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Niklas (2000) defined plants as “photosynthetic
eukaryotes,” thereby including brown, red, and green
macroalgae and microalgae. These groups share sev-
eral features, including the presence of a complex,
dynamic, and polysaccharide-rich cell wall. Cell walls
in eukaryotes are thought to have evolved by lateral
transfer from cell wall-producing organisms (Niklas,
2004). Green and red algae originate from a primary
endosymbiotic event with a cyanobacterium, which is
thought to have occurred over 1,500 million years ago
(Palmer et al., 2004). Even though extant cyanobacteria
have cell walls that are based on a peptidoglycan-
polysaccharide-lipopolysaccharide matrix and thus
differ markedly from the polysaccharide-rich cell
walls of plants, there is preliminary evidence that they
may contain some similar polysaccharides (Hoiczyk
and Hansel, 2000), and genes already involved in
polysaccharide synthesis or those subsequently coopted
into wall biosynthesis may have been transferred
during endosymbiosis. Independent secondary endo-
symbiotic events subsequently gave rise to the Eugle-
nozoa (which lack cell walls) and brown algae (which
have cell walls; Palmer et al., 2004). Investigations of
the diversity of wall composition, structure, and bio-
synthesis that include algae, therefore, may lend new
insights into wall evolution (Niklas, 2004).

Algal cell wall research, in common with that of land
plants, has focused on commercially important species
and polysaccharides; thus, the most well-described
algal wall components include the commercially and
ecologically important laminarans, carrageenans, fu-
cans, and alginates (Mabeau and Kloareg, 1997;
Campo et al., 2009). However, there are over 35,600
species of seaweed, and their cell wall components
exhibit enormous diversity (for review, see Painter,
1983; Kloareg and Quatrano, 1988; De Reviers, 2002).
Even though distinct suites of polysaccharides are
known to occur in different taxa such that algal cell
wall profiles can be used as taxonomic markers
(Parker, 1970; Domozych et al., 1980), some wall com-
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ponents have a wider distribution and are also found
in other organisms, including land plants.

Renewed interest in plant and algal cell wall com-
position (Popper and Fry, 2003, 2004; Niklas, 2004;
Vissenberg et al., 2005; Van Sandt et al., 2007; Fry et al.,
2008a, 2008b; Popper, 2008; Serensen et al., 2008),
perhaps driven by potential industrial applications
(Pauly and Keegstra, 2008) and a desire to better
understand cell wall functions (Niklas, 2004), has
been facilitated by the development of several tech-
niques capable of screening cell wall polymers. In-
creased information has added detail to the diversity
known to exist in cell wall composition, generated as
organisms adapted to specific niches (Sarkar et al.,
2009). However, it is also becoming apparent that
similarities, as well as differences, exist between plant
and algal cell walls. Therefore, examination of the
patterns of occurrence of wall components suggests
that existing diversity is likely to be the result of a
variety of different evolutionary scenarios.

A QUESTION OF ORIGIN

Investigation of the occurrence of wall components
and the genes involved in their biosynthesis may
suggest whether they are innovations within a partic-
ular lineage or have a more ancient origin. Mecha-
nisms of cell wall biosynthesis may have evolved
several times from diversification of gene families,
may have been retained from ancestral organisms, or
may have been acquired through horizontal gene
transfer. While horizontal gene transfer is a rare event
(Becker and Marin, 2009), several endosymbiotic
events gave rise to photosynthetic organisms (Fig. 1;
Keeling, 2004; Palmer et al., 2004) and could have been
accompanied by transfer of wall biosynthesis genes
(Niklas, 2004). Therefore, it could be expected that
some cell wall genes and their products are common to
both algae and plants. However, it is likely that the
majority of land plant cell wall components are the
products of directly inherited genes that have diversi-
fied within a particular lineage (Yin et al., 2009).

Convergent Evolution: Several Routes Result in Similar
Wall Components

The recent discovery of lignin in the cell walls of a
red alga, Calliathron cheilosporioides (Martone et al.,
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Figure 1. Emergence of gene families
(CesA and Csl) within the cellulose
synthase superfamily responsible for
cellulose and hemicellulose synthesis
(Yin et al., 2009) mapped onto a sim-
plified eukaryote phylogeny (Keeling,
2004; Palmer et al., 2004; Yoon et al.,
2004; adapted from Keeling et al.,
2009). CesA* represents members of
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2009), was surprising for a number of reasons. Most
significantly, lignin is normally found in vascular plant
cell walls (Table I), which probably last shared a
common ancestor with red algae over 1 billion years
ago (Martone et al, 2009). Furthermore, recorded
diversity in wall composition is usually at a more
subtle level and tends to mirror known taxonomic
groups, such as the presence of acidic sugar residues in
bryophyte xyloglucans (Pefia et al., 2008). Thus, the
existence of a cell wall component in two groups as
distantly related as red algae and vascular plants leads
us to consider how this may have occurred.

There are several evolutionary scenarios that could
explain the occurrence of lignin in red algae and
vascular plants: (1) lignin could have evolved inde-
pendently in both lineages; (2) ancient algal genes
leading to lignin biosynthesis could have been coopted
during the evolution of vascular plants (Niklas and
Kutschera, 2009, 2010); (3) the lignin biosynthesis
pathway may have existed before the divergence of
the embryophytes and subsequently lost from green
algae (Xu et al., 2009); or (4) genes for lignin biosyn-
thesis could have been transferred from one organism
to another (Niklas, 2004). Lignin is composed of mono-
lignol units. Within vascular plants, gymnosperm lig-
nins are composed almost entirely of guaiacyl units,
whereas angiosperm, lycopod (Jin et al., 2005), and
Calliathron lignins additionally contain syringyl (S) lig-
nin (Martone et al., 2009). However, S-lignins in lyco-
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pods and angiosperms, which diverged approximately
400 million years ago, are derived via distinctly differ-
ent biosynthetic pathways, implying that S-units
evolved in both plant groups via convergent evolution
(Weng et al., 2008, 2010). Martone et al. (2009) suggest
that S-lignin in Calliathron could represent another
example of convergent evolution, and deduction of
the lignin biosynthesis pathways in Calliathron could
lend support to this theory. Conversely, if lignin was
discovered in other algal groups, it could suggest that
lignin biosynthesis in land plants has a more ancient
origin.

Another potential example of convergent evolution
is (1—3),(1—4)-B-p-glucan (MLG), which has been
reported from lichens (Honegger and Haisch, 2001;
Olafsdottir and Ingolfsdottir, 2001), fungi (Burton and
Fincher, 2009; Pettolino et al., 2009), green algae (Eder
etal., 2008), horsetails (Equisetum spp.; Fry et al., 2008b;
Serensen et al.,, 2008), and Poales (Trethewey et al.,
2005; Table I).

Within land plants, MLG was only recently discov-
ered in horsetails (Fry et al.,, 2008b; Serensen et al.,
2008) and was previously thought to have a restricted
taxonomic distribution, occurring only in members of
the Poales (Trethewey et al., 2005), which last shared a
common ancestor with the horsetails over 370 million
years ago (Bell and Hemsley, 2000). However, two
independent groups, using several methods, concur-
rently discovered MLG in Equisetum cell walls. Fry
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Table I. Occurrence of cell wall components in plant and algal cell walls

+, Component is likely to be present; =, component may be present; —, component is likely to be absent; *, component is absent but an unusual
sugar residue constituent of the wall component is present.

Other Wall Components

Plant Group
Cellulose Xylan Mannan Xyloglucan RGIl (1 —3),(1 =4)-B-p-Glucan AGPs Lignin Silica
Brown algae +° +be x4 e
Diatoms =P +f
Rhodophytes (red algae) + & 4h - =y -
Chlorophytes (green algae) +? + + *m +" +0 = =
Charophycean green algae + +P +4 = - £ = =
Bryophytes (mosses, liverworts, and hornworts) + +! + +1X &Y - 42 e bb
Lycopodiophytes (club mosses) + +¢¢ 4ad +¥ +¢ — 488 —
Equisetophytes (horsetails) + ¢ 4dd +V +"h +" + 488 bb,kk
Ferns + yeolt ddmm +V +n - +88 -
Gymnosperms + 400 yddep + 4hhnn - 499 4 =
Angiosperms, excluding Poales + +9° 4ad +¥ +M - g5 4 f —
Poalean angiosperms + g + +" + £ 4t ybbw
“Baldan et al. (2001), Kloareg and Quatrano (1988), and Naylor and Russell-Wells (1934). PPutative occurrence based on labeling with an anti-
MLG mAb (Z.A. Popper and E. Demange, unpublished data). Treatment of the brown algal cell walls with 6 M NaOH solubilized polysaccharides that
were fragmented by treatment with lichenase (Z.A. Popper and O. Curry, unpublished data). “Bourne et al. (1969) extracted a polymer from Fucus
vesiculosus that could be digested by laminarinase and cellulase and appeared to be structurally similar to laminarin. dputative occurrence of AGPs
based on extraction (Schultz et al., 2000) and detection using radial gel permeation (Van Holst and Clarke, 1985; Z.A. Popper, Q. Coster, and T. Slattery,
unpublished data). “Lignin-like compounds have been reported from algae and nonvascular plants (Gunnison and Alexander, 1975; Delwiche et al.,
1989) but have not been unambiguously confirmed (Ragan, 1984; Lewis, 1999; Peter and Neale, 2004). f Diatoms are reported to contain
approximately 5% silica by dry weight (Werner, 1977). 8Some red algae, such as B. fuscopurpurea xylans, contain all B-b-(1 — 3) linkages, whereas
others, such as P. palmata, may contain B-p-(1 — 3) and B-d-(1—4) in the same molecule (Painter, 1983). PEstevez et al. (2009), Dunn et al. (2007),
and Love and Percival (1964). 'mAb labeling and extraction followed by radial gel diffusion (Eder et al., 2008). J The presence of lignin
(monolignols H, G, and S) in the rhodophyte C. cheilosporioides was determined by labeling with polyclonal antibodies and gas chromatography-mass
spectrometry (Martone et al., 2009). KMackie and Percival (1959). 'Presence of (1—4)-B-p-mannans in C. fragile determined by FT-IR,
heteronuclear multiple bond correlation NMR, and linkage analysis (Estevez et al., 2009). "RGII has not been detected in green algae, but the
prasinophytes contain monosaccharide residues normally present in RGII (York et al., 1985; Becker et al., 1991; Domozych et al., 1991). "Presence

in Micrasterias determined by mAb labeling and specific enzyme digestion followed by high-performance anion-exchange chromatography-pulsed-
amperometric detection (Eder et al., 2008). °Presence of AGPs in C. fragile determined by mAb labeling, linkage analysis, and NMR (Estevez et al.,
2009). PMethylation analysis (Morrison et al., 1993) and CoMPP (Domozych et al., 2009) indicate the presence of 4-linked xylans. IMethylation
analysis (Morrison et al., 1993) and CoMPP suggests the presence of (1—4) mannans (Domozych et al, 2009). 'Presence of xyloglucan in Chara
antheridia suggested by mAb labeling (Domozych et al., 2009). *Presence of AGPs in Chara suggested by mAb labeling (Domozych et al.,
2009).  'Cellulose has been found in all land plants (Brown, 1985).  “Substituted (1— 4)-B-p-xylans were detected by mAb labeling in hornwort
sporophytes (Carafa et al., 2005). YHemicelluloses from an aquatic moss, Fontinalis antipyretica, were biochemically analyzed by Geddes
and Wilkie (1971, 1972). “Determined by enzyme digestion, followed by identification of the products by HPLC (Popper and Fry, 2003,
2004). *NMR of bryophyte xyloglucans showed them to contain acidic sugars (Pefia et al., 2008). YBased on analysis of Driselase-digested
material by size-exclusion chromatography/inductively coupled plasma mass spectroscopy, bryophyte walls contain less than 1% (w/w) of the total
amount of the RGII present in angiosperms (Matsunaga et al., 2004). “Basile et al. (1989). *“Water-extractable lignans have been detected in
bryophytes (Chodat and Cortesi, 1939). bSome plants either specifically accumulate silica or have a high mean relative shoot concentration
(MRSC), including a thalloid liverwort (5.452), Equisetum (3.992), and members of the Poales (4.167). The mean value for MRSC in plants is 0.722
(Hodson et al., 2005). The MRSC reduces as follows: liverworts > horsetails > clubmosses > mosses > angiosperms > gymnosperms > ferns
(Hodson et al., 2005). “Detected by mAb labeling (Carafa et al., 2005). ddPopper and Fry (2004). ®Ferns and fern allies contain RGII at
levels like that found in angiosperms. The glycosyl sequence is conserved with the exception that an L-rhamnosy! residue is replaced in some
members with 3-O-methylrhamnose (Matsunaga et al., 2004). RGIl was identified and structurally analyzed by ''"B-NMR spectra and glycosyl
linkage composition by gas chromatography and gas chromatography/electron impact-mass spectrometry of alditol acetate and trimethylsilyl methyl
glucoside derivatives (Matsunaga et al., 2004). 3-O-Methylrhamose is a sugar residue that is found relatively rarely in angiosperms but has been
identified in wall preparations from ferns, fern allies, and bryophytes (Popper et al., 2004) and appears to be a component of bryophyte AGPs

(Fu etal., 2007). fiS_lignin occurs in lycophytes and flowering plants, but biochemical evidence, including analysis of enzyme kinetic properties,
suggests that it is derived through separate biosynthetic pathways in each taxa (Weng et al., 2010). 86Based on the biochemical analyses of
Goémez Ros et al. (2007). PPRGII isolated by Driselase digestion followed by size-exclusion chromatography and elucidated by '"B-NMR
(Shimokawa et al., 1999). iCoMPP, enzyme digestion followed by matrix-assisted laser-desorption ionization time of flight mass spectrometry,
monosaccharide linkage analysis (Serensen et al., 2008), and specific enzyme digestion followed by thin-layer chromatography and HPLC (Fry
etal., 2008b).  JiDetected by mAb labeling (Verhertbruggen et al., 2009). Currie and Perry (2007) and Sapei et al. (2007). Xylans with

low levels of substitution detected (Timell, 1962). ™MBremner and Wilkie (1971). "A borate-RGIl complex is found ubiquitously in higher
plant cell walls (Matoh et al., 1996). °°Xylans from Cryptomeria japonica were chemically analyzed by Edashige and Ishii (1996). PPAndrew
and Little (1997). 99AGPs detected in loblolly pine (Pinus taeda) using RNA blotting (Loopstra and Sederoff, 1995). "Hasegawa et al.
(1960). *Identified by mAb labeling and biochemical characterization by gas-liquid chromatography-mass spectrometry (Pennell et al.,
1989). "Shibuya and Misaki (1978). “Immunolabeling (Trethewey et al., 2005). “*Ma and Yamaji (2006).
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et al. (2008b) digested horsetail wall preparations with
an MLG-specific enzyme (lichenase; EC 3.2.1.73; Parrish
et al., 1960). Quantification of the resulting oligosac-
charides by high-pressure liquid chromatography re-
vealed that Equisetum cell walls contain MLG at levels
equal to or greater than those found in members of the
Poales (Fry et al.,, 2008b). The presence of MLG in
Equisetum cell walls was further supported, and local-
ized within the wall, by monoclonal antibody (mAb)
labeling (Serensen et al., 2008) with a mAb that has a
high degree of specificity to MLG (Meikle et al., 1994).
The existence of MLG in horsetails was also found to
be correlated with the occurrence of a wall-remodeling
enzyme capable of grafting MLG to xyloglucan (Fry
et al., 2008a).

The cellulose synthase-like gene families CslF, CslH,
and Csl] have been shown to be involved in MLG
synthesis in grasses (Richmond and Somerville, 2000;
Burton et al., 2006, 2008; Doblin et al., 2009). Since these
gene families appear to have diverged from within
other cellulose synthase-like gene families (Yin et al,
2009) after horsetails had diverged from the lineage that
eventually led to the Poales (Fig. 1; Yin et al., 2009), it
seems likely that MLG arose independently in horse-
tails and Poales. The existence of an MLG-like polysac-
charide in several groups of only distantly related
photosynthetic organisms, putatively including the
brown algae (Z.A. Popper, E. Demange, M. Lorenz,
and O. Curry, unpublished data; Table I), many of
which existed prior to the divergence of the CslF, CslH,
and CslJ (Yin et al.,, 2009), further supports multiple
origins of the polymer (Burton and Fincher, 2009).

While the mode of MLG synthesis may be different
in Poales and Equisetum, it is of interest that the plants
share some common morphological and biochemical
features. Poales and horsetails exhibit similar body
plans (Niklas, 2004). Additionally, they are both
known to accumulate silica in their walls (Hodson
et al., 2005), which Fry et al. (2008b) suggested may be
correlated with the presence of MLG. If this were the
case, it could be expected that liverworts, which have
the highest relative mean shoot concentration of silica
in land plants, could also contain MLG (Hodson et al.,
2005). In fact, lichenase digestion of a cell wall prep-
aration from the leafy liverwort Lophocolea bidentata
has indicated that at least some liverworts may contain
a polysaccharide similar to MLG (Popper and Fry,
2003). A silica transporter and mutants deficient in
silica accumulation have been discovered in rice
(Oryza sativa; Ma et al., 2006). If these plants exhibited
alterations in MLG amount or deposition patterns, this
would lend support to an interaction between MLG
and silica.

Diversification within a Lineage

Perhaps the best examined cell wall biosynthetic
genes are members of the cellulose synthase super-
family, which appears to have diversified within the
land plant lineage to give nine cellulose synthase-like
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families and one cellulose synthase (CesA) family (Yin
et al., 2009).

Cellulose is the most abundant naturally occurring
polymer (Hess et al., 1928) and has a widespread
distribution, being found in plants (Brown, 1985), algae
(Naylor and Russell-Wells, 1934), bacteria (Roberts
et al., 2002), cyanobacteria (Nobels et al., 2001), and
tunicates (Kimura and Itoh, 1995). In land plants,
cellulose may account for 20% to 50% (w/w; and in
specialized cell walls, such as cotton [Gossypium hirsu-
tum] fibers, up to 98% [w/w]) of the wall, whereas in
red algae, it may only account for 1% to 8% (w/w;
Kloareg and Quatrano, 1988). CesAs are widespread
among eukaryotes and prokaryotes (Tsekos, 1999;
Roberts et al., 2002; Roberts and Roberts, 2009), but
those that form rosette terminal complexes have only
been sequenced from the land plant lineage (Yin et al.,
2009) and probably evolved after the divergence of the
land plants from the chlorophytes (Yin et al., 2009; Fig.
1). Cellulose in the Chlorophyta and red and brown
algae is synthesized by CesA genes whose origin
predates that of the plant-specific CesA genes (Yin
et al., 2009) and whose products form linear terminal
complexes (Tsekos, 1999). Roberts et al. (2002) suggested
that the observed differences in cellulose microfibril
diameter between different cellulose-containing organ-
isms (Nobels et al., 2001) could be, at least partially, a
result of known differences in the arrangement of
terminal complexes (Tsekos, 1999).

Mannans and glucomannans are synthesized by
CslAs (Dhugga et al., 2004; Liepman et al., 2005;
Goubet et al., 2009). While CslAs appear to be absent
from green algae (Yin et al., 2009), these algae contain a
specific Csl family that is most homologous to land
plant CslA and CsIC families (Yin et al., 2009; desig-
nated CslA/CsIC in Fig. 1). Since mannans are known
to occur in green algae, including Codium fragile
(Estevez et al.,, 2009) and Acetabularia acetabulum
(Dunn et al., 2007), the products of CslA/CsIC could
be responsible for mannan synthesis. CslA/CslC ap-
pears to be absent from brown and red algae (Yin et al.,
2009; Fig. 1), suggesting that an absence of reports for
mannans in brown algae (Table I) could be due to a
lack of the required biosynthetic machinery. However,
some red algae have been reported to contain man-
nans (Percival et al., 2001). The genes responsible for
mannan synthesis in red algae may not be CslAs or
their sequences may differ significantly from CslAs
such that they were not detected in the screen used by
Yin et al. (2009). Ostreococcus, an ancient member of the
1,500-million-year-old green lineage and the smallest
known eukaryote (Derelle et al., 2006), was the earliest
diverging organism found to contain CslA/CsIC (Yin
et al., 2009). Although Ostreococcus is wall-less, the
existence of the products of CslA/CslC may be in-
volved in cell-surface glycosylation, which Palenik
etal. (2003, 2007) suggest may help disguise them from
grazers. Taken in the context of a lack of all other plant-
like Csl genes (Yin et al., 2009), the existence of a gene
responsible for mannan synthesis in green algae and
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the subsequent evolution of a specific family of CslA
genes suggest that the presence of mannan in their cell
walls could have facilitated the success and diversifi-
cation of green algae.

Ancient Origins

Xylans represent a case for the possibility that some
plant cell wall components are derived from genes that
existed before the divergence of green and red algae.
Xylans are found ubiquitously in vascular plants and
appear to be present in hornworts (Carafa et al., 2005),
charophycean green algae (Domozych et al., 2009),
chlorophytes, and red algae (Lahaye et al., 2003),
suggesting that they have a cosmopolitan distribution
among cell walls of photosynthetic organisms (Table
I). Xylans can either be (1 —3) or (1 —4) linked. Painter
(1983) hypothesized that red algae were at an evolu-
tionary branch point, as some red algae, including the
relatively basal Bangia fuscopurpurea, are composed of
(1—3) linkages while others, such as the more recently
diverged Palmaria palmata, have been suggested to
contain both (1—3) and (1—4) linkages in the same
molecule (Turvey and Williams, 1970). Potentially,
green algae and land plants derived the genes for
(1—4)-B-p-xylan synthesis from red algae. Addition-
ally, while many land plant cell wall polysaccharides
appear to be synthesized by Csls that diverged after
green algae (Yin et al., 2009; Fig. 1), evidence for the
involvement of Csls in xylan biosynthesis appears to
be lacking (Zhou et al., 2006). Instead, a large number
of glycosyl transferases (GTs), including FRAGILE
FIBERS (GT47; GT numbers refer to those designated
by the CAZy database [http:/ /www.cazy.org]; Cantarel
et al., 2009), IRREGULAR XYLEMS (IRX8) and PAR-
VUS (GT8), and IRX9 and IRX14 (GT43), are impli-
cated (Brown et al., 2005, 2007; Lee et al., 2007; Pefia
et al., 2007; York and O’Neill, 2008). Querying the
CAZy database (Cantarel et al., 2009) reveals that
Ostreococcus (the smallest known eukaryote and a
member of the prasinophycean green algae) appears
to lack members of the GT43 family (Hashimoto et al.,
2009) thought to be involved in xylan backbone syn-
thesis (Lee et al., 2007). Ostreococcus contains several
other GTs (http:/ /www.cazy.org; Cantarel et al., 2009)
that could have a role in xylan synthesis, including
GT8, which is involved in glucuronoxylan synthesis
(Lee et al., 2007), and GT4, which includes a 1,4-8-D-
xylan synthase (EC 2.4.2.24; Bailey and Hassid, 1966),
thus supporting an origin for xylan biosynthesis that
predates the land plant lineage.

Another group of wall components that appear to
have ancient origins are arabinogalactan proteins
(AGPs), a group of proteoglycans that exhibit consid-
erable structural and functional diversity and are
thought to occur ubiquitously in land plants (Basile,
1980; Basile et al., 1989; Pennell et al., 1989; Knox et al.,
1991; Lee et al., 2005). However, they may be much
more widely distributed. Inmunolabeling and chem-
ical analyses have suggested their occurrence in the
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charophycean green algae (McCann et al.,, 2007;
Domozych et al, 2009) and chlorophytes (Stanley
et al., 2005; Eder et al., 2008; Estevez et al., 2009). We
have also detected AGPs in extracts from red and
brown algae using the radial gel diffusion assay (Z.A.
Popper, Q. Coster, and T. Slattery, unpublished data).
At least some AGP functions may be conserved be-
tween taxa; localization of AGPs in the utricle apical
zone in C. fragile (Estevez et al., 2009) may suggest a
role in tip growth that correlates with their reported
involvement in the tip growth of moss protonemata
(Lee et al., 2005).

The model organism Chlamydomonas, which is a
flagellated green alga, has walls that are substantially
different from those of land plants, not least because
they seem to lack cellulose (Roberts, 1974). Instead, the
major wall components are layers of crystalline Ara-
rich, Hyp-rich glycoproteins (Miller et al., 1974; Roberts,
1974; Bollig et al., 2007). However, closer examination
of the Chlamydomonas glycoproteins shows that they
appear to share some features with AGPs, including
conservation of an inner core of two Ara residues
linked to Hyp (Bollig et al., 2007). This lends support to
the argument for a degree of conservation between
plant and algal wall components. It also highlights the
need for extensive sampling, as some green algae
share other wall features with land plants (Fig. 1).

Possible Innovations

Rhamnogalacturonan II (RGII) is perhaps the most
distinct example of an innovation in wall composition
to have occurred in land plants. It has a highly con-
served structure and is present in all vascular plants
(Matoh et al., 1996), but if present in extant bryophytes
it constitutes less than 0.025% (w/w) of the wall
(Matsunaga et al., 2004). Since RGII has not been
detected in green algae (Domozych et al., 1980; Becker
et al., 1994, 1998), it seems likely that its occurrence in
land plants could be correlated with specific evolu-
tionary pressures potentially related to terrestrializa-
tion. However, the ability to make some of the
relatively unusual monosaccharide residues present
in RGII, such as 3-deoxy-pD-manno-2-octulosonic acid
(Kdo; York et al., 1985), may have deeper origins. Most
members of the prasinophyceae have scales or a theca
(wall) containing Kdo (York et al., 1985; Becker et al.,
1991; Domozych et al.,, 1991). CMP-Kdo synthetase
(CKS) is responsible for generating the activated sugar
donor CMP-Kdo required for the synthesis of wall
polymers containing Kdo, and sequences for the CKS
gene are present in every major plant group, including
mosses (Royo et al., 2000). Neither Kdo nor CKS has
been found in animals or yeasts. However, they are
both present in gram-negative eubacteria (Royo et al.,
2000), where they probably represent an example of
horizontal gene transfer either from the bacteria to the
plant or, more unusually, from the plant to the bacteria
(Royo et al., 2000). It is of interest that a putative Kdo
transferase gene (AtKDTA; Séveno et al., 2010) has
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recently been characterized. However, AtKDTA ap-
pears to represent an example of a gene that was not
transferred from a bacterium (in this case, the ancestor
of mitochondria) to a plant following an endosymbi-
otic event. The evidence for this is that AtKDTA
synthesizes a protein that localizes to the mitochon-
dria, where Séveno et al. (2010) hypothesize that it may
be involved in the synthesis of a lipid A-like molecule.
More significantly, in terms of plant cell wall synthesis,
AtKDTA null mutants appear to have an unaltered
phenotype and conserved RGII structure and amount,
implying that AtKDTA is unlikely to be involved in
RGII synthesis (Séveno et al., 2010).

Xyloglucan may also represent a relatively recent
innovation. It is present in all land plants (Popper and
Fry, 2003, 2004), and immunolabeling suggests that it
may be present in some members of the charophycean
green algae (Ikegaya et al.,, 2008; Domozych et al.,
2009). The occurrence of xyloglucans in other photo-
synthetic organisms is unknown (Table I). In addition,
the enzymes involved in xyloglucan synthesis appear
to have continued to diversify within the land plants.
This is suggested by the discovery that moss and
liverwort xyloglucans contain GalUA and are struc-
turally distinct from xyloglucans synthesized by vas-
cular plants and hornworts (Pefia et al., 2008). There
are also several xyloglucan side chains that may be
restricted to the relatively recently diverged Asteridae
(Hoffman et al., 2005). Furthermore, activity of the
enzyme xyloglucan endotransglucosylase, involved in
xyloglucan modification (Thompson and Fry, 2001)
and consequently plant growth and differentiation
(Vissenberg et al., 2005), was found in the chlorophyte
Ulva linza but appeared to be absent from red and
brown algae (Van Sandt et al., 2007). This suggests that
xyloglucan or a structurally similar polysaccharide
does not occur in the cell walls of either red or brown
algae.

Pectins and pectin-like polymers appear to have a
relatively cosmopolitan occurrence and are found in
red and green algae as well as land plants (Painter,
1983; Domozych et al., 2007; Eder and Liitz-Meindl,
2008). A polysaccharide has even been isolated from
the cyanobacterium Microcystis flos-aquae, which con-
tains the monosaccharide residues GalUA, Rha, Man,
Xyl, Glc, and Gal in a similar molar ratio to that
found in pectin, although the degree of structural
similarity has not been determined (Plude et al.,
1991). However, arabinans might be expected to be a
land plant innovation. Specifically, they could be
predicted to occur only in hornworts and vascular
plants because they have been implicated in stomatal
opening (Jones et al., 2003). However, LM6, a mAb
that recognizes short linear stretches of arabinosyl
residues, not only labels guard cell walls (Jones et al.,
2003) but has also been found to bind to Chara cell
walls (Domozych et al., 2009). The recruitment of
arabinans in guard cell function, therefore, might be
an example of cooption in function of a preexisting
wall polymer.
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Correlating the occurrence of genes and wall com-
ponents with phylogenies, as given for CesA and Csls
(Fig. 1), undoubtedly has the potential to reveal new
insights into wall evolution. However, as discussed by
Serensen et al. (2010), it is dependent on adequate
sampling. This could be approached by the detailed
analysis of representative plants, but screening may
help to optimize which plants are selected for further
analysis. With conservative estimates of 260,000 vas-
cular plant species alone (Judd et al., 2002; Angio-
sperm Phylogeny Group, 2003), investigation of the
cell wall composition of photosynthetic organisms
necessarily demands a high-throughput approach
(Serensen et al., 2010). The total number of samples
is further expanded by taking into consideration var-
iation between tissues and between stages in the life
cycle (Serensen et al., 2010). For example, based on
analysis of the products released by enzyme digestion
of vegetative cells, xyloglucan was thought to be
absent from Chara (Popper and Fry, 2003). However,
more recent evidence provided by mAb labeling sug-
gests that xyloglucan may occur in the walls of Chara
antheridia (Domozych et al., 2009). Additional evi-
dence will be necessary to determine whether xylo-
glucan actually does occur in Chara cell walls, because
although an anti-xyloglucan mAb was capable of
recognizing and binding to an epitope present in Chara
cell walls, that epitope could be part of a polymer that
is not xyloglucan.

Several techniques have been developed that could
greatly facilitate the investigation of wall diversity,
including Fourier-transform infrared microspectros-
copy (FTI-IR; Mouille et al., 2003), oligosaccharide mass
profiling (OLIMP; Obel et al., 2006), and comprehen-
sive microarray polymer profiling (CoMPP; Willats
et al., 2002; Segrensen et al., 2008).

FT-IR is capable of generating a fingerprint that can
distinguish between Arabidopsis (Arabidopsis thaliana)
mutants with altered cellulose, pectin, and xyloglucan
compositions (Mouille et al., 2003). This method could
be extended to profile different taxa. However, peaks
may shift depending on molecular interactions and the
environment within the wall (Kac¢urakova et al., 2000),
a phenomenon that is likely to be even more pro-
nounced between distantly related taxa, making un-
ambiguous peak assignment and attribution difficult.

OLIMP utilizes highly specific hydrolases to digest
wall components (Obel et al., 2006). The digestion
products are then analyzed by matrix-assisted laser-
desorption ionization time of flight mass spectrometry,
and structural differences are indicated by changes in
observed ions (Obel et al., 2006). This method has been
applied to the investigation of Arabidopsis cell wall
polysaccharides (Obel et al., 2006; Gille et al., 2009) but
could be extremely valuable for screening for the
existence of structural differences between polysac-
charides within diverse plant taxa. Polysaccharides
with unknown or unusual structures could then be
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subjected to further and more detailed methods of
analysis. However, structural analysis of a cell wall
component using OLIMP is dependent on its ability to
be hydrolyzed, and in some taxa a wall component
could be present but resist hydrolysis. We recently
found that several species of brown algae can be
labeled with a mAb that has a high specificity for
(1—3),(1>4)-B-p-glucan (Meikle et al., 1994; Z.A.
Popper and E. Demange, unpublished data). In addi-
tion, polysaccharides extracted from the wall using
strong alkali could be digested with lichenase. How-
ever, digestion of brown algal cell walls with lichenase
prior to labeling did not prevent the anti-MLG mAb
from binding (Z.A. Popper and M. Lorenz, unpub-
lished data). It seems likely that digestion was pre-
vented by the presence of high concentrations of
wall-bound phenolic compounds (Schoenwaelder and
Clayton, 1998, 1999), which have been shown to inhibit
enzyme activity (Barwell et al., 1989; Shibata et al,,
2003).

To date, CoMPP is the technique that has been most
extensively applied toward screening cell wall diver-
sity (Serensen et al., 2008) and has already resulted in
some interesting discoveries, such as the presence of
MLG in horsetail cell walls (Serensen et al., 2008), as
discussed earlier.

Using CoMPP, an indication of the likely presence of
specific cell wall components within a particular plant
species, tissue, or developmental stage is dependent
on the reaction of extracted wall components with
mAbs or carbohydrate-binding molecules (Moller
et al., 2007). Thus, the availability of mAbs and carbo-
hydrate-binding molecules currently limits the full
potential of CoMPP. Increased numbers of mAbs,
which are continuing to become available (Pattathil
et al., 2010), will increase the power of CoMPP and
greatly facilitate the analysis of cell wall diversity. The
majority of cell wall-specific mAbs were generated
against polysaccharides isolated from flowering plant
cell walls, but there are exceptions, including those
generated against polysaccharides from brown sea-
weeds (Vreeland, 1972; Vreeland et al., 1982, 1984).
Furthermore, each mAb detects a specific epitope
wherever it occurs, although interpretation may be
complicated by the fact that the epitope recognized by
a mAb can exist in different wall components in
different taxa.

CoMPP is frequently followed by more extensive
characterization of the cell wall using a variety of
techniques to both confirm and add detail to the initial
results (Serensen et al., 2008, 2010). In situ methods
enable investigation of the wall components in their
native environment, facilitating exploration of their
intramural associations.

One of the most frequently used in situ methods is
labeling using mAbs or carbohydrate-binding mole-
cules. This method can map the tissue-specific loca-
tion of cell wall components and, when used in
concert with advanced microscopy techniques such
as electron tomography, can even enable three-
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dimensional visualization of a component within the
wall (Mastronarde, 1997; Otegui et al., 2001; Otegui
and Staehelin, 2004; Segui-Simarro et al., 2004). It has
been found that the presence of high concentrations of
pectin can mask, or prevent, mAb labeling of xyloglu-
can (Marcus et al., 2008). While the phenomenon of
masking complicates the interpretation of mAb label-
ing, it also yields details regarding interactions be-
tween wall components that can be unveiled by a
strategy that combines specific enzyme digestion with
mADb labeling (Marcus et al., 2008). Further complica-
tions could arise from the presence of cell wall com-
ponents that render hydrolytic enzymes inactive.
However, mAb labeling can also be combined with a
variety of chemical pretreatments; incubation of Fucus
sections in EDTA prior to mAb labeling was found
to improve antibody penetration (Vreeland et al.,,
1984).

CONCLUSION

Becker and Marin (2009) stated that they were
“convinced that many plant ‘innovations” will actu-
ally turn out to be innovations of the streptophyte
algae,” whereas Niklas (2004) suggested that some
plant cell wall features may have even deeper roots
and share origins with more ancient algal ancestors.
Both hypotheses may be true for different wall com-
ponents.

Despite the fact that the chlorophytes and strepto-
phytes (land plants and charophycean green algae)
last shared a common ancestor 725 to 1,200 million
years ago (Becker and Marin, 2009), it appears that
through a combination of shared ancestry and con-
vergent evolution they have some common cell wall
characteristics. They also share some wall features
with red and brown algae (summarized in Table I), to
which they are even more distantly related (Yoon et al.,
2004). Therefore, while cell wall differentiation may
have been of high adaptive importance (Stebbins,
1992), it appears that a degree of conservation also
exists. Further characterization of plant and algal cell
wall polysaccharides and the enzymes that synthesize
them may reveal the existence of core features com-
mon to eukaryotic cell walls, despite the presence of
different cooccurring cell wall components and di-
verse intramural interactions.
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