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Abstract
Syntheses, molecular structures and magnetic susceptibilities of three meso-substituted high-spin
iron(III) porphyrinate complexes ([Fe(TEtP)(Cl)], [Fe(TPrP)(Cl)], and [Fe(THexP)(Cl)]) are
described. It was determined that the inter-ring interactions within each dimeric unit change upon
alteration of the alkyl groups at the meso-positions. Magnetic exchange couplings between iron
centers of the dimers are in accord with the trends in structural inter-ring geometries. Crystal data
for [Fe(TEtP)(Cl)]: a = 10.1710(5) Å, b = 11.309(3) Å, c = 12.170(3) Å, α = 91.774(9) °, β = 113.170
(14) °, γ = 112.149(9) °, V = 1165.2(4) Å3, triclinic, P1̄, Z = 2, R1 = 0.0844 and ωR2 = 0.2073 for
observed data. Crystal data for [Fe([Fe(TPrP)(Cl)])(Cl)]: a = 13.040(2) Å, b = 15.221(2) Å, c =
14.6681(9) Å, β = 109.997(11) °, V = 2735.9(7) Å3, monoclinic, P21/n, Z = 4, R1 = 0.0477 and
ωR2 = 0.1176 for observed data. Crystal data for [Fe(THexP)(Cl)]: a = 10.246(7) Å, b = 12.834(4)
Å, c = 17.420(15) Å, α = 69.74(3) °, β = 87.52(4) °, γ, = 84.89(3) °, V = 2140(2) Å3, triclinic, P1̄,
Z = 2, R1 = 0.1024 and ωR2 = 0.2659 for observed data.
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Introduction
It is well-known that π–π interactions between two or more porphyrin molecules in close
proximity are present in photosynthetic proteins, including light-harvesting chlorophyll arrays
[1] and the photosynthetic reaction center special pair.[2] The interactions have played a critical
role in electron(or energy)-transfer process in photosynthetic proteins. Scheidt and Lee[3]
surveyed the inter-ring geometry for all structurally characterized neutral porphyrin dimers.
They noted that the observed lateral shifts tend to cluster around specific values rather than
displaying a continuous distribution. It has been shown that such dimerizations have a strong
effect on the chemical reactivity and spectroscopic properties of the porphyrinato complexes.
[4]–[6]
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Studies on the replacement of meso-aryl substituents in metallotetrarylporphyrins by alkyl
groups have attracted much attention recently owing to the fact that the alkyl-substituents may
profoundly inuence the molecular and electronic structure as well as catalytic properties of the
resulting complexes.[7]–[28] In the present work, we describe the synthesis and
characterization of a series of meso-(tetraalkylporphinato)iron(III) chloride complexes. Their
molecular structures indicate that inter-ring interactions change with alteration of the alkyl
group substitutions in the meso positions. Also, we have investigated the effect of such inter-
ring interaction on magnetic exchange interactions between the iron centers of these meso-
alkyl substituted porphyrinates.

Experimental Section
General Information

Dichloromethane was distilled over potassium carbonate and hexanes were distilled over
sodium benzophenone. All other chemicals were used as received from Aldrich or Fisher.
meso-Tetra-n-propylporphyrin (H2TPrP) was prepared according to Neya’s method,[29] while
meso-tetraethylporphyrin (H2TEtP) and meso-tetra-n-hexylporphyrin (H2THexP) was
prepared according to Lindsey’s method.[30] Iron was inserted into the three H2-meso-
tetraalkylporphyrinato derivatives by standard methods.[31] UV-vis spectra were recorded on
a Perkin-Elmer Lambda 19 spectrometer and IR spectra on a Perkin-Elmer model 883 as KBr
pellets. EPR spectra were obtained at 77 K on a Varian E-12 spectrometer operating at X-band.

Structure Determinations
Single crystals of [Fe(TPrP)(Cl)][32] and [Fe(TEtP)(Cl)] were obtained by slow di_usion of
hexanes into a CH2Cl2 solution of the metalloporphyrin, whereas single crystals of [Fe(THexP)
(Cl)] were obtained by slow evaporation of a concentrated CH2Cl2 solution. X-ray diffraction
data for all the complexes were collected on a Nonius FAST area-detector diffractometer with
a Mo rotating anode source (λ̄ = 0.71073 Å). Our detailed methods and procedure for small
molecule X-ray data collection have been described previously.[33]

The structure of [Fe(TPrP)(Cl)] was solved by Patterson methods, while [Fe(TEtP)(Cl)] and
[Fe(THexP)(Cl)] were solved by direct methods.[34] All remaining non-hydrogen atoms were
located by difference Fourier synthesis. The structures were refined against F2 using the
program SHELXL-93,[35] in which all data collected were used including negative intensities.
Hydrogen atoms of the porphyrin ligands and the solvent molecule were idealized with the
standard SHELXL-93 idealization methods. A modified[36] version of the absorption
correction program DIFABS and extinction were applied for [Fe(TEtP)(Cl)] and [Fe(THexP)
(Cl)]. For [Fe(THexP)(Cl)], it was found that three hexyl substituents were disordered. One
hexyl chain is disordered over two half-occupied positions (C(80) to C(85) and C(90) to C
(95)). The last three carbon atoms of another hexyl group are disordered; C(4) to C(6) have
refined occupancies of 0.76, while C(41) to C(61) have occupancies of 0.24. In the third
disordered hexyl group, the final methyl group is disordered over two positions (C(24) and C
(240)) with refined occupation factors of 0.63 and 0.37, respectively. There is one
dichloromethane molecule with an occupancy factor of 0.10. Brief crystallographic data for
all three complexes are listed in Table 1. Complete crystallographic details are available from
the CCDC (Supporting Information).

Magnetic Susceptibility Measurements
Magnetic susceptibility measurements were obtained on ground samples (immobilized in Dow
Corning silicone grease) in the solid state over the temperature range 6–300 K on a Quantum
Design MPMS SQUID susceptometer. Measurements at two fields (2 and 20 kG) showed that
no ferromagnetic impurities were present and that preferential orientation of unpaired spins
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was not taking place. χM was corrected for the underlying porphyrin ligand diamagnetism
according to previous experimentally observed values;[38] all remaining diamagnetic
contributions (χdia) were calculated using Pascal’s constants.[39];[40] All measurements
included a correction for the diamagnetic sample holder and the diamagnetic silicone grease.

Results
The molecular structures of three meso alkyl-substituted (chloro)iron(III) porphyrinate
derivatives have been determined. The three iron porphyrin complexes differ in the length of
the alkyl side chains with meso-substituents of ethyl, [Fe(TEtP)(Cl)], n-propyl, [Fe(TPrP)(Cl)],
and n-hexyl, [Fe(THexP)(Cl)]. A labeled ORTEP diagram of [Fe(TPrP)(Cl)] is shown in Figure
1. Labeled ORTEP diagrams of [Fe(TEtP)(Cl)] and [Fe(THexP)(Cl)] can be found in Figure
2 and Figure 3. Table 1 details selected crystallographic details for all three complexes.

Bond distances and bond angles around the iron(III) atom in the three derivatives are listed in
Table 2. Figure 4a–c presents formal diagrams of the porphinato cores in [Fe(TEtP)(Cl)], [Fe
(TPrP)(Cl)], and [Fe(THexP)(Cl)], respectively, displaying the perpendicular displacements
of each atom from the 24-atom mean plane of the porphinato core. Figure 4 also contains the
average bond lengths and bond angles (including standard deviations) for each complex. The
porphyrin core of [Fe(TEtP)(Cl)] (Figure 4a) is planar, while the porphyrin cores of [Fe(TPrP)
(Cl)] and [Fe(THexP)(Cl)] are S4– ruffled (Figures 4b and 4c).

Solid-state π–π dimer formation is seen in all three [Fe(TalkylP)(Cl)] complexes. Figure 5a–c
shows edge-views and top-views of the closest interacting pair of porphyrin dimers for [Fe
(TEtP)(Cl)], [Fe(TPrP)(Cl)], and [Fe(THexP)(Cl)], respectively. The inter-ring geometries for
each dimer, including Fe…Fe and Ct…Ct distances, lateral shifts (L.S.), and mean plane
separations (M.P.S.), are summarized in Table 3.

Temperature-dependent magnetic susceptibility measurements were carried out on the [Fe
(TEtP)(Cl)] and [Fe(TPrP)(Cl)] complexes over the temperature range 6–300 K. Figure 6
shows the temperature-dependent magnetic moments for both complexes.

Discussion
Crystal Structures

The general trends in bond lengths and bond angles for all three [Fe(TalkylP)(Cl)] complexes
are similar to those found in [Fe(TPP)(Cl)][41] and [Fe(OEP)(Cl)].[42] The coordination
geometry of the iron centers in the [Fe(TalkylP)(Cl)] complexes is characteristic of high-spin
iron(III) porphyrins. The equatorial Fe–Np bond lengths in [Fe(TEtP)(Cl)], [Fe(TPrP)(Cl)],
and [Fe(THexP)(Cl)] (2.053(5) Å, 2.058(8) Å, and 2.060(6) Å, respectively) fit nicely into the
category of typical high-spin Fe–N distances (≥ 2.045 Å).[43] A close inspection of bond angles
reveals significant differences in the Fe–N–C(a) angles when comparing [Fe(TEtP)(Cl)] to [Fe
([Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] (Figure 4). In [Fe(TEtP)(Cl)], the two types of Fe–N–C
(a) angles are nearly equivalent [126.5(2) ° and 125.7(4) °] and are similar to those found in
[Fe(TPP)(Cl)][41] [126.9(8) ° and 125.8(6) °] and [Fe(OEP)(Cl)][42] [126.3(6) ° and 126.5
(5)°]. In contrast, [Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] have two distinct types of Fe–N–C(a)
angles with one of the angles being larger than the other [128.1(2) ° and 124.5(7) ° for [Fe
(TPrP)(Cl)] and 127.4(2) ° and 124.9(3)° for [Fe(THexP)(Cl)]]. The differences in Fe–N–C(a)
angles are apparently the result of the change in macrocyclic conformations among these
complexes. In [Fe(TEtP)(Cl)], the macrocycle is basically planar, as evidenced by an average
deviation of the macrocycle carbon atoms from the 24-atom mean plane of 0.03 Å, and a
maximum displacement of 0.06 Å (Figure 4a). The macrocycles of [Fe(TPrP(Cl)] and [Fe
(THexP)(Cl)] are ruffled to reduce steric interactions between the meso-alkyl and neighboring
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pyrrole groups. The average and maximum deviations of the macrocycle carbon atoms from
the 24-atom mean plane of [Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] are 0.18 Å and 0.38 Å, and
0.15 Å and 0.33Å, respectively. Thus, ruffling of the macrocycles of [Fe(TPrP)(Cl)] and [Fe
(THexP)(Cl)] contributes to the significant differences in Fe–N–C(a) angles found in these two
complexes. The effects of ring ruffling are also reflected in the coordination environment of
the iron centers; the out-of-plane displacement of the Fe atom in planar [Fe(TEtP)(Cl)] (0.48
Å) is slightly smaller than those found in ruffled [Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] (0.57 Å
and 0.55 Å, respectively). Additionally, compared to planar [Fe(TEtP)(Cl)], an increase of the
Fe–Np distances accompanied by a decrease of the Fe–Cl bond lengths is observed in ruffled
[Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] (see Table 2).

In addition to the differences in ring conformations, the inter-ring interactions among the [Fe
(TalkylP)(Cl)] dimers are dramatically different. The lateral shift values increase from ethyl
to hexyl groups (Table 3). The lateral shift of [Fe(TEtP)(Cl)] is 3.79 Å, which falls into the
intermediate (I) group, as defined by Scheidt and Lee,[3] whereas the dimeric units of [Fe
(TPrP)(Cl)] and [Fe(THexP)(Cl)] show weaker interactions (Group W) with larger lateral shifts
(4.29Å and 4.48 Å, respectively). The differences in lateral shifts among these complexes can
be attributed to the orientation of the meso-substituents of the porphyrin rings. Each porphyrin
in [Fe(TEtP)(Cl)] has two ethyl groups pointing up and two pointing down in an orientation
as to favor inter-ring overlap. However, [Fe(TPrP)(Cl)] and [Fe(THexP)(Cl)] have alternating
up and down meso-substituents which leads to less favorable inter-ring overlap.

Magnetic Susceptibility Measurements
Temperature-dependent magnetic susceptibility measurements were carried out on [Fe(TEtP)
(Cl)] and [Fe(TPrP)(Cl)] to investigate the differences in magnetic exchange between the high-
spin iron(III) metal centers of these porphyrinate dimers. To date, high-spin ferric porphyrin
complexes have been thoroughly investigated by using physical techniques such as EPR,
Mössbauer, and NMR; however, relatively few detailed and accurate magnetic susceptibility
measurements of high-spin mononuclear iron(III) porphyrins have been carried out over a wide
range of temperatures. For example, magnetization studies of ferric tetraphenylporphyrins
were carried out at field strengths of up to 50 kG but were only studied between a narrow
temperature range (2–20 K).[44] Original magnetic susceptibility data for [Fe(OEP)(Cl)][42]
were reported at only a few temperatures and showed large scatter; recently, more accurate
data for this compound has been reported from 4–100 K.[46] Although it is the lower
temperature region that is most informative concerning the magnitude of the magnetic
exchange interaction, large temperature ranges are helpful in determining a model that more
thoroughly describes the magnetochemistry of the complex.

The temperature-dependent magnetic susceptibility plot (6–300 K) for [Fe(TPrP)(Cl)] (Figure
6) is characteristic of a high-spin iron(III) complex; the room temperature µeff value of 5.90
corresponds with the spin-only moment for a S = 5/2 center, and the zero-field splitting
parameter (6.95 cm−1) is typical for this class of compounds.[47] The coupling constant derived
from _tting the magnetic data for [Fe(TPrP)(Cl)] implies that there is an antiferromagnetic
magnetic exchange interaction JS⃗1 · S⃗2 between iron centers of J = +0.17 cm−1. The
temperature-dependent magnetic susceptibility plot for [Fe(TEtP)(Cl)] shows similar high-spin
iron(III) characteristics (assuming a zero-field splitting parameter identical to that found in the
[Fe(TPrP)(Cl)] case), but is best described as having a magnetic exchange coupling constant
about two times as large as that found in [Fe(TPrP)(Cl)].

As can be seen in Table 3, there is a relatively large difference between the intermolecular
geometric parameters of [Fe(TPrP)(Cl)] and [Fe(TEtP)(Cl)]. Most importantly, the Fe…Fe
separation in [Fe(TEtP)(Cl)] (5.60 Å) is much smaller than that found in [Fe(TPrP)(Cl)] (6.44
Å). Also, as can be seen in Figures 5a and 5b, the porphyrin overlap pattern is different for
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these two complexes. Thus, there is apparently a correlation between proximity of the iron
centers of the dimeric unit and magnitude of magnetic exchange for these two complexes;
stronger magnetic interaction between the iron centers of [Fe(TEtP)(Cl)] is most likely due to
the closer proximity of the magnetic centers within the dimeric unit.

Thus, magnetic exchange coupling is found to be sensitive to modest structural changes
between porphyrin dimer geometries, and this exchange interaction must be included in any
detailed analysis of the data. In fact, it was reported that, in [Fe(OEP)(2-MeHIm)]ClO4,[45]
consideration of this antiferromagnetic interaction was needed for a good fit with the
experimental data. Similarly, a small but significant antiferromagnetic exchange between iron
centers has been noted in [Fe(TPP)(Cl)] (J = +0.14 cm−1),[46] [Fe(OEP)(Cl)] (J = +0.02
cm−1),[46] and hemin chloride (J = +0.08 cm−1).[47] It should be noted that these coupling
parameters are determined assuming a mean field model J< S⃗ > · S⃗ rather than a dimer-only
coupling scheme JS⃗1 · S⃗2, thus care must be taken in comparing the coupling strengths.

Summary
We have prepared a series of meso-(tetraalkylporphinato)iron chloride complexes (alkyl =
ethyl, n-propyl and n-hexyl). Their molecular structures indicate that inter-ring interactions
change with alteration of the alkyl group substitutions in the meso positions. Magnetic
exchange couplings between iron centers of the dimers are in accord with the trends in structural
inter-ring geometries.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ORTEP diagram of [Fe(TPrP)(Cl)]. Ellipsoids are drawn to illustrate 50% probability surfaces.
Hydrogen atoms have been omitted for clarity.

Li et al. Page 8

J Porphyr Phthalocyanines. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
ORTEP diagram of [Fe(TEtP)(Cl)]. Ellipsoids are drawn to illustrate 50% probability surfaces.
Hydrogen atoms have been omitted for clarity.
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Figure 3.
ORTEP diagram of [Fe(THexP)(Cl)]. Ellipsoids are drawn to illustrate 50% probability
surfaces. Hydrogen atoms have been omitted for clarity.

Li et al. Page 10

J Porphyr Phthalocyanines. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Formal 24-atom mean-plane diagrams of (a) [Fe(TEtP)(Cl)], (b) [Fe(TPrP)(Cl)], and (c) [Fe
(THexP)(Cl)]. The displacement of each atom from the 24-atom mean plane of the core is given
in units of 0.01 Å. Also displayed are the averaged values of each type of bond distance and
angle in the core. The number in parentheses is the standard deviation calculated on the
assumption that all averaged values were drawn from the same population.
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Figure 5.
Edge-views and top-views of the dimeric units of (a) [Fe(TEtP)(Cl)], (b) [Fe(TPrP)(Cl)], and
(c) [Fe(THexP)(Cl)]. Ellipsoids are drawn to illustrate 30% probability surfaces for [Fe(TEtP)
(Cl)], 65% probability surfaces for [Fe(TPrP)(Cl)], and 30% probability surfaces for [Fe
(THexP)(Cl)].
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Figure 6.
Comparison of observed and calculated values of µeff/monomer vs T for (a) [Fe(TEtP)(Cl)]
and (b) [Fe(TPrP)(Cl)]. The solid lines are model calculation with the parameters–axial zero-
field splitting D = 6.95 cm−1, antiferromagnetic coupling with J = +0.45 for (a) and J = +0.17
cm−1 for (b).
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Table 1

Crystallographic details for [Fe(TalkylP)(Cl)] complexes.

Molecule [Fe(TEtP)(Cl)] [Fe(TPrP)(Cl)] [Fe(THexP)(Cl)]

Formula C28H28ClFeN4 C32H36ClFeN4 C44H60ClFeN4·0.1CH2Cl2

FW, amu 511.84 567.95 744.75

a, Å 10.1710(5) 13.040(2) 10.246(7)

b, Å 11.309(3) 15.221(2) 12.834(4)

c, Å 12.170(3) 14.6681(9) 17.420(15)

α, deg 91.774(9) 90 69.74(3)

β, deg 113.170(14) 109.997(11) 87.52(4)

γ, deg 112.149(9) 90 84.89(3)

V, Å3 1165(4) 2735.9(7) 2140(2)

Crystal system triclinic monoclinic triclinic

Space Group P1̄ P21/n P1̄

Z 2 4 2

Dc, g/cm3 1.459 1.379 1.156

F(000) 534 1196 790

μ, mm−1 0.787 0.678 0.448

Radiation (λ̄, Å) MoKα (0.71073) MoKα (0.71073) MoKα (0.71073)

Temperature, K 130(2) 130(2) 130(2)

R indices [I > 2σ(I)] R1 = 0.0884,
wR2 = 0.2073

R1 = 0.0477,
wR2 = 0.1176

R1 = 0.1024,
wR2 = 0.2659

R indices (all data) R1 = 0.1060,
wR2 = 0.2254

R1 = 0.0556,
wR2 = 0.1235

R1 = 0.1647,
wR2 = 0.3239

Goodness-of-fit on F2 1.055 1.052 1.026
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Table 2

Select bond distance(Å) and angles(°) for [Fe(TalkylP)(Cl)] complexes.

[Fe(TEtP)(Cl)] [Fe(TPrP)(Cl)] [Fe(THexP)(Cl)]

A. Bond Lengths (Å)

Fe(1)–N(1) 2.060(3) 2.063(1) 2.068(4)

Fe(1)–N(2) 2.052(3) 2.054(1) 2.063(5)

Fe(1)–N(3) 2.048(3) 2.055(1) 2.056(4)

Fe(1)–N(4) 2.051(3) 2.062(1) 2.054(5)

Fe(1)–Cl 2.2644(13) 2.2332(6) 2.2375(18)

B. Bond Angles (deg)

N(1)–Fe(1)–N(2) 86.66(14) 86.30(6) 87.32(17)

N(1)–Fe(1)–N(4) 87.54(14) 86.88(6) 86.31(17)

N(2)–Fe(1)–N(3) 87.49(14) 87.16(6) 86.41(17)

N(3)–Fe(1)–N(4) 87.45(14) 86.50(6) 87.23(18)

N(1)–Fe(1)–N(3) 154.47(14) 152.24(6) 152.14(17)

N(2)–Fe(1)–N(4) 155.21(14) 152.31(6) 153.32(17)
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