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Understanding causal relationships between genotypes and phenotypes is a
long-standing aim in genetics. In addition to high-throughput technologies that
allow the measurement of many DNA variants it is possible to measure gene
expression in specific tissues using array technology. “Systems genetics” is an
emerging discipline that combines dense data on genotypes, gene expression,
and outcome phenotypes to answer fundamental questions about causal
pathways from genotype to phenotype. A recent paper by Chen et al. †Mol. Syst.
Biol. 5, 310 „2009…‡ addressed the question of whether relative levels of mRNA
expression help to elucidate causal paths from genotype to phenotype, using
drug resistance in yeast as a model. The authors show that data on genetic
markers and on gene expression, measured in a drug-free environment, can be
combined to predict the growth of a yeast strain in the presence of a drug. They
argue that their prediction can be used to identify causal pathways and for a
subset of the genes used in prediction, the authors demonstrate that these genes
cause an effect on drug sensitivity by deleting the gene or overexpressing it
or swapping alleles between strains of yeast. This approach can also be applied
to other species, including humans, and may become a tool in the study of
personalized medicine. [DOI: 10.2976/1.3292182]
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Understanding the genetic basis of pheno-
typic differences between individuals in a
population is a long-standing aim in genetics
research with applications in medicine, evolu-
tionary biology, and agriculture. For complex
or quantitative traits, the phenotype depends
on multiple genes and environmental factors.
Traditionally, it has been difficult to identify
specific polymorphisms causing variation in
complex traits. Geneticists have estimated the
proportion of phenotypic variance that is ge-
netic (i.e., the heritability) by calculating the
correlation between relatives and have pre-
dicted the phenotype of an individual from
the phenotypes of its relatives (e.g., use of fam-
ily history to assess one’s disease risk, Visscher
et al., 2008). Phenotypes, such as future dis-
ease status, are also predicted from other con-
veniently measured phenotypes such as the
use of serum cholesterol concentration to

predict risk of heart disease. However, these
studies do not tell us anything about the im-
portance of specific genes or polymorphisms.
With the advent of molecular markers it has
become possible to map genes causing varia-
tion in a trait and even to identify the causal
polymorphism.

Drug resistance is one example of a “com-
plex trait” in that there are differences between
individuals in the population in drug resistance
and some of those differences are due to ge-
netic factors. A better understanding of the
genetic basis of drug resistance is important
because it could be used to target and tailor
drugs to specific genotypes, i.e., “personalized
medicine.” For example in humans, the anti-
coagulant drug warfarin is used to reduce
the risk of stroke, pulmonary embolism, and
thrombosis but there is large variation between
people in the dose needed for effective anti-
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coagulation treatment. Nearly half of this dose variation is
explained by common polymorphisms in three genes
(VKORC1, CYP2C9, and CYP4F2, Takeuchi et al., 2009)
so that genetic testing could aid in calibrating warfarin dose
and thereby reduce the chance of serious illness or severe
bleeding.

The extent of expression of a particular gene or transcript
(mRNA abundance) is also a complex trait influenced by
multiple polymorphisms and by environmental factors. Like
other complex traits, it is possible to map genetic loci that
explain some of the genetic variation in abundance of a par-
ticular transcript by using linkage or association analysis, to
detect association within pedigrees or in the population, re-
spectively, (Brem et al., 2002; Cheung et al., 2003a, 2003b,
2005; Jansen and Nap, 2001; Monks et al., 2004; Morley
et al., 2004; Rockman and Kruglyak, 2006; Schadt et al.,
2003; Stranger et al., 2005). It is also possible to study the
correlation between gene expression and a conventional phe-
notype such as disease status. A number of investigators have
gone one step further by studying the relationships between
genetic markers, gene expression, and conventional pheno-
types leading to gene networks where a polymorphism in one
gene affects the expression of that same gene or other genes
and this in turn affects a phenotype such as disease status
(Schadt et al., 2005).

Chen et al. (2009) used a similar approach. They aim to
predict a complex phenotype, the ability of yeast strains to
grow in the presence of one of 94 drugs, using data on ge-
netic markers and gene expression in a population of 104 re-
combinant strains derived from a cross of two widely diver-
gent parents. Chen et al. specifically asked the question,
“How useful are gene expression data collected in a drug-
free environment to predict resistance to drugs when geno-
types are challenged?”

DESIGN AND ANALYSIS
The drug response data were growth yields in the presence of
94 different chemicals, including well-known drugs such as
Resveratrol, Clotrimazole, and Tamoxifen, where 526 ge-
netic markers were used, spread throughout the genome.
The gene expression data were from 854 candidate genes.
Importantly, gene expression data were generated in the ab-
sence of the chemicals. All these data were generated previ-
ously by Brem and Kruglyak (2005), Brem et al. (2002), and
Perlstein et al. (2007).

The challenge is to use these different sources of data to
predict the phenotype and drug resistance in this case. One
method is to correlate the genetic markers with outcome,
using linkage analysis. A strong correlation implies that
somewhere in the region of the genome that is linked to the
marker there are one or more genetic polymorphisms that
cause the observed outcome. A disadvantage of this ap-
proach is the resolution because the segment of chromo-

some that is correlated can harbor many genes. An alterna-
tive approach is to correlate gene expression with drug resis-
tance. The advantage of this is resolution since a specific
gene is implicated. The disadvantage is that a correlation is
not evidence of causation. A prediction of drug resistance
based on either genetic markers or gene expression might be
satisfactory even if neither had a causal relationship to drug
resistance but the authors argue, reasonably, that the predic-
tion will be more robust if the correlations are causal. In ad-
dition, the discovery of the causes of phenotypic variation
may be useful for purposes other than prediction including
identification of new drug targets and understanding of the
biological system. The authors combine the marker and gene
expression data in a sophisticated model fitting procedure
they call causal modeling with expression linkage for com-
plex traits (Camelot). The aim of the study is to simulta-
neously construct the best predictor for outcome and identify
causal mechanisms.

The authors present evidence that Camelot is able to se-
lect a good predictor and that the addition of gene expression
can improve the prediction of drug resistance dramatically.
For example, for the drug Haloperidol, the classification ac-
curacy (a measure of how well the prediction works) is 0.45
when only genetic markers are used and 0.72 when both
markers and gene expression is used.

Developing a prediction equation based on 526 markers
and expression of 854 transcripts using 104 data points is
inherently difficult because it is always possible to find a pre-
diction equation that works in the data where it is estimated
(the training data set) but often such equations fail when ap-
plied to new data (the test data set). How does Camelot
work? The main reason for success seems to be the judicious
choice of the variables or “features” to include in the pre-
diction equation. Once the variables for use are chosen, their
effects are estimated by linear regression. There appear to
be at least three mechanisms by which the variables are cho-
sen. The statistical analysis uses various methods to make
the choice of variables robust such as the nonparametric
bootstrap. We would expect that this is advantageous when
the data (i.e., growth in response to a drug) is highly non-
normally distributed. The accuracy of the final prediction is
evaluated using a tenfold cross-validation scheme to avoid
biasing the estimate of accuracy. This means that the pre-
diction equation is estimated using 90% of the yeast strains
and tested in the other 10%. There is a little concern that
Camelot may have been developed in the same data and
therefore there may still be some bias in the estimates of
accuracy. It would be desirable to test Camelot in a com-
pletely new data set. However, the authors test a number
of their predictions of causality with new experimental
data and this supports the functional role of the single nucle-
otide polymorphisms (SNPs) and transcripts used in the pre-
diction equations (see below).

The selection of the SNPs to include in the prediction
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equation is aided by what the authors call “zoom-in.” Many
SNPs in a chromosome segment are likely to be correlated
with the phenotype due to linkage. However, only a SNP in
the gene containing the causal polymorphism is likely to af-
fect the expression of its own transcript and to show a corre-
lation between the transcript abundance and the phenotype.
Therefore, Camelot selects SNPs showing these characteris-
tics for inclusion in the prediction equation and it also favors
genes that are highly conserved across yeast species on the
grounds that mutations in highly conserved genes are more
likely to have an effect.

The choice of transcripts to use in the prediction equa-
tion depends on several types of data. First, the 854 tran-
scripts considered were chosen from the full set of 6189 on
the basis of the known function of the gene and its likelihood
of affecting drug resistance. Second, to be included, tran-
scripts had to pass a “triangle test.” This appears to be a con-
ditional test to ensure that transcripts remain significant
when added to a prediction that already contained the chosen
SNPs.

The phenotypes recorded were the average of a strain and
presumably the differences between strains are genetic not
environmental. Consequently, one might expect that the
SNPs, which cover the whole genome, could completely pre-
dict the phenotype without the need to include the gene ex-
pression data. The authors offer two explanations why gene
expression gives additional information over and above the
value of genotypic information. The first one is that gene
expression as a phenotype may capture the accumulated
effects of many genetic variants that influence it. The effect
of a specific genetic polymorphism on the outcome trait
(drug response) may be through a change in the amount of
mRNA expression at one or more genes. The polymorphism
may have too small an effect on the phenotype to be detected
in the data set of 104 yeast strains. However, if many such
polymorphisms effect the expression of the same transcript
and also affect the phenotype, the transcript abundance may
integrate the effects of many polymorphisms and therefore
be a more useful predictor than the individual polymor-
phisms. Obviously, this could occur if the effect of the SNPs

on drug resistance is mediated by the expression level of this
transcript (Fig. 1). The second mechanism by which the gene
expression data improves the prediction is through the
zoom-in method described above for selecting SNPs.

PREDICTION AND CAUSALITY
The intention of Camelot is that it selects features for the
prediction equation that have a causal relationship to the phe-
notype. Chen et al. tested this in a subset of cases. The ex-
pression of DHH1 was negatively correlated with growth in
the presence of hydrogen peroxide. To show that this was
causal, the authors deleted the DHH1 gene and observed an
increase in growth. The prediction equation for growth in
hydrogen peroxide included a SNP in the gene ERG6 and
Chen et al. showed that this gene had a causal role by over-
expressing ERG6 and observing a decrease in growth. A
SNP in the gene PHO84 was selected by the zoom-in method
of Camelot to predict resistance to many drugs. Chen et al.
confirmed that this gene is causal by swapping the PHO84
alleles between the two parent strains and showing that this
changed resistance to the appropriate drugs. This is a surpris-
ing result because the difference between the alleles is one
amino acid, which should not directly affect the expression
of the gene. However, Chen et al. showed that the change in
amino acid sequence of the protein affects the function of the
protein causing a feedback loop to alter the gene expression.
Because they can identify causal features, Chen et al. are
able to identify pathways by which the drugs inhibit growth
and also new drug targets. For instance, hydrogen peroxide
and several other drugs seem to work through mitochondrial
function.

SIMILAR STUDIES SHOW SIMILAR RESULTS
The results from a very similar study that used the same
yeast strains were published in PLoS One (Ruderfer et al.,
2009). These authors came to very similar conclusions as
Chen et al. in that (1) drug response can be predicted from
transcript levels measured in the absence of drugs; (2) drug
response can be predicted from marker data; and (3) combin-
ing marker and transcript abundance increases prediction

Figure 1. Two models to explain the added value of gene expression. �Left panel� Variants in multiple �unlinked� genes �A�–�E� affect
mRNA expression in a particular gene �X� and this affects outcome. �Right panel� Zoom-in: gene expression in gene D helps to identify which
of the linked genes �A�–�E� contains a DNA variant that affects outcome.
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accuracy. Quantitatively, most of the prediction power came
from genetic markers in the study of Ruderfer et al. and
the authors conclude that in the absence of environmental
perturbations, genotype determines both expression levels
and drug response so that most information is contained in
the genotype information.

APPLICATIONS TO HUMANS
How could these methods be applied to other species, for
example, humans? In humans the map resolution from
marker-trait association studies is much better than for ex-
perimental crosses (such as the one in yeast used in Chen
et al.) because the effective population size is larger. There-
fore, the confidence interval for the causal polymorphism is
smaller and may contain only a few genes. However, the
zoom-in method that is used in the study of Chen et al.
could still be used to predict which of these genes contains
the causal polymorphism. Obtaining the relevant mRNA
levels is more problematic in humans because often the best
tissue cannot be sampled and researchers use blood samples
or cell lines to measure gene expression (Cheung et al.,
2003a; Monks et al., 2004; Morley et al., 2004; Stranger
et al., 2005). The results of Chen et al. implied that it may
not be necessary to measure gene expression in the correct
tissue and physiological state since they used gene expres-
sion data in the absence of any drug to predict drug resis-
tance. How this applies to multicellular organisms remains to
be seen.

The results of Chen et al. implied that few genes and
pathways are needed to explain growth in the presence of a
drug. This seems to be at odds with the data on most complex
traits in mammals where many genes typically affect a com-
plex trait (Donnelly, 2008). This would imply that much
larger sample sizes would be needed to achieve the same
accuracy of prediction in humans and other mammals. The
existence of some polymorphisms of large effect on drug
resistance may occur because natural selection has not elimi-
nated either allele because in the absence of the drug, the
polymorphism is nearly neutral. Similarly, in humans, it is
unlikely that there has been strong evolutionary pressure on
the response to drugs so common variants with large effects
may exist, as exemplified by the genes affecting variation in
warfarin dose response (Takeuchi et al., 2009).

The “system genetics” (Jansen and Nap, 2001) approach
taken by Chen et al. could in principle be taken further by
adding other levels of relevant data. For example, proteomic
and epigenetic data on specific genes may help both to
make the prediction more accurate and to elucidate causal
pathways.

CONCLUSION
Systems genetics is an emerging discipline in which several
levels of biological data, often characterized by high vol-
umes through the use of omics technologies, are measured

to elucidate causal pathways. It is characterized by having
a genetically informative design (for example, yeast seg-
regants in the Chen et al. and Ruderfer et al. papers) in
which intermediate “phenotypes” such as gene expression,
gene methylation, protein abundance, or metabolites are
measured to understand and predict the relationship between
genetic information and outcome phenotypes such as drug
resistance, disease susceptibility, and quantitative traits. It is
a logical step forward from the “genetical genomics” ap-
proaches suggested by Jansen and Nap (2001) when it
became clear that transcript abundance has a strong genetic
basis.

Chen et al. (2009) and Ruderfer et al. (2009) combined
the experimental data on genetic markers and gene expres-
sion in yeast with data from the public domain (sequence
conservation and annotation of gene function) to predict
drug resistance for individual genotypes. They show that
adding gene expression improves the accuracy of prediction
and facilitates the identification of causal pathways. Extend-
ing this work to humans could be an important step to fulfill
the promise of personalized medicine.
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