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Abstract
Mucins (MUC) are high molecular weight O-linked glycoproteins whose primary functions are to
hydrate, protect, and lubricate the epithelial luminal surfaces of the ducts within the human body.
The MUC family is comprised of large secreted gel forming and transmembrane (TM) mucins.
MUC1, MUC4, and MUC16 are the well-characterized TM mucins and have been shown to be
aberrantly overexpressed in various malignancies including cystic fibrosis, asthma, and cancer.
Recent studies have uncovered the unique roles of these mucins in the pathogenesis of cancer. These
mucins possess specific domains that can make complex associations with various signaling
pathways, impacting cell survival through alterations of cell growth, proliferation, death, and
autophagy. The cytoplasmic domain of MUC1 serves as a scaffold for interaction with various
signaling proteins. On the other hand, MUC4 mediates its effect by stabilizing and enhancing the
activity of growth factor receptor ErbB2. MUC16, previously known as CA125, is a well-known
serum marker for the diagnosis of ovarian cancer and has a key role in stimulation and dissemination
of ovarian cancer cells by interacting with mesothelin and galectin. Therefore, herein we discuss the
function and divergent mechanisms of MUC1, MUC4, and MUC16 in carcinogenesis in the context
of alteration in cell growth and survival.
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Introduction
Conventionally, mucins are regarded as an extracellular secretion of goblet cells mainly
involved in coating, lubricating, and protecting the epithelial surfaces of the internal tracts of
the body from foreign insults by forming a gel (Mall, 2008). The epithelial membrane-tethered
mucins are quite distinct from the classic extracellular complex mucins forming the mucous
layers of the gastrointestinal and respiratory tracts. These epithelial membrane-tethered mucins
are the transmembrane (TM) molecules, expressed by most glandular and ductal epithelial cells
(Taylor-Papadimitriou et al., 1999). Several TM mucins (MUC1, MUC3A, MUC3B, MUC4,
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MUC 12, MUC13, MUC15, MUC16, MUC17, MUC20, and MUC21) (human mucins are
designated as MUC, whereas other species mucins are designated as Muc) have been identified
so far (Moniaux et al., 2001; Chaturvedi et al., 2008a; Itoh et al., 2008). Figure 1 illustrates
the prototypic structure of membrane-bound mucins. In general, these mucins have a single
membrane-spanning domain and a cytoplasmic tail (CT) (varies from 22 amino-acid residues
in MUC4 to 80 amino acids in MUC17) in addition to the extensive extracellular domain
(Moniaux et al., 1999, 2001, 2006). The extracellular domain of TM mucins is mainly
composed of a variable number of the tandem-repeat (TR) domain, sperm protein,
enterokinase, and agrin (SEA) domain or epidermal growth factor (EGF)-like domain.
Centrally located TR regions are the characteristic feature of all mucins, differentiating them
from other membrane-bound glycoproteins. The biochemical and biophysical properties of
mucins are largely governed by the extent and nature of their glycosylation. Arrays of TRs
provide a high degree of multivalency for oligosaccharide structures, thereby providing a
significant stoichiometric power (Hollingsworth and Swanson, 2004). N-acetylgalactosamine
is linked to a serine or threonine residue during the O-glycan chain synthesis, and the
subsequent carbohydrate moieties, however, may vary depending on the mucin type, the site
of mucin expression, and the physiological or pathological conditions (Chaturvedi et al.,
2008a). By their characteristic pattern of glycosylation, mucins can modulate immunological
response, facilitate cell adhesion during tumor metastasis, and also alter the functions of
proteins interacting with the mucin carbohydrate moieties. CT and extracellular domain
sequences of the TM mucins are highly variable and, therefore, may impart unique functions
to each mucin. Out of all of the membrane-bound mucins, MUC1, MUC4, and MUC16 are
well-characterized MUCs; therefore, this review focuses on various mechanisms affected by
these mucins during cancer progression. Figure 2 illustrates the schematic presentation of the
MUC1, MUC4, and MUC16 CT and its interacting partners. In addition, all membrane-tethered
mucins have been discussed shortly in Table 1 (Williams et al., 2001; Pallesen et al., 2002;
Higuchi et al., 2004a, b; Li et al., 2005; Moniaux et al., 2006; Shyu et al., 2007; Walsh et
al., 2007; Itoh et al., 2008; Malmberg et al., 2008; Chauhan et al., 2009).

Cancer is a disease of the deregulation of tissue growth. Normal cell growth is maintained by
the balance between cell proliferation and cell death. In order for a normal cell to transform
into a cancer cell, genes that regulate cell growth and cell death must be altered (Croce,
2008). Mucins have been shown to contain complex associations with various cellular
pathways, impacting cell growth, proliferation, and apoptosis. Historically, transformation
events in cancer have been defined as initiation events (contributing to the early stages of
neoplastic transition) or progression events (referring to the subsequent transformative
processes) (Croce, 2008). Using human tumor xenograft models, MUC1 and MUC4 have been
shown to cause transformation of fibroblast cells. Also, alteration of the tumorigenicity and
metastasis of various cancer cell lines by overexpression and downregulation of mucins
demonstrates their role in the pathogenesis of different malignancies (Li et al., 2003; Singh et
al., 2004; Chaturvedi et al., 2007; Moniaux et al., 2007; Bafna et al., 2008). Recent studies
suggest that MUC1 and MUC4 modulate various pathways contributing to cell growth.
MUC16, previously known as CA125, is the largest membrane-bound mucin (Hattrup and
Gendler, 2008) and well-known serum marker for ovarian cancer. However, there is a lacuna
of information on the signaling mediated by this mucin due to its recent identification and huge
size. The present review summarizes the function and divergent mechanism of MUC1, MUC4,
and MUC16 in carcinogenesis in the context of alteration in cell growth and survival.

Mechanisms associated with MUC1-mediated survival of cancer cells
MUC1 is a membrane-bound O-glycoprotein that is expressed at the basal level in most
epithelial cells (Patton et al., 1995). On the other hand, deregulated expression of MUC1 is a
prominent characteristic of various types of cancers and inflammatory diseases. In addition,
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MUC1 mucin has long been viewed as a tumor-associated molecule because of its frequent
overexpression and aberrant glycosylation in most carcinomas. MUC1 is overexpressed in
>90% of breast carcinomas and frequently in other types of cancer, including ovarian, lung,
colon, and pancreatic carcinomas (Gendler, 2001). Ectopic MUC1 expression has been shown
to induce transformation and increased tumorigenicity in a number of systems: pancreatic,
breast, and myeloma cell lines, including the MUC1 transgenic model of human breast cancer
and MUC1-transfected 3Y1 rat fibroblasts (Li et al., 2003; Schroeder et al., 2004; Hattrup and
Gendler, 2006; Singh et al., 2007; Kawano et al., 2008). Recently, MUC1 has been shown to
serve as a natural ligand of galectin-3 in human cancer cells, and the interaction between
circulating galectin-3 and cancer-associated MUC1 enhances cancer cell-endothelial adhesion
and, hence, promotes metastasis (Zhao et al., 2009). Structurally, the MUC1 mucin consists
of a large extracellular subunit comprised of a mucin-type identical 20 amino acids TRs and a
smaller subunit that includes a small extracellular domain and a TM domain plus a cytoplasm
tail (MUC1-CT). The oncogenic effects of MUC1 are believed to occur through the interaction
of its CT with various signaling molecules. The CT of MUC1 is 69 amino acids long (Figure
2), and has several tyrosine, serine, and threonine phosphorylation sites that can bind to several
proteins implicated in the cancer regulation by affecting the proliferation, apoptosis, and
transcription of various genes (Lan et al., 1990; Singh and Hollingsworth, 2006; Hattrup and
Gendler, 2008).

MUC1-mediated enhanced cell growth and alterations in various signaling pathway
Growth factor receptors are key regulators of growth in both normal and transformed cells.
Constitutive activation of a growth factor signaling leads to uncontrolled proliferation and
contributes to malignant transformation (Croce, 2008). Figure 3 elucidates the role of MUC1
in tumor progression through its interaction with various growth factor receptors and other
signaling molecules. Through its CT, MUC1 binds with the ErbB family of growth factor
receptor tyrosine kinases (RTKs) and potentiates ErbB-dependent signal transduction in the
MUC1 transgenic breast cancer mouse model (Li et al., 2001; Schroeder et al., 2001;
Pochampalli et al., 2007). The ErbB family is comprised of the ErbB1/EGF receptor (EGFR),
ErbB2/HER2/Neu, ErbB3, and ErbB4. Following ligand binding and receptor activation, these
receptors are endocytosed and transported to lysosomes where the receptor is degraded
(Roepstorff et al., 2008). This downregulation of growth factor receptors is a complex and
tightly regulated process. MUC1 has been shown to enhance ErbB1 signaling in breast cancer
cells by inhibiting the growth factor-mediated ubiquitination and degradation of ErbB1 and by
enhancing the internalization and recycling of ErbB1 (Pochampalli et al., 2007). Through
stabilizing and enhancing the ErbB signaling by MUC1-ErbB kinase interaction, MUC1
activates extracellular signal-regulated kinases (Erks) 1 and 2 and thereby increases cell
proliferation (Schroeder et al., 2001). MUC1 also regulates ErbB-independent ERK signaling
through modulating the transcription of the genes encoding MEK1, Raf-1, and c-jun (Hattrup
and Gendler, 2006). The role of MUC1 in the regulation of ERK signaling was also supported
in COS-7 cells using MUC1-CT in conjunction with the extracellular and TM domains of the
CD-8 T-cell receptor (Meerzaman et al., 2001).

In addition to the ErbB family, MUC1 also interacts with fibroblast growth factor receptor 3
(FGFR3) (Ren et al., 2006). Stimulation of breast cancer cells with FGF induces tyrosine
phosphorylation of MUC1-CT, and finally increases the binding of MUC1 to β-catenin and
targeting of MUC1 and β-catenin to the nucleus (Ren et al., 2006). β-catenin acts as a
transcriptional co-activator to increase the expression of cell-cycle progression genes cyclin-
D1 and c-myc. Dysregulation of β-catenin is of great importance to the development of diverse
human malignancies (Huang et al., 2005). MUC1 increases cytoplasmic and nuclear β-catenin
levels by inhibiting GSK3β-mediated phosphorylation and degradation of β-catenin (Huang
et al., 2005). Src family members, such as c-Src, Lyn, and Lck, have been shown to bind and
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phosphorylate the CT of MUC1 at the YEKV motif (Singh and Hollingsworth, 2006). This, in
turn, inhibits the binding of GSK3β with MUC1-CT, which leads to better binding of MUC1-
CT with β-catenin and the inhibition of GSK3β-mediated degradation of β-catenin.
Importantly, disruption of the MUC1-β-catenin interaction in rat fibroblast cells attenuated
MUC1-induced anchorage-dependent and -independent growth and delayed MUC1-mediated
tumorigenicity (Huang et al., 2005). Further, by blocking the intracellular interactions between
MUC1/β-catenin and MUC1/EGFR using MUC1 inhibitory peptide (MIP), Bitler et al.
(2009) have shown a significant decrease in the proliferation, migration, and invasion of
metastatic breast cancer cells in vitro, and also decreased tumor growth and recurrence in an
established MDA-MB-231 immunocompromised (SCID) mouse model.

The MUC1 also controls cell proliferation by interacting with estrogen receptor α (ERα). The
MUC1-CT subunit is found in the nucleus and thereby it can modulate transcription directly
(Hattrup and Gendler, 2006; Wei et al., 2006). MUC1 binds directly to the ERα DNA-binding
domain and stabilizes ERα by blocking its ubiquitination and degradation. This interaction is
stimulated by the presence of estrogen (Wei et al., 2006). Further, it has been shown that MUC1
stimulates ERα-mediated transcription and contributes to estrogen-mediated growth and the
survival of breast cancer cells (Wei et al., 2006).

Relationship between MUC1 overexpression and inhibition of cancer cell death
Recent studies suggest that MUC1 confers a protective function against oxidative stress-
induced cell death. Figure 4 illustrates the different mechanisms involved in MUC1-induced
decreased cell death. In response to genotoxic stress, MUC1 regulates p53-responsive genes
and thereby cell fate (Wei et al., 2005). The p53 tumor suppressor functions in the cellular
response to stress by inducing growth arrest, DNA repair, senescence, differentiation, or
apoptosis (Levine, 1997). Selective transactivation of p53 target genes dictates the induction
of apoptosis or a growth arrest and repair response (Chao et al., 2000). MUC1 directly binds
to the p53 regulatory domain and selectively promotes transcription of growth arrest genes and
decreases transcription of apoptotic genes as a survival response to stress and thereby decreases
cell death (Wei et al., 2005). In addition, MUC1 increases anti-apoptotic Bcl-XL and PI3K/
Akt pathways to attenuate genotoxin-induced apoptosis (Raina et al., 2004).

MUC1 also activates the survival-related FOXO3a transcription factor in response to oxidative
stress (Yin et al., 2004). FOXO3a, a member of the fork head family of transcription factors,
induces reactive oxygen species scavenging and resistance to oxidative stress (Nemoto and
Finkel, 2002). FOXO3a is deactivated by its phosphorylation by the phosphoinositide 3-kinase
(PI3K) phospho-Akt/PKB pathway and retained in the cytoplasm. Dephosphorylation of
FOXO3a induces its nuclear localization and FOXO3a-mediated transactivation of gene
transcription (Nemoto and Finkel, 2002). Yin et al. (2004) have found that MUC1 attenuates
activation of the PI3K phospho-Akt/PKB pathway in HCT116 colon carcinoma cells and
thereby decreases FOXO3a phosphorylation. In addition, stable downregulation of endogenous
MUC1 in breast cancer cells has been found to inactivate FOXO3a, increase intracellular
oxidant levels, and sensitize cells to oxidative stress-induced necrosis.

As discussed earlier, the CT of MUC1 gets phosphorylated by various growth factors and
thereby provides a docking site for different signaling molecules. It has been shown that FGF1
induces tyrosine phosphorylation of MUC1-CT and facilitates the binding of MUC1 to the heat
shock protein (HSP)90 chaperone, finally targeting MUC1-CT to the mitochondria (Ren et
al., 2006). The localization of MUC1-CT to the mitochondria is shown to be associated with
the attenuation of a stress-induced loss of mitochondrial TM potential, release of mitochondrial
apoptogenic factors, activation of caspase-3, and cell death (Yin et al., 2003). This suggests
that by interacting with HSP90, MUC1-CT transduces signals from the cell membrane to
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mitochondria that attenuate activation of the intrinsic apoptotic pathway in response to stress
(Ren et al., 2006).

MUC1-CT also binds directly to c-Abl and sequesters it in the cytoplasm (Raina et al.,
2006). The c-Abl is a non-RTK, binds to cytosolic 14-3-3 proteins and targeted to the nucleus,
where it activates MEK kinase-1 and thereby the pro-apoptotic c-Jun N-terminal kinase (JNK)
pathway (Kharbanda et al., 1995a, b). Raina et al. have shown that MUC1 blocks nuclear
targeting of c-Abl and thereby the apoptotic response to genotoxic anticancer agents. MUC1
also interacts with the IκB kinase complex and increases the phosphorylation and degradation
of IκBα (Ahmad et al., 2007) and helps in the constitutive activation of nuclear factor-κB (NF-
κB) and thereby blocks apoptosis and induces transformation.

Recently, Agata et al. (2008) have shown a constitutive interaction of MUC1 with caspase-8
and the death effector domain of FADD in MCF-10A breast epithelial cells. MUC1 binds
directly to caspase-8 and FADD, blocks recruitment of caspase-8 to the death-inducing
signaling complex and thereby prevents activation of the death receptor-induced extrinsic
apoptotic pathway. The functional significance of this interaction in normal epithelial cells is
to inhibit caspase-8 activation as a protective mechanism, whereas malignant cells exploit this
phenomenon for survival under adverse conditions by having an overexpression of MUC1.

Taken together, these studies support the role of MUC1 in tumor progression, because it can
stimulate cell proliferation through growth factor receptor, β-catenin and ERα, and also
suppress apoptosis through the regulation of JNK, NF-κB, HSP90, and extrinsic apoptotic
pathways.

MUC4 and tumor progression
MUC4 is normally expressed by the epithelial surface of the eye, oral cavity, middle ear,
lachrymal glands, salivary glands, female reproductive tract, prostate gland, stomach, colon,
lung, trachea, and mammary gland to lubricate and protect these surfaces. Although similar to
MUC1, qualitative and quantitative alterations in the expression of MUC4 have also been
observed in various preneoplastic and neoplastic lesions (Buisine et al., 2001; Copin et al.,
2001; Corfield et al., 2001; Singh et al., 2006). MUC4 is normally absent in the pancreas but
an aberrant expression of MUC4 in pancreatic cancer is detected early pancreatic intraepithelial
neoplastic lesions and correlates with the disease advancement (Swartz et al., 2002; Park et
al., 2003). In addition to the aberrant expression of MUC4 in pancreatic cancer, it is frequently
overexpressed in various cancers like lung, breast, colon, and ovarian carcinomas
(Andrianifahanana et al., 2001; Hanaoka et al., 2001; Shibahara et al., 2004; Davidson et al.,
2007). Furthermore, the association of MUC4 with the poor prognosis of pancreatic, lung, and
bile duct cancer patients has also been reported (Saitou et al., 2005; Tamada et al., 2006;
Tsutsumida et al., 2007). In addition, ectopic MUC4 expression has been shown to induce
transformation in mouse embryonic fibroblast NIH3T3 cells (Bafna et al., 2008). Using MUC4
knockdown and overexpression cancer cell models, MUC4 has been shown to alter
tumorigenicity and metastasis by altering the behavioral properties of the tumor cells (Singh
et al., 2004; Chaturvedi et al., 2007; Moniaux et al., 2007). MUC4 mucin, which is also
implicated in the pathogenesis of various cancers, is synthesized as a single polypeptide chain
of ~930 kDa. MUC4 is hypothesized to be cleaved at a GDPH proteolytic cleavage site
generating two subunits (the mucin-type subunit MUC4α, and a TM subunit MUC4β).
MUC4α possesses three putative functional domains, TR, nidogen-like (NIDO), and adhesion-
associated domain in MUC4 and other proteins (AMOP), whereas MUC4β has three EGF-like
domains and a short 22 amino acids long CT (Chaturvedi et al., 2008a). The oncogenic effects
of MUC4 are believed to occur through its interaction with the growth factor receptor, which
has been discussed in later sections.
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Tumor progression through MUC4-induced increased cell proliferation and growth
Like MUC1, MUC4 has also been implicated in the regulation of cellular growth signaling
through its interaction with the ErbB family of growth factor RTKs. Figure 3 illustrates the
role of MUC4 in tumor progression through its interaction with growth factor receptors. The
EGF-like growth factor family of ligands binds with the extracellular domain of the ErbB
receptors, leading to the formation of both homo and heterodimers (Riese and Stern, 1998).
Ligand-induced dimer formation causes cross-phosphorylation of specific tyrosine residues in
the CT, which serve as docking sites for the activation of various signaling proteins to control
cell proliferation, differentiation, apoptosis, and survival (Schlessinger, 2000). No ligand,
however, has been ascribed to the ErbB2/HER2/Neu growth factor receptor. The MUC4 mucin
has been shown to act as an intramembrane ligand and activator for the receptor ErbB2 and
thus facilitates its dimerization with other ErbB receptors (Carraway et al., 2002;Jepson et
al., 2002;Singh et al., 2004). The MUC4/ErbB2 complex has been observed in many tissues
where MUC4 is normally expressed (Arango et al., 2001;Price-Schiavi et al., 2005) and also
in various tumors and cancer cell lines where MUC4 aberrantly gets overexpressed (Ramsauer
et al., 2006;Chaturvedi et al., 2008b). This suggests that MUC4 modulates ErbB2 signaling in
both normal and malignant epithelia but overexpression of MUC4 and ErbB2 provides a
scenario for the promotion of tumor progression. Silencing of MUC4 in pancreatic cancer cells
was associated with a downregulation of HER2 and a concomitant decrease in its
phosphorylated form (pY1248-HER2), which is one of the major autophosphoryalation sites
in the cytoplasmic region of HER2 (Singh et al., 2004;Chaturvedi et al., 2008b). The
tumorigenic property of HER2 contributes to its constitutive activation in tumor cells (Hynes
and Lane, 2005). Our recent studies have revealed that MUC4 interacts with the HER2 and
stabilizes its expression and activity by post-translational mechanisms (Chaturvedi et al.,
2008b). HER2 can regulate cell proliferation and metastasis by activating its downstream
mitogen-activated protein kinase (MAPK), phosphoinositide-3-kinase/Akt, FAK, and c-src
family kinase pathways (Holbro and Hynes, 2004). Enhanced stabilization of HER2 by MUC4
interaction was associated with enhanced activation of extracellular signal-regulated kinases
(Erks) 1 and 2 MAPK (Chaturvedi et al., 2008b). The HER2-mediated activation of the ERK
pathway has a crucial role in mediating cancer cell growth and proliferation.

Interaction of rat Muc4 (rMuc4) with ErbB2 has been shown to cause context-dependent
epithelial differentiation or cell proliferation. Binding of rMuc4 with ErbB2 induces limited
phosphorylation at 1248 tyrosine residues, which subsequently leads to the upregulation of
cell-cycle inhibitor p21kip and did not activate the MAPK pathway (Jepson et al., 2002). On
the contrary, when Muc4 potentiates the neuregulin-mediated activation of ErbB3 and ErbB2
complex then it leads to an enhanced activation of the Erk MAPK pathway and thereby
increased cell proliferation. Muc4, through its interaction with ErbB2, also enhances the
recruitment of PI3K to activated ErbB3 (Carraway et al., 2007). It has been shown that PI3K
is essential for ErbB2/ErbB3-mediated breast cancer cell proliferation (Holbro et al., 2003).
In addition, Muc4 has also been shown to cause relocalization of ErbB2 to the apical cell surface
in polarized colon cancer cells CACO-2, where MUC4 phosphorylates ErbB2 at 1139 and 1248
tyrosine residues and activates p38 MAPK with a consequent activation of Akt (Ramsauer et
al., 2006). Growth factor-induced activation of Akt via p38 has previously been shown as a
pro-survival pathway in lung cells (Horowitz et al., 2004). Ramsauer et al. (2006) have also
demonstrated the role of p38 activation via Muc4–ErbB2 interaction in cell survival and
maintenance. Hence, MUC4-mediated activation of ErbB2/HER2 has an important role in
tumor progression.

Tumor progression through MUC4-induced decreased cell death
MUC4 overexpression has been shown to impart apoptotic resistance to tumor cells.
Upregulation of rat Muc4/sialo mucin complex (SMC) expression accelerates growth of the
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A375 tumor in the xenotransplanted tumor model (Komatsu et al., 2001). Further, in vitro
studies suggested that this effect was not due to the increased proliferative potential of A375
cells, but was rather due to the suppression of apoptosis. By knockdown and overexpression
of MUC4 in pancreatic cancer cells, our laboratory has also demonstrated the anti-apoptotic
function of MUC4 (Chaturvedi et al., 2007; Moniaux et al., 2007). In addition, Muc4 renders
drug resistance to melanoma cell lines (Hu et al., 2003). Upon treatment with doxorubicin,
Muc4-expressing melanoma cells were blocked less frequently in G2 and underwent less
apoptosis and necrosis than Muc4-negative melanoma cells (Hu et al., 2003). Activation of
caspase-9 was decreased in Muc4-expressing melanoma cells when treated with the apoptotic-
inducing agent, actinomycin D. Further, in contrast with MUC1, Muc4 did not cause
suppression of the extrinsic apoptotic pathway (Hu et al., 2003).

A possible mechanism of the anti-apoptotic function of MUC4 is not yet clear, but it will be
interesting to explore the relationship between signaling from the MUC4/ErbB2 complex and
apoptosis. Figure 4 summarizes the possible mechanisms involved in MUC4-induced
decreased cell death. Studies have shown that ErbB2 expression in tumors can lead to resistance
to multiple drugs through ErbB2-mediated upregulation of cell-cycle inhibitor p21Cip1, which
further inhibits activation of cdk1/cyclin B and thus blocks its normal pathway to cellular
apoptosis (Yu and Hung, 2000). Studies with rat Muc4 have shown that Muc4 induces limited
and specific phosphorylation of ErbB2 at Tyr1248 in melanoma cells, which is associated with
an upregulation of cell-cycle inhibitor p27kip and a repression of apoptosis (Jepson et al.,
2002). Recently, we have shown the role of MUC4 in the protection of pancreatic cancer cells
from gemcitabine-induced apoptosis through HER2/ERK-dependent phosphorylation and
inactivation of the pro-apoptotic protein Bad (Bafna et al., 2009). This suggests that MUC4
might exert its anti-apoptotic function through ErbB2 downstream signaling. However, MUC4
causes downregulation of p27kip in the presence of neuregulin, a ligand for ErbB3. In addition,
a recent study has shown that the anti-apoptotic effect of rat Muc4 is dependent on ErbB2 in
JIMT-1 breast cancer cells, whereas it is independent of ErbB2/HER2 in A375 melanoma and
MCF-7 breast cancer cells (Workman et al., 2009). These findings indicate that the role of
MUC4 in the resistance to apoptotic cell death is not only regulated by MUC4 and ErbB2
interaction but also implicates other signaling pathways regulated by MUC4. Hence, the
mechanism of the anti-apoptotic function of MUC4 is still an open question and needs to be
elucidated by future studies.

Biological significance of MUC16 in cancer progression
MUC16 is the largest membrane-bound mucin and is normally expressed by epithelium of the
ocular surface, upper respiratory tract, the mesothelium lining body cavities (pleural,
peritoneal, and pelvic cavities), the internal organs, and male and female reproductive organs
(Matsuoka et al., 1990; Zeimet et al., 1998; Argueso et al., 2003; Gipson, 2005) to lubricate
and protect these surfaces. In contrast, numerous studies on human tumors and serum have
shown a deregulated expression of MUC16 in ovarian cancer. MUC16, previously known as
CA125, is a tumor-associated antigen that is cleaved from the surface of ovarian cancer cells
and shed into blood and used as a well-established biomarker for monitoring the growth of
ovarian cancer (Bast et al., 1998). It has been shown that disease progression is associated with
an increase in serum CA125/MUC16 level in >80% of ovarian cancer patients, whereas a
decline in serum CA125/MUC16 level is associated with response to therapy (Capstick et al.,
1991). Studies of MUC16 have focused primarily on clinical applications, whereas the
biological significance of MUC16 overexpression in ovarian cancer is still poorly understood.

MUC16 is a very large mucin with an average molecular weight between 2.5 and 5 million Da
(O'Brien et al., 2001, 2002). The peptide backbone of MUC16 is composed of an N-terminal
region, an extensive TR domain, and a C-terminal region with a short CT (O'Brien et al.,
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2001). The N-terminal domain is rich in serine/threonine residues and accounts for the major
O-glycosylation sites known to be present in MUC16. The TR region is composed of 18–60
repeats, each of which contains 156 amino acids. The C-terminal region can be divided into
three major domains: extracellular domain, TM domain, and CT. Human MUC16 is unique
among the membrane-bound mucins by having 16 SEA domains and unlike MUC1 and MUC4,
it does not have an EGF-like domain (Hattrup and Gendler, 2008). In addition to its extensive
protein structure, MUC16 is heavily glycosylated with both O-linked and N-linked
oligosaccharides (Kui et al., 2003). As a large heavily glycosylated molecule, MUC16 extends
from the surface of ovarian cancer cells and binds to mesothelin, a protein that is found on the
surface of the mesothelial cells that line the peritoneum (Rump et al., 2004; Gubbels et al.,
2006; Scholler et al., 2007). These studies suggest that MUC16 provides contact and adhesion
for metastasizing epithelial ovarian cancer cells and thus have a biological role in the metastasis
of ovarian cancer cells. In addition, MUC16 has also been shown to bind with galectin-1, a
mammalian lectin expressed on human immune cells, and prevent anti-tumor immune
responses (Seelenmeyer et al., 2003). Recently, Boivin et al. (2009) have shown increased
sensitivity to various genotoxic agents in epithelial ovarian carcinoma cells by downregulation
of MUC16. Further, Gubbels et al. (2010) have shown that MUC16 protects ovarian tumor
cells from natural killer cell mediated anti-tumor cytotoxic responses. The protection is
mediated mainly by inhibition of synapse between tumor and NK cells. It also potentiates
peritoneal metastasis of ovarian cancer cells (Gubbels et al., 2006). The CT of MUC16 contains
polybasic amino acids, and it is predicted to interact with ezrin/radixin/moesin (ERM) actin-
binding proteins (Blalock et al., 2007). Although the MUC16 CT has many possible
phosphorylation sites (Hattrup and Gendler, 2008), the functional characteristics and signaling
capabilities of MUC16 that contribute to cell growth in cancer are still unknown.

Mucins in cell survival and autophagy
Solid tumors and specifically pancreatic tumor is clinically hypovascular and its three-
dimensional growth causes biologically different zones within the tumor: central and peripheral
zones of the tumor (Nakamura et al., 2007). Nutrient level is frequently more reduced in the
center of locally advanced tumors than in the peripheral zone of the tumor. In addition, to
metasta-size, tumor cells must survive in the circulatory or lymphatic systems in the absence
of stromal-derived survival growth factors and limited nutrients. In these conditions, tumor
cells need to adapt to the environment that is deprived of nutrients and acquire alternative
energy sources. Autophagy is a cellular response to stress or nutrient deprivation, which is a
way to supply amino acids as an alternative energy source by degradation of damaged
cytoplasmic organelles or protein (Hait et al., 2006). Recently, the MUC4 gene has been shown
to be upregulated in the central zone of the pancreatic tumor compared with the peripheral zone
of the tumor. This implicates the potential role of MUC4 in nutrient deprivation-induced
mechanisms (Nakamura et al., 2007). MUC1 has also been shown to protect cells against
oxidative stress-induced cell death (Yin et al., 2003). Recently, MUC1 is shown as a new target
of the hypoxia inducible factor (HIF)-signaling pathway, which is the main renal
carcinogenetic pathway and have a role in migration and invasive properties in renal cancer
cells (Aubert et al., 2009). Mucins are very large glycoprotein and found to be overexpressed
in various cancers. The aberrant overexpression and large size of mucins might also have a
survival advantage under nutrient deprivation in cancer cells by undergoing autophagy.
Therefore, it would be interesting to determine the association of mucins and autophagy as a
survival advantage in cancer cells under nutrient-deprivation conditions. In a recent study,
MUC1 has been shown to inhibit the induction of necrosis in response to the deprivation of
glucose with the induction of autophagy (Yin et al., 2009).
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Conclusion and Perspectives
In recent years, it has become clear that the deregulation of mucin expression creates a favorable
environment for tumor progression. As described herein, enormous progress has been made
regarding the mechanisms of membrane-bound mucins in tumor progression. Both MUC1 and
MUC4 have many unique domains, which enhance or inhibit various signaling pathways
involved in cellular proliferation and cell death. MUC16 is a well-established serum marker
for ovarian cancer patients but the functional characteristics and signaling capabilities of
MUC16 to contribute to cell growth in cancer are still unknown. Further, the aberrant
overexpression and large size of mucins might provide survival advantage to cancer cells under
stress or nutrient deprivation by promoting autophagy. Figures 3 and 4 illustrate the various
mechanisms of MUC1 and MUC4 responsible for tumor progression. MUC1 has a distinct
role in tumor progression because it can stimulate cell proliferation through its interaction with
growth factor receptor, β-catenin, and ERα. MUC1 also suppresses apoptosis through the
regulation of various pathways as described in the review. The tumorigenic potential of MUC4
contributes to its interaction with the ErbB2 receptor and regulation of ErbB2 downstream
signaling. However, future studies are needed to corroborate and clarify the contribution of
these interactions in tumor progression. If the aforementioned mucin interactions are required
to promote tumor progression, then it could be useful to target these interactions for the
treatment of cancer. Further, disruption of these interactions will elucidate the contribution of
each process and the intervention of these pathways may be helpful in controlling tumor
progression.
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Figure 1.
Prototype structure of the membrane-bound mucins. These mucins typically compose two
subunits, based on the putative proteolytic cleavage site. The larger subunit is extracellular and
predominantly composed of variable number of tandem repeats. The smaller subunit consists
of short extracellular region (containing either sperm protein, enterokinase, and agrin (SEA)
domain or epidermal growth factor (EGF)-like domain), single transmembrane domain, and
the cytoplasmic tail.
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Figure 2.
Schematic representation of MUC1, MUC4, and MUC16 cytoplasmic tails (CT). The sequence
of cytoplasmic tails of different MUCs is shown with emphasis on tyrosine residue (red) and
their known binding partners. MUC1 cytoplasmic tail is the most well-studied and known to
interact with proteins with kinase activity (PCKδ, GSK3β, EGFR, and c-Src) and without
kinase activity (p53, ERα, β-catenin). The MUC16 cytoplasmic tail has a motif containing
polybasic amino-acid sequence, which is a potential site for interaction with cytoskeleton
through ERM protein. Both categories of interacting partners are involved in different signaling
pathways emphasizing on the critical role of mucin cytoplasmic tail in intracellular signaling
events. MUC4 cytoplasmic tail also contains tyrosine residue but till date nothing is known
about their intracellular-binding partners. In addition, both MUC1 and MUC16 contain
positively charged lysine-arginine rich potential nuclear localization motif in the region
juxtaposed to the plasma membrane. In extracellular domain, N and O-linked glycosylations
are shown schematically with red and black color, respectively.
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Figure 3.
Divergent mechanisms of MUC1 and MUC4 for enhanced cancer cell proliferation. MUC1
through its cytoplasmic tail (CT) interacts with the ErbB1 epidermal growth factor receptor
tyrosine kinase and increases cell proliferation via activation of extracellular signal-regulated
kinases (Erks). MUC4 also contributes to enhanced cellular proliferation through its interaction
with another epidermal growth factor receptor tyrosine kinase ErbB2 with subsequent
activation of Erk and Akt signaling pathways. By interacting with β-catenin, MUC1-CT
inhibits GSK3β-mediated degradation of the β-catenin and increases the expression of cell-
cycle progression genes by increasing the nuclear pool of β-catenin. MUC1 also controls cell
proliferation by stabilizing estrogen receptor α (ERα).
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Figure 4.
Illustration of different mechanisms of MUC1 and MUC4 for the repression of apoptosis.
MUC1 selectively transactivates p53, FOXA3a, and NF-κB transcription factors and
suppresses induction of apoptosis. In contrast, MUC1 blocks nuclear targeting of c-Abl and
blocks apoptosis. Activation of MUC1-CT by growth factor signaling causes its binding with
HSP90, which transduces signals from the cell membrane to mitochondria that attenuates
activation of the intrinsic apoptotic pathway. In addition, MUC1 interacts with the death
effector domain of FADD and thereby prevents an activation extrinsic apoptotic pathway.
MUC4 has also been proposed to represses apoptosis through the upregulation of kip.
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Table 1

Salient features of membrane-bound mucins

MUCs Salient features

MUC1 MUC1 is normally expressed in most epithelial cells and aberrantly overexpressed in various carcinomas. Around 200 kDa of MUC1
protein comprises 20-residue tandem repeats at the N-terminus of extracellular subunit, an SEA module, a TM domain, and 69 amino
acids long C-terminal cytoplasmic domain

MUC3 MUC3 is the product of two genes MUC3A and MUC3B and both are normally expressed in gastrointestinal epithelia. MUC3 consists
of 17-residue tandem repeats mucin domain at the N-terminus of the extracellular subunit, an SEA module, two cysteine-rich EGF-
like domains, one to either side of the SEA module, a TM domain, and a 72 amino acids long C-terminal cytoplasmic domain (CT)

MUC4 A 930 kDa of MUC4 protein has two subunits, MUC4α and MUC4β. MUC4α comprises three putative functional domains, 16 residue
tandem-repeats, nidogen-like (NIDO), and adhesion-associated domain in MUC4 and other proteins (AMOP), whereas MUC4b has
three EGF-like domains, a TM domain and a 22-amino acids long CT

MUC12 MUC12 is normally expressed by stomach and colon. It is a 5478-residue membrane-anchored protein and comprises a large N-terminal
mucin domain, an SEA module, two cysteine-rich EGF-like domains, one to either side of the SEA module, a TM domain, and a 75
residue C-terminal cytoplasmic domain

MUC13 MUC13 is highly expressed in the epithelium of gastrointestinal and respiratory tracts and aberrantly expressed in gastric, colorectal,
pancreatic, lung, and ovarian carcinomas. It comprises of an N-terminal large 151-amino acid tandem repeat mucin domain, three EGF-
like domains, an SEA module, a TM domain, and a 69 amino acids CT

MUC15 MUC15 was originally isolated from bovine milk fat globule membranes. It is most abundantly expressed in the placenta, salivary
gland, thyroid gland, and moderately in the kidney and lung. 311 amino acids protein of MUC15 contains a signal sequence, an
extracellular mucin domain, a small TM domain, and a 74 amino acids CT

MUC16 The largest membrane-bound mucin is expressed by epithelium of the mesothelium lining body cavities (pleural, peritoneal, and pelvic
cavities). The peptide backbone of MUC16 is composed of N-terminal region, an extensive 52 residue tandem repeat domain, 16 SEA
domains, a C-terminal region with a 32 amino acids CT

MUC17 It is a 4493 amino acids long gastrointestinal tract mucin and comprises a signal sequence, a large N-terminal mucin domain with 59
residue amino acids tandem repeats, two cysteine-rich EGF-like domains, an SEA module, a hydrophobic TM domain, and a C-terminal
80 amino acids long CT

MUC20 A small 503 amino acids protein is markedly upregulated in renal injuries. Two isoforms of the MUC20 exist with different N-terminal
sequences. According to the number of mucin repeats, these isoforms are MUC20-S (repeat times <3) and MUC20-L (repeat times=/
>3). 53 amino acids long CT has two functional domains: one involved in MUC20 oligomerization and the other involved in MUC20-
Met binding. In addition, as a membrane protein, it also comprises several hydrophobic domains

MUC21 A novel 535 amino acids long TM mucin is considered as a marker for lung adenocarcinomas. It comprises a signal sequence, 28
tandem repeats of 15 amino acids, 22 amino acids of stem domain, 23 amino acids of TM domain, and a CT of 64 amino acids

Abbreviations: CT, cytoplasmic tail; EGF, epidermal growth factor; MUC, mucins; TM, transmembrane.
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