general mechanisms that
extend across DNA-binding motifs. This analysis is
carried out using the malibu machine learning work-
bench available at http://proteomics.bioengr.uic.
edu/malibu and the corresponding data sets and
features are available at http://proteomics.bioengr.
uic.edu/dna.

INTRODUCTION

DNA-binding proteins maintain, regulate, read and
replicate the fundamental code of life, DNA. These
proteins perform a diverse set of functions and span a
correspondingly diverse set of families having
low-sequence similarity. However, they are grouped
together by one well-defined characteristic: they all
interact with DNA. Due to the importance of DNA-
binding functions, it is desirable to develop a genome-scale
method to identify such proteins.

A number of techniques both computational and exper-
imental have been developed to identify proteins that bind
DNA and model interactions (1). Specific experimental
techniques range from filter binding assays (2) to
chromatin immunoprecipitation on microarrays (ChIP-
chip) (3). More general techniques, e.g. genetic analysis
(4) and X-ray crystallography (5), can be used to
provide a detailed picture of binding at the expense of
time and money. Hence, a number of in silico efforts

have investigated informative feature representations
over a range of machine learning algorithms. For
example, several groups have investigated structure-based
features for specific DNA-binding structural motifs (e.g.
helix-turn-helix) achieving 78% and 71% accuracy using a
hidden Markov model (6,7). Likewise, previous work
has also focused on a wider range of DNA-binding
proteins using a more general set of structure-based attri-
butes in conjunction with neural networks (8,9) and
random forests (10). This trend was further extended to
low-resolution homology models using logistic regression
and a novel set of structure descriptors (11) and using
unsupervised techniques (12). In addition, a number of
works have used physicochemical properties to classify
full-length sequences (13–15) (as opposed to single
domains). Notwithstanding, a number of methods (8,16–
23) have been developed to identify DNA-binding
residues. While knowing whether a protein contains
residues that bind DNA should be sufficient to categorize
a protein as DNA binding, current best results suggest
otherwise (24,25).
In previously published work, we have investigated the

prediction of proteins that bind DNA, RNA (24,25) and
membrane (25,26) using a combination of sequence and
structure features. Specifically, we achieved a balanced
86% accuracy (leave-pair-out iterated holdout) using
support vector machines (SVM) to discriminate
DNA-binding proteins that outperformed all previously
published results. Both previous and current works use
the malibu open source machine learning workbench (27).
In this work, we address limitations of previously pub-

lished work. First, while the number of solved structures
continues to increase at a fast pace, <1% of proteins have
a solved structure; this motivates our interest in reliable
sequence representations. Szilagyi and Skolnick (11)
attempted to resolve this issue by benchmarking their pre-
diction algorithm on low-resolution structures. However,
this technique requires knowledge of specific domain
boundaries on the sequence, which limits their training
set (predictive power of their algorithm) and its applica-
tion. Our proposed technique only requires a sequence
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and does not require domain boundaries scaling to
full-length sequences. Second, the rules that lead to a pre-
diction are often just as important as the prediction itself.
Several published works (11,24,25) analyze the models
learned by simple linear models. However, these
approaches lack the ability to elucidate relationships
between features only their relative importance or corre-
lation. Here, we consider a learning algorithm, ADTree,
which has a predictive power comparable with other
advanced machine learning techniques yet provides clear
relationships between features.
In the following, we will introduce the data sets, repre-

sentation and classifiers used to evaluate the performance
of the proposed approach. Then we will present results
both comparing directly to five previously published
works and analyzing the rules extracted from the learned
model. This will be followed by a discussion of the results
and future work.

MATERIALS AND METHODS

Data set

In order to compare with previous published work, we
have recreated five previously published data sets
(Table 1). The DNA-binding proteins for each data set
originated from one of two sources: the work of
Luscombe and Thornton (28) and the Nucleic Acid
Database (29). First, based on Luscombe and Thornton
(28), Stawiski et al. (30) collected a set of 54 DNA-binding
protein chains with no more than 35% sequence identity
(JMB03). Subsequently, Ahmad and Sarai (9) compiled a
set of 78 DNA-binding protein chains from a set of 62
representative structures (JMB04) and Bhardwaj et al.
(24) combined the data sets of both Stawiski and
Ahmad producing a set of 121 DNA-binding protein
chains (NAR05). Langlois et al. (25) filtered Bhardwaj’s
data set to 20% identity yielding 75 protein chains
(ABME07). Second, Szilagyi and Skolnick (11) went on
to construct the largest set of 138 DNA-binding protein
chains using the Nucleic Acid Database (JMB06).
Since a classifier requires both positive and negative

examples, each of the aforementioned work also con-
structed a set of proteins known not to bind DNA.
Many studies (24,25,30) used the PDBSELECT database
(31) applying a 25% identity cutoff to yield 250 protein
chains. Others (24) used a subset of the PDBSELECT, 238

proteins and Langlois et al. (25) used a more stringent
20% identity cutoff yielding 214 proteins from this same
set. Finally, two works (9,11) started with a representative
126 set of PDB chains (32) excluding DNA-binding
proteins giving a set of 110 protein chains.

We also created two more data sets. The first data set
combines the positive set from Szilagyi and Skolnick (11)
and the negative set from Stawiski et al. (30) creating a
data set with 388 protein examples (denoted as LEAC35
that stands for local environment amino acid composi-
tion). The second data set is similar to the first except
that the proteins in the positive set have been filtered
such that no two proteins share >25% sequence identity
using the Pisces Server (33) (LEAC25).

Feature representation

Most supervised machine learning algorithms require the
examples in a data set to have a fixed number of numerical
attributes describing the object of interest. We present a
novel representation of protein sequences called LEAC.
It considers both the type and environment of an amino
acid when calculating the composition of a sequence.
Since the structure of a protein performs a vital role in
its function, a powerful feature representation will
leverage structure information. Indeed, the secondary
structure (local regular structures) can be assigned with
some accuracy from sequence. The current implementa-
tion utilizes secondary structure propensities (34) using a
window similar to the original Chou–Fasman (35) of eight
residues on either side (using any window size from 6–10
yields similar results). Note that while pseudo amino acid
composition (36) also represents physico chemical
properties of sequence, it is primary concerned with
encoding sequence order correlations. In contrast, the
LEAC sequence representation attempts to encode a set
of special residue types conditioned on the local
environment.

Figure 1 illustrates the algorithm for calculating this
feature. First, the environment for a sequence is defined

Figure 1. Illustration of the calculation of local environment amino
acid composition.

Table 1. Statistics of data sets used in this work

Example Pos. Neg. Identity

JMB03 304 54 250 35/25
JMB04 188 78 110 25?/25
NAR05 359 121 238 35/25?
JMB06 248 138 110 35/25
ABME07 289 75 214 20
LEAC35 388 138 250 35/25
LEAC25 372 122 250 25/25

In the identity column, the first number refers to the identity of the
positive set and the second the negative set. ? indicates there is some
question to the accuracy of the number.
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as a property calculated over some window around (not
including) the current residue. In the figure, both beta
sheet and alpha helix propensity are summed,

P
, over a

window of three amino acids on each side of the current
residue (a lysine). Second, the property summed over the
windows is compared with a threshold yielding a single
digit of a binary number. Finally, this binary number is
converted to a decimal index of a composition array,
which is incremented by one.

Three versions of this descriptor are calculated, where
for each version two properties are considered. For
example, in one version the helix and sheet propensity
using a window around a specific amino acid is
compared against a threshold of 1 (the average of the
property over each type). Thus, for each amino acid,
there are now four amino acid types where: helix and
sheet both exceed the threshold; helix exceeds the thresh-
old; sheet exceeds the threshold; and neither exceeds the
threshold. The other two versions consider (helix, turn)
and (sheet, turn). Note, for each version we have 80
features yielding 240 when combining them together.

Two additional feature types compose the complete
feature description. The first is dipeptide composition,
which does not maintain the amino acid order (including
unknown amino acids) comprising 231 features. The third
feature type sums a certain property over the entire
sequence. In this case, we consider only the total charge
over the protein. While normalizing these features to
sequence length yields slightly better results, the
normalized values are less interpretable in the ADTree
model. In sum, there are 472 features to describe each
protein.

Classifiers

The following work utilizes two classifiers: boosted
decision trees and the ADTree. The boosted decision
tree classifier has an expressive model yet is resistant to
overfitting; a feature found in all state-of-the-art
classifiers. It serves as a basis to compare the new
sequence representation to those of previous work. The
ADTree classifier, however, has an interpretable model
that performs reasonably well on many data sets.
It serves to illustrate the relationships between important
rules making a prediction.

Boosted decision trees. The AdaBoost (37) algorithm
builds a weighted committee of weak learning algorithms
each trained over a biased distribution of the data set.
Specifically, the first classifier is trained over an
unbiased, uniform distribution and every subsequent
classifier uses a distribution biased toward mistaken
instances on previous rounds. Our current implementation
of the confidence-rated (38) AdaBoost algorithm uses a
custom decision tree with non-standard impurity (39) as
the weak learner. The number of boosting iterations was
chosen to be about five times the number examples in the
largest data set with 2048 iterations. The decision trees are
grown such that they reach no more than 90% accuracy.

Alternating decision tree. The alternating decision tree
(ADTree) algorithm (37) builds an option tree (a voted

decision tree) using the confidence-rated boosting algo-
rithm and decision stump in the manner first suggested
by Kearns and Mansour (40). An option tree (41)
(Figure 3) can be viewed as a forest of trees where every
node casts a weighted vote. The results reported here use
an ADTree stopped at 12 iterations (for clarity).

Classifier evaluation

The goal of classification is to find a function or model
that best generalizes the training data. To determine the
generalization performance of a classifier, it is necessary to
evaluate the trained model over unseen examples from a
held-out test set. Given the small size of this data set,
n-cross-validation is demonstrably superior to holdout
(42). A common choice for n, the number of folds, is 10.
Moreover, we perform stratification to maintain the class
distribution in each partition. Note, for this experiment
every classifier is trained and tested over the same
random partitions.
The performance of the classifier cannot be entirely

summarized with a single metric. Furthermore, a set of
metrics cannot sum up classifier performance in every
situation (e.g. different class distributions). Thus, we
compare both receiver operating characteristic
(ROC) curve and several metrics for each
algorithm. Specifically, we report the accuracy
TPþ TN=TPþ TNþ FPþ FN, and Matthews correla-

tion coefficient (MCC) TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTNþFNÞðTNþFPÞðTPþFNÞðTPþFPÞ
p , sen-

sitivity TP=TPþ FN, specificity TN=TNþ FP, and area

under the ROC curve.

RESULTS

This work primarily achieves two goals. First, we demon-
strate that our proposed method, which uses
physicochemical features derived from sequence,
performs comparably with previous structure-based
approaches. We also directly demonstrate that the
proposed method predicts nucleic acid binding function
even when sequence identity falls below 20%, where
sequence alignment techniques can no longer recognize
homology. Second, we derive a set of rules from a
learned model that characterize DNA-binding proteins.
We define several measures for rule importance and
apply them to select a subset of rules. We subsequently
validate these rules using examples from literature.

Performance of proposed method

The first goal of our work is to compare this method
directly with a standard sequence alignment method,
BLAST (43). This comparison was performed on the
same training and test partition for each fold of
cross-validation. For this analysis, the class of top hit
from the BLAST algorithm was used to predict the label
of a test sequence and the negative log of the e-value was
the corresponding confidence.
Based on the BLAST results in Table 2, we can group

data sets into three categories: hard, medium and easy.
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Over the hard data sets (JMB03, LEAC35, LEAC25)
where BLAST can only achieve �70% AUC, our
method outperforms BLAST by �20%. Over the
medium data set (JMB06) where BLAST performs
�80% AUC, this difference is cut to �13%. Over the
easy data sets (JMB04, NAR05) where BLAST can
already achieve 90% AUC, our method still improves
upon BLAST by �7%. This analysis provides a fair
assessment of the performance with respect to the diffi-
culty of each data set in benchmark. Such a rigorous
assessment demonstrates that our method performs
consistently over data sets with various levels of difficulty.
The comparison drawn on the last two data sets illus-

trates the power of the protocol proposed in this work.
Specifically, reducing the redundancy by 10% causes
BLAST to perform �7% worse in terms of AUC;
however, the new protocol loses less than a single percent-
age point. The main advantage of the proposed sequence
representation is that it still captures characteristics that
define the DNA-binding function from sequence even
when there is little sequence similarity in the data.
Along with the comparison to BLAST, we also compare

this approach with previous published works. Our goal is
to build a classifier that accurately predicts DNA-binding
proteins from sequence since protein sequence is often the
only available information. To this end, we reconstructed
five previous protein sequence data sets with known

structures for direct comparison (9,11,24,25,30). We
validate our protocol with 10-fold cross-validation. In
addition, we constructed two new data sets combining
the positive and negative sets from Szilagyi and Skolnick
(11) and Stawiski et al. (30), respectively.

Table 2 compares our new method, boosted trees with
the LEAC descriptor (OURS), to previous work
(9,11,24,25,30) and the BLAST sequence alignment tool.
Over all the data sets our method performs competitively
with previous work, with the possible exception of JMB03.
The JMB03 data set has considerably less DNA-binding
examples than any other data set (Table 1). Note that
using leave-one-out cross-validation (instead of 10-fold)
increases the area under the ROC curve to 91.1
(Table 2). Indeed, since we expect structure-based
features to capture more robust characteristics, it is not
surprising that our sequence-based method performs
worse over this small data set. The comparison over the
ABME07 data set is the closest in that both use the same
algorithm, boost trees; it demonstrates that the new
sequence description performs well irrespective of the
algorithm used. The last two data sets, LEAC35 and
LEAC25, evince that this new protocol performs well on
larger (LEAC35) and more stringent (LEAC25) data sets.
In addition, Figure 2 compares our new method with ones
proposed by Szilagyi and Skolnick (11) (sequence and
structure). It shows that our method does better than

Table 2. Comparison of new protocol with previous work and BLAST

Accuracy MCCa Sensitivity Specificity AUCb

JMB03
BLAST 79.3 21.5 27.8 90.4 66.0
OURS 89.1 66.2 48.1 98.0 90.3 (91.1)c

Stawiski et al. (30) 92.0 74.0 81.0 94.4 –
Szilagyi and Skolnick (11) – 73.0 – – 93.0

JMB04
BLAST 81.4 70.4 80.8 81.8 90.5
OURS 89.9 84.9 84.6 93.6 97.1
Ahmad and Sarai (9) 83.9 68.0d 80.8 87.0 -
Szilagyi and Skolnick (11) – 79.0 – – 95.0

NAR05
BLAST 82.4 70.2 75.2 86.1 90.3
OURS 94.7 88.8 88.4 97.9 96.7
Bhardwaj et al. (24) 86.3 – 80.6 87.8 –

JMB06
BLAST 71.8 45.1 79.7 61.8 80.1
OURS 85.9 74.8 89.9 80.9 93.4
Szilagyi and Skolnick (11) – 74.0 – – 93.0

ABME07
BLAST 72.7 32.5 42.7 83.2 69.0
OURS 89.6 74.3 69.3 96.7 91.3
Langlois et al. (25) 88.5 – 66.7 96.3 88.7

LEAC35
BLAST 72.9 46.3 59.4 80.4 74.9
OURS 84.0 69.5 68.8 92.4 92.3

LEAC25
BLAST 69.4 28.6 42.6 82.4 67.8
OURS 84.7 66.2 64.8 94.4 91.5

aMaximum MCC from ROC curve.
bArea under the ROC curve.
cUsing leave-one-out cross-validation instead of 10-fold.
dMetric calculated from original published data by Szilagyi and Skolnick (11).
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their sequence-based technique for more of the graph and
performs comparably with their structure-based tech-
nique. Moreover, while both method dominate BLAST
by a considerable margin over much of the plot, only
our method dominates BLAST over the entire graph.

Knowledge extraction

Extracting useful rules from expressive state-of-the-art
classifiers such as boosted trees or SVMs remains an
open problem. Nevertheless, simpler classifiers such as
decision trees (pruned to a relatively small size) can
provide useful rules but generally perform poorly
compared with more expressive classifiers. One compro-
mise between performance and interpretability is the
ADTree classifier; it has a generalized decision tree
model that is built using a boosting-type algorithm. By
analyzing the ADTree model, we can gain insights into
the relationships between the characteristics that define
protein–DNA interactions. First, we will define a set a
criteria to judge the relevance of a propensity rule in the
context of the model. Second, we will examine individual
features and their relationships using this criteria. Third,
we will use two groups of DNA-binding proteins,
helix-turn-helices and nucleases, to illustrate the biological
relevance of this knowledge. Note that the ADTree model
achieves 87% AUC with both 10-fold cross-validation and
bootstrapping 1000 models over the JMB06 data set.

Measuring rule importance

The ADTree model shown in Figure 3, contains 12 nodes
and encodes 15 different rules (paths to a leaf prediction)
and was built over the entire data set. Only a subset of
these rules are important to and robust in defining the
characteristics of a DNA-binding protein. In the follow-
ing, we investigate rules using three criteria to select
relevant rules:

. Robustness: How conserved is this rule to perturba-
tions of the data set?

. Quality: Does this rule help us understand the class of
interest?

. Support: How many examples support this rule from
the majority class?

First, the robustness of a rule is determined by
bootstrapping the model 1000 times and counting the
number of times a rule appears in each bootstrapped
model. This count is represented on the tree by a color
code (Figure 3). Second, the quality of a rule depends on
the class of interest and the problem domain. For
DNA-binding proteins, we are interested in rules that
reflect the protein properties that facilitate binding
DNA. The third criterion, support, helps to define the
context of a rule in the model. That is, the support
measures the number of examples in the majority class
that are correctly predicted by the model.
Among the relevant features found using the above

criteria: charge, arginine, lysine, leucine and histidine
compose nearly all of these features. These features
compose elements that are known to be important to
DNA binding and suggest that the model largely
captures relevant information about the data.

Extracted rules

The ADTree model automatically extracts relevant
rules from a training set consisting of only sequence infor-
mation. Below, we will validate these rules by providing
supporting experimental evidence from literature or
from the 3D structure of the protein–DNA complex.
The proposed method will be able to extract more rules
when a larger training set is available. Note that
while these rules are presented separately, they have a
implicit dependence, which is captured by the weighted
voting.
We use the following notations for a single predicate of

a rule:

. LhT > 10 (more than 10 leucine in an environment
with high turn propensity)

. LhT (5) (rule number 5)

Both of these notations refer to the same rule. The first
notation explicitly lays out the predicate while the second,
abbreviated notation uniquely identifies the predicate in
the tree. When two predicates such as charge (1) and
LhT (5), have a relationship in the tree, they form a rule
where each predicate is combined using a conjunction, e.g.
fcharge < 2:6g ^ fLhT > 10g. In each notation, the
primary letter corresponds to the single letter for a
residue and the second two letters indicate the environ-
ment. There are three possible environment codes: H, T,
S. If the code is capitalized (e.g. H) this indicates there is a
high propensity for the environment, e.g. H means envi-
ronment with high helix propensity. A lower case letter
indicates low propensity and the absence of the letter
says nothing about the propensity.

fcharge > 2:6g. It was noted from the first solved protein–
DNA complex that the side chains of surface residues in
contact with DNA had a predominately positive charge
(44). The role of charge and its distribution throughout
the proteins structure has been extensively studied by

Figure 2. A ROC comparison of the new sequence-based feature rep-
resentation and Boosted Trees with the JMB06 structure-based
protocol and BLAST.
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Ahmad and Sarai (9) and served as an important feature
in their classifier; likewise, other groups have included
features based on charge in the form of positive surface
patches (24,30). While the charge distribution throughout
a structure has been found to be an important feature, the
overall charge of a sequence (number of positively charged
versus negatively charge amino acids) also provides a
decent feature (11,24).
This work also finds charge to be an important

feature. While the ADTree illustrated in Figure 3 was
built over the JMB06 data set, this feature is found to
be important regardless of the data set and only the
threshold varies slightly. Having a charge greater than
2.6 characterizes 88 of 138 DNA-binding proteins and
only 13 of 110 non-DNA-binding proteins. Both the
zinc-coordinating and the zipper-type subgroups are
completely characterized by a significant number of posi-
tively charge residues. At the same time, a majority of
hydrolases and transferases tend not to have a significant
positive charge; this issue will be addressed later.

fcharge < 2:6g ^ fLhT > 10g. Not all DNA-binding
proteins have a significant positive charge; rules in
other branches as well as subbranches serve to
correctly classify these ‘more negatively charged’
proteins. Notwithstanding, the negatively charged
residues serve to ligate divalent cations, which catalyze
cleavage. For example, a number of restriction enzymes
require metal ions (e.g. Mg2þ) to cleave DNA such as
MunI (1D02) (45,46). A number of binding sites have
been observed on restriction enzymes leading to a
number of proposed mechanisms. Some mechanisms
propose that under certain conditions other cation
binding sites serve to regulate enzyme activity, e.g.
EcoRI (1CL8) (47). It has also been suggested that
calcium ions may be required to reduce electrostatic repul-
sion, e.g. MunI (1D02) (46). In contrast, positively
charged nucleases such as EcoRV (1SX5) and I-CreI
(1G9Z) have different methods of regulation. In this
case, binding affinity is not modulated by the concentra-
tion of specific cations. Instead, one proposed mechanism

Figure 3. An ADTree built over the JMB06 data set. The square nodes in the model hold the name of the feature and order it was learned. The
round nodes hold the weighted vote where a positive number predicts DNA binding. Below the square node is the threshold of prediction, if this
number is exceeded then the right path is taken, otherwise the left. Below each path in the tree, there is a set of numbers in the format counted/total
for the prefixing DNA-binding subgroup.
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for EcoRV suggests that DNA initially docks near the
active site and a conformation change must be triggered
before catalysis can begin (48).

One important subrule that serves to correctly classify
negatively charged DNA-binding proteins is LhT (5),
which captures leucine residues in regions with high loop
propensity that make non-specific contacts to DNA, e.g.
PvuII endonuclease (3PVI). Looking at the representative
structure of the PvuII endonuclease in Figure 4a, 5 of the
ten leucines in a turn environment make non-specific
contacts with DNA. The turn environment is defined by
sequence not structure; thus, some of the leucines fall in
sheets near a loop, while others actually fall on loops.
Since this feature is learned over negatively charged
proteins and nucleases rather than transcription factors
tend to be negatively charged, it reflects nucleases rather
than (more intuitively) transcription factors known to
have a high proportion of leucine such as leucine
zippers. Notwithstanding the principle interaction
between the hydrophobic leucine and thymine base
remains the same (49).

fRhS < 3g ^ fRsT > 2g. Another important rule
characterizing DNA-binding proteins is the presence of
an arginine found in an environment with high sheet pro-
pensity (and low helix propensity). This rule characterizes
15 DNA-binding proteins more than charge, yet at the
same time characterizes more than two times the number
of non-DNA-binding proteins (Figure 4c). This rule fully
characterizes a number of subgroups including other
DNA-binding proteins, transferases and zipper type.
However, a number of groups are only partially
characterized by this feature. For instance, this arginine
distinguishes the repair enzyme, T4 endonuclease V
(1VAS), from the other positively charged nucleases.
This is consistent with the view that arginine is more
important for site-specific recognition in direct readout
(e.g. Human AAG DNA repair glycosylase, 1EWN),
whereas this repair enzyme uses indirect readout to find
a lesion on the DNA (50).

The RsT rule corrects the previous RhS for cases where a
DNA-binding protein may not have sufficient arginine in a
sheet environment but has a sufficient number in a turn
environment. Indeed, this rule accounts for �20% support
of the DNA-binding proteins. This rule seems to correct
for DNA-binding proteins that have a portion of
arginine in more flexible environments such has HTH or
restriction enzyme endonucleases. Similarly, intron
homing endonucleases (e.g. I-CreI, 1G9Z or endonuclease
I-PpoI, 1A73) have lengthy recognition sequences, which
are characterized by arginines on flexible loops (51). This
rule seems to better characterize such DNA-binding
proteins.

fASt > 27g ^ fHST > 2g. The alanine rule (at the start) has
two interpretations: (i) it separates proteins with large
flexible regions from other less flexible proteins or (ii) it
characterizes smaller proteins as more likely to be
DNA-binding (smaller in that they have less alanine
since they are smaller). In either case, this rule is not
very interesting and will be discussed later. The histidine
rule (following the alanine rule) holds more interest in its
characterization of specific proteins and subgroups
(Figure 4b), such as hydrolases and transferases. In
some cases, specific histdines that fall in this environment,
such as His85 in PvuII, assist in direct readout (52). It also
serves to coordinate metal ions in proteins, such as
DNA-binding helix-turn-helix diphtheria toxin repressor
(1DDN) (53) and serves in catalysis, e.g. His98 in
endonuclease I-PpoI (1A73) (54).

Other Rules. The examples, thus far, cover rules that meet
the previous described criteria identifying important rules
yet a number of rules fail to meet this criteria. For
example, the ADTree model in Figure 3 comprises,
atypically, three distinct trees that additively contribute
to the entire model. Two of the three trees are rooted
with the conserved feature charge and a number of
arginine found in an environment that prefers a beta
sheet structure. Yet, the third root is feature that checks

Figure 4. Several example protein structures bound to DNA. (a) 3PVI illustrating turn leucine residues in contact with DNA. (b) 3PVI illustrating
turn histidine residues in contact with DNA. (c) 1ECR illustrating sheet arginine residues in contact with DNA.
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for a larger number of alanine residues found in an envi-
ronment that prefers a sheet structure. This feature
predicts that proteins bind DNA only if they do not
contain this characteristic; moreover less than half of the
DNA-binding proteins fall in this category while more
than half of the non-binding proteins do not. Thus, this
rule is not conserved, has low support and is not interest-
ing; this learned rule may be an artifact of a small data set.
In addition, the internal nodes of the ADTree mainly
consist of relevant features with the probable exceptions
of both the conditional glycine and aspartate found
in the rightmost tree. Similar to the conditional alanine
feature mentioned earlier, both of these features predict
the negative class with their abundance and thus they
could be artifacts of the small data set.

DISCUSSION AND CONCLUSION

This work has introduced a new representation of
sequence that implicity captures residues of functional
importance. Since the function of a protein is determined
by several residues in coordination, the local environment
of a residue can determine its functional role. One advan-
tage of this technique is that it yields a sparse representa-
tion, which permits efficiently learning even with a large
number of features (this is similar to the advantage held
by the bag-of-words representation in text mining). While
our current work considered only secondary structure pro-
pensity, this feature representation can be extended to
encode any number of properties that can be derived
from either sequence or structure.
This work performed a rigorous benchmark comparing

this new protocol with previously proposed machine
learning methods and BLAST. We found that this
method could accurately discriminate DNA-binding
proteins even when the sequence identity was low. This
performance was comparable with previously proposed
methods and significantly better than BLAST. We dem-
onstrate that our current sequence-based method can
perform very well, and thus, will give reasonable results
when applied to a genome-scale DNA-binding protein
prediction.
The knowledge mined from the ADTree algorithm

illustrated that many of the rules relate better to binding
mechanisms crossing the boundaries of structural classes.
Unlike previous work (11), we choose to subdivide the
DNA-binding proteins by function then by structure
(in the case of transcription factors). Even in this more
rigorous subdivision, we find that most of the rules
learned work across subgroups rather than specifically
for certain subgroups. This is due to the fact that such
features capture underlying mechanisms of function
rather than function itself. For instance, both certain
transcription factors as well as enzymes require ions
to bind DNA and thus tend to be negatively charged
and require histidine for ion coordination. One interesting
feature found to discriminate DNA-binding proteins well
in the ADTree model is arginine found in a sheet environ-
ment. It is well known that arginine is found in many

favorable DNA-binding interfaces; however, it is not
quite clear why an arginine in a sheet environment
better discriminates DNA-binding proteins.

To assess how a classifier built over a set of known
domains scales to a genome-wide analysis, we apply the
learned model to a well-characterized genome,
Saccharomyces cerevisiae. Since our prediction is on the
domain level, we use a data set already parsed into
domains by an automatic algorithm (55). The resulting
data set has 14 374 domains and our algorithm predicts
21% (3138) to bind DNA and the other 79% (13 203)
as non-DNA binding. Except for domains with experi-
mentally derived 3D structures, there is no large data set
with experimentally verified DNA-binding annotation
on the domain level. However, on the protein level,
we found that out of 329 annotated DNA-binding
proteins (as annotated by the SwissProt), 263 (or 80%)
consist of domains predicted by our method as DNA
binding.

Beyond the problem of domain parsing, there are
additional problems to constructing a training set from
genome-wide data. First, as pointed out previously, most
of the labeled data is on the full sequence level rather than
the domain level. To build a training set, we would either
have to use the full sequences and deal of considerable
noise at the feature level or use parsed domains and deal
with considerable noise on the class label level. Second,
the training set would have to be non-homologous or the
resulting classifier will be biased toward overrepresented
sequences. The currently available software to handle this
problem, can only reduce the redundancy (reliably)
to 40% sequence identity and this is not sufficient for
our needs. We require at least 25% sequence identity.

In future work, we plan to extend this protocol
to large-scale sequence databases. In order to accurately
access (and motivate) this protocol, we face the challenge
of constructing a properly annotated non-redundant data
set. Over such a data set, sequence-based analysis
techniques such as BLAST will perform poorly; yet this
protocol will yield stable, accurate results. We also plan
to apply this method to discriminate other functions; the
challenge here will be to create an algorithm that automat-
ically constructs relevant patterns for other functions.
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