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Current methods of assessing climate-induced shifts of species distributions rarely account for
species interactions and usually ignore potential differences in response times of interacting taxa
to climate change. Here, we used species-richness data from 1005 breeding bird and 1417
woody plant species in Kenya and employed model-averaged coefficients from regression models
and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species
richness under climate change. Forecasts assuming an instantaneous response of woody plants and
birds to climate change suggested increases in future bird species richness across most of Kenya
whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a
reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species
richness were geographically structured, mainly owing to uncertainties in projected precipitation
changes. We conclude that assessments of future species responses to climate change are very sen-
sitive to current uncertainties in regional climate-change projections, and to the inclusion or not of
time-lagged interacting taxa. We expect even stronger effects for more specialized plant–animal
associations. Given the slow response time of woody plant distributions to climate change, current
estimates of future biodiversity of many animal taxa may be both biased and too optimistic.
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1. INTRODUCTION
Climate change is thought to be among the major
current threats to biodiversity (Sala et al. 2000;
Walther et al. 2002; Parmesan 2006; Jetz et al. 2007),
and by the end of this century large portions of the
Earth’s surface may experience climates not found at
present (Williams et al. 2007). Recent species- and
community-level approaches to assessing biodiversity
changes and shifts in species’ distributions under
future climate-change scenarios employ forecasting
techniques (e.g. species distribution models or
species-richness forecasts) to estimate the relationship
between current patterns of species distributions and
climatic variables, and to project future biodiversity
consequences under climate change (e.g. Thomas
et al. 2004; Thuiller et al. 2005; Lemoine et al. 2007;
La Sorte et al. 2009). These models usually assume
that species interactions and biotic associations play a
relatively minor role at broad geographical scales
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(Davis et al. 1998; Pearson & Dawson 2003), regard-
less of whether individual species’ distributions or
more integrated attributes of ecological communities,
such as species richness, are modelled. It has therefore
been questioned whether these approaches accurately
forecast changes in biodiversity under climate change
(Davis et al. 1998; Araújo & Rahbek 2006; Araújo &
Luoto 2007).

To date, little is known about the effect of species
interactions on spatial distribution of biodiversity
under climate change. For instance, for two monopha-
gous butterfly species and their food plants in Europe,
it has been suggested that climate change has the
potential to further limit the ranges of trophically
linked species because butterflies and their food
plants do not necessarily react in a similar manner to
global change (Araújo & Luoto 2007; Schweiger
et al. 2008). Overall, however, it remains largely
unclear whether and how different responses of inter-
acting species to climate change might influence
future species distributions. Different time lags may
be particularly relevant for many animal groups
(such as birds, small mammals, or insects) if associ-
ated species (particularly woody plants) have
relatively low dispersal rates and long generation
times, and therefore relatively slow distributional
responses. Different response times of interacting
This journal is q 2010 The Royal Society

mailto:danielkissling@web.de
http://dx.doi.org/10.1098/rstb.2010.0008
http://dx.doi.org/10.1098/rstb.2010.0008
http://dx.doi.org/10.1098/rstb.2010.0008
http://rstb.royalsocietypublishing.org
http://rstb.royalsocietypublishing.org


2036 W. D. Kissling et al. Plant–bird richness under climate change
species to climate change could thus lead to a spatial
mismatch between suitable climate niche space and
the presence of the associated species on which the
focal organisms depend (Araújo & Luoto 2007;
Schweiger et al. 2008). Species associations between
plants and animals involving little specialization,
including non-trophic relationships (e.g. between
birds or mammals and woody plants), are more wide-
spread than specialized relationships (e.g. between
monophagous butterflies and host plants). However,
whether such little-specialized biotic associations can
affect distributional shifts of interacting species under
climate change has not yet been evaluated.

Here, we explore the implications of including
plant–bird associations and potential time lags of
woody plants into forecasts of bird species richness
in response to climate change. Birds and plants
are suitable groups for such analyses because biotic
associations play an important role in shaping species-
richness patterns at broad geographical scales (Lee &
Rotenberry 2005; Kissling et al. 2007, 2008; Qian
2007). Although reciprocal specialization between
individual bird and plant species is rare (Zamora
2000), plants are at the base of terrestrial food webs
and provide a great variety of food resources relevant
for bird consumers (Hutchinson 1959; Cody 1985;
Kissling et al. 2007). Moreover, woody plants are key
structural elements of terrestrial ecosystems, determin-
ing habitat configuration and providing foraging
substrates and nesting sites for many bird species
(Cody 1985). Empirical field studies suggest that the
effect of plant diversity on bird diversity is largely
driven by an increase in horizontal and vertical hetero-
geneity of vegetation cover the more woody plant
species are present (MacArthur & MacArthur 1961).
Consequently, the dependence of birds on woody
plants results in the spatial congruence of the richness
patterns of both groups not only at local but also at
broad geographical scales (Lee & Rotenberry 2005;
Kissling et al. 2007, 2008; Qian 2007). Despite their
importance, biotic associations between birds and
woody plants have so far been disregarded when fore-
casting climate-change impacts on bird diversity
(Thomas et al. 2004; Jetz et al. 2007; Lemoine et al.
2007; Huntley et al. 2008).

Our analysis is based on an exhaustive dataset sum-
marizing the geographical distributions of all native
breeding bird and woody plant species across Kenya
at a spatial resolution of ca 55 km (0.58 grid cells). Pre-
vious work with this dataset used structural equation
modelling to disentangle direct and indirect effects of
climatic factors and woody plant species richness on
bird species richness (Kissling et al. 2008). Results
indicated that bird and woody plant species richness
in Kenya at this spatial scale are predominantly
linked via functional relationships, probably driven
by vegetation structural complexity, and that effects
of climatic variables on bird species richness are largely
indirect via effects on woody plants. Here, we extend
this reasoning and develop predictive regression
models for bird and woody plant species richness.
We use 15 climate-change scenarios (Solomon et al.
2007) to assess likely changes in bird diversity across
Kenya, including interactions between birds and
Phil. Trans. R. Soc. B (2010)
woody plant species and potential time lags of the
latter group. We compare two forecasting scenarios.
In Forecast 1 (instantaneous change of woody
plants), we assume that woody plant species richness
responds instantaneously to climate change (based
on future climate surfaces) and that bird species rich-
ness responds directly to future climatic conditions
and future woody plant richness. In Forecast 2 (no
change of woody plants), we assume the same as in
Forecast 1, except that woody plant species richness
shows a strong time lag in its response to climate
change, not changing over the time period concerned.
Time lags in the response of woody plants to climate
change are realistic, given the dispersal limitation,
long generation time and longevity of woody plant
species. Thus, we test the hypothesis that even rela-
tively unspecialized biotic associations affect forecasts
of future biodiversity change and ask how variable
and assumption-sensitive these predictions are.
2. MATERIAL AND METHODS
(a) Species-richness data

We used comprehensive species distribution data on all
breeding birds (Lewis & Pomeroy 1989) and all woody
plants (Beentje 1994) across Kenya. This bioinfor-
matic database has recently been compiled (Kissling
et al. 2008) at a spatial resolution of 0.58� 0.58 cells
(approx. 55.5 km) and contains 228 grid cells, of
which 160 cells are included here as these are known
to provide reasonable estimates of bird and woody
plant species richness (Field et al. 2005; Kissling
et al. 2008). Distribution information on 1005 breed-
ing bird species and 1417 woody plant species was
included, and species richness of both taxa was esti-
mated from this information for each grid cell.
Vagrant bird species and species represented only by
anecdotal records (n ¼ 60 species) were not included
(Kissling et al. 2008). Similarly, plants that are non-
native, 2.5 m or less in height at maturity, or that are
not truly woody were excluded (Field et al. 2005).
To our knowledge, this database currently contains
the most comprehensive information on bird and
woody plant distributions at a regional scale in tropical
Africa.

(b) Environmental variables

We focused on three environmental variables (PREC,
mean annual precipitation in mm; TEMP, mean
annual temperature in 8C; TOPO, topographic hetero-
geneity in m) as predictors of bird species richness in
our models. All three variables have previously been
shown to be important determinants of species rich-
ness of birds and woody plants across Kenya
(Kissling et al. 2008), and more generally at broad
spatial scales (Jetz & Rahbek 2002; Hawkins et al.
2003; Field et al. 2005; Luoto & Heikkinen 2008).
Mean values of PREC and TEMP were calculated at
0.58 resolution from the CRU TS 2.1 dataset for the
period 1960–1989 (Mitchell & Jones 2005). This
time period fits well with the period of data collection
for the species distribution data (Lewis & Pomeroy
1989; Beentje 1994). PREC was used to characterize
water availability (O’Brien et al. 1998), and, as with
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the southern African dataset of O’Brien et al. (1998), is
almost identical to rainfall in Kenya, where non-liquid
precipitation only falls on the very highest mountain
peaks. Thus, it measures water that is directly available
to plants. TEMP was used to measure ambient energy
input (Hawkins et al. 2003), and in Kenya correlates
almost perfectly with Thornthwaite’s formulation of
potential evapotranspiration, which is used in the
interim general models of O’Brien (1998) and Field
et al. (2005). TOPO was measured as altitudinal
range (maximum minus minimum elevation per grid
cell) and included to characterize habitat heterogeneity
and within-cell climatic variability (O’Brien et al.
2000; Luoto & Heikkinen 2008). Values were
extracted from the 30 arc-second SRTM-GTOPO30
dataset provided by The Global Land Cover Facility
(available at http://glcf.umiacs.umd.edu/data/srtm/).
We initially tested seasonality in precipitation (calcu-
lated as the coefficient of variation of the monthly
precipitation values; Kissling et al. 2008) as a predictor
variable, but models were not improved by this vari-
able and we thus omitted it. We did not use other
variables included in Kissling et al. (2008), such as
potential evapotranspiration and land-cover diversity,
because these are not yet available at the appropriate
scale and accuracy for future climate-change scenarios
(see next section).
(c) Climate-change scenarios

To characterize potential future climate surfaces, we
calculated PREC and TEMP from predicted monthly
values over the period 2069–2098. The values were
derived from five widely established general circulation
models (GCMs) (table 1). All of these models (here-
after referred to as GFDL, ECHAM, HadCM3,
MIROC and NCAR) have been used in the World
Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project phase 3 (CMIP3)
(available from https://esg.llnl.gov:8443/home/publi-
cHomePage.do) and cover a wide variety of different
model types, projections and sensitivities. For each
model, we included climate-change projections under
forcing from three contrasting emission scenarios, pro-
vided by the Special Report on Emission Scenarios of
the Intergovernmental Panel on Climate Change
(Nakicenovic & Swart 2000; Solomon et al. 2007):
the pessimistic A2, the balanced A1B and the optimis-
tic B1 emission scenario. All climate projections were
spatially interpolated to 0.58 resolution and bias-
corrected for the reference time period (1960–1989)
with modified Climatic Research Unit (CRU) climate
data (Oesterle et al. 2003; Mitchell & Jones 2005),
using additive correction of TEMP and multiplicative
correction of PREC. For all 15 GCM/emission scen-
ario combinations (GFDL-A2, GFDL-B1, GFDL-
A1B, ECHAM5-A2, ECHAM5-B1, ECHAM5-A1B,
etc.), we calculated climate anomalies of PREC and
TEMP for the years 2069–2098 with respect to the
reference period (1960–1989).
(d) Model selection and validation

We tested and evaluated all possible one predictor and
multiple predictor regression models (general linear
Phil. Trans. R. Soc. B (2010)
models, GLMs) with Gaussian error distribution and
identity link (McCullagh & Nelder 1989) to relate
current bird species richness to current climatic vari-
ables (PREC, TEMP), topography (TOPO), and
current woody plant species richness (WOODRICH;
electronic supplementary material, table S1). We eval-
uated similar regression models to relate current
woody plant species richness to current climatic vari-
ables and topography (electronic supplementary
material, table S2). Model selection was based on
explained variance (R2), Akaike information criterion
(AIC) values and results from cross-validation (see
next paragraph). The differences in AIC values (i.e.
DAIC) between the focal model and the model with
the lowest AIC were used to rank models from best
to worst (Burnham & Anderson 2002). We later
used the best GLMs (§2e) for both bird and woody
plant species richness and derived average parameter
estimates (i.e. regression coefficients) to predict
future patterns of bird and woody plant species rich-
ness across Kenya. To improve normality and
linearity in the relationship between variables, we
square-root transformed woody plant richness in all
analyses but left other variables untransformed (see
also Kissling et al. 2008). The inclusion of second-
order polynomials of explanatory variables to account
for potential nonlinear relationships did not signifi-
cantly improve AIC values, so we report results only
from the linear fits.

To evaluate the predictive performance of our
GLMs, we performed cross-validation (Guisan &
Zimmermann 2000) across the 160 grid cells within
our Kenyan dataset. We calibrated each GLM with
a 50 per cent random sample (n ¼ 80 grid cells)
of the dataset and evaluated it against the remaining
50 per cent (n ¼ 80 grid cells). This cross-validation
was done 1000 times per GLM. In each of the 1000
subsamples, the prediction accuracy of the GLM was
measured by predicting the response variable (i.e.
bird or woody plant species richness) for the remaining
50 per cent of the grid cells, and then calculating
Spearman’s rank correlations between observed and
predicted species-richness values. We also report the
slopes of the best-fit lines from single-predictor
GLMs between observed and predicted species
richness as a measure of prediction accuracy. Our
approach allowed us to test the predictive performance
and accuracy of models within our dataset and is an
appropriate method for model validation when data
from other spatial or temporal domains are not avail-
able against which model predictions can be
evaluated (Guisan & Zimmermann 2000; Araújo &
Rahbek 2006).

Spatial autocorrelation is a frequent phenomenon in
geographical ecology and can affect estimates of model
coefficients and inference from statistical models
(Legendre 1993; Bini et al. 2009). We therefore com-
pared all GLMs with spatial linear models (SLMs;
here ‘spatial simultaneous autoregressive error
models’—see Kissling & Carl 2008), which can
account for spatial patterns in the response variable
that are not predicted by explanatory variables. The
spatial weights matrix in SLMs was calculated with
two neighbours (only one for the cross-validation)
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Table 1. Summary characteristics of 15 climate-change scenarios across Kenya for precipitation and temperature. Presented

are empirical input values for present-day climate (1960–1989, note the slight variation in input values for present-day
precipitation), potential future climate surfaces (2069–2098) and median changes in climate between the two periods. The
final column gives the median change across 160 grid cells of 0.58 � 0.58 size. The final rows give the median values across
the 15 climate-change scenarios. Codes of climate-change scenarios are: GFDL, Geophysical Fluid Dynamics Laboratory
Coupled Model; ECHAM, the Max Planck Institute for Meteorology’s ECHAM GCM; HadCM3, Hadley Center Coupled

Model; MIROC, Model for Interdisciplinary Research on Climate; NCAR, National Center for Atmospheric Research
model; A2, emission scenario assuming a strong increase in fossil fuel consumption and related global CO2 emissions; A1B,
emission scenario assuming a balanced use of fossil fuel consumption; B1, emission scenario assuming lower levels of fossil
fuel consumption and related global CO2 emissions.

present-day climate

(1960–1989)

potential future climate

(2069–2098)
median change in
climate (n ¼ 160)climate scenario min median max min median max

mean annual precipitation (mm)
GFDL-A2 189 677 1838 145 565 1566 2115
GFDL-A1B 189 677 1838 155 597 1548 287
GFDL-B1 189 677 1838 176 649 1620 239

ECHAM-A2 189 676 1841 343 2120 5124 1475
ECHAM-A1B 189 676 1841 247 1116 3359 464
ECHAM-B1 189 676 1841 218 590 2035 222
HadCM3-A2 188 674 1839 291 3164 9821 2605
HadCM3-A1B 188 674 1839 247 1376 5870 753

HadCM3-B1 188 674 1839 231 1738 6727 1023
MIROC-A2 188 673 1838 326 1155 2941 487
MIROC-A1B 188 673 1838 311 1145 2965 481
MIROC-B1 188 673 1838 284 990 2449 317
NCAR-A2 189 674 1838 289 924 2439 245

NCAR-A1B 189 674 1838 268 908 2575 228
NCAR-B1 189 674 1838 232 780 2100 106
median 189 674 1838 247 990 2575 317

annual mean temperature (8C)

GFDL-A2 12.7 25.6 28.9 15.6 28.4 31.7 2.9
GFDL-A1B 12.7 25.6 28.9 15.2 28.0 31.3 2.4
GFDL-B1 12.7 25.6 28.9 14.3 27.1 30.4 1.6
ECHAM-A2 12.7 25.6 28.9 15.9 28.7 32.1 3.2
ECHAM-A1B 12.7 25.6 28.9 15.8 28.6 32.0 3.1

ECHAM-B1 12.7 25.6 28.9 14.8 27.7 31.0 2.1
HadCM3-A2 12.7 25.6 28.9 15.6 28.3 31.9 2.8
HadCM3-A1B 12.7 25.6 28.9 15.3 28.0 31.5 2.5
HadCM3-B1 12.7 25.6 28.9 14.7 27.3 30.9 1.9

MIROC-A2 12.7 25.6 28.9 15.5 28.6 32.4 3.0
MIROC-A1B 12.7 25.6 28.9 15.2 28.2 31.9 2.6
MIROC-B1 12.7 25.6 28.9 14.4 27.4 31.0 1.8
NCAR-A2 12.7 25.6 28.9 15.0 27.8 31.1 2.2
NCAR-A1B 12.7 25.6 28.9 14.6 27.4 30.8 1.9

NCAR-B1 12.7 25.6 28.9 14.0 26.8 30.1 1.2
median 12.7 25.6 28.9 15.2 27.9 31.3 2.4
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and a row standardized coding style (for details on
model selection of SLMs, see Kissling & Carl 2008).
To quantify spatial autocorrelation in our dataset, we
calculated Moran’s I values (Legendre 1993) on the
residuals of our GLMs and SLMs using the same
neighbourhood definitions. All statistical analyses
were done with the software R (available at http://
www.R-project.org). Moran’s I values and SLMs
were calculated using the R library ‘spdep’, v. 0.4–6,
provided by Roger Bivand (http://cran.r-project.org/
web/packages/).

(e) Forecasts of bird species richness

To predict future patterns of bird and woody plant
species richness across Kenya, we averaged parameter
Phil. Trans. R. Soc. B (2010)
estimates (i.e. partial regression coefficients) from the
best models (evaluated by DAIC) for each response
variable (i.e. bird and woody plant species richness).
We refer to them as averaged bird and plant GLMs.
We used model averaging for linear regression
models as implemented in the R library ‘BMA’,
v. 3.05 (available at http://cran.r-project.org/web/
packages/) to derive these parameter estimates. This
model-averaging approach is based on Bayesian infer-
ence and weights parameter estimates of predictor
variables according to their probabilities of occurring
in the candidate set of best models (Raftery 1995).
We adopted this approach to include several similar
best models rather than choosing only one, but we
note that individual models from the set of best
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models gave qualitative similar results of predicted
future bird and plant species richness. We additionally
provide standardized partial regression coefficients for
each predictor variable to indicate their relative
importance.

We compared two forecast models (Forecasts 1 and 2)
to estimate the potential future bird species richness
across Kenya. In Forecast 1 (instantaneous change of
woody plants), we predicted future bird species rich-
ness with the averaged bird GLM from projected
future climate and an instantaneous response of
woody plant species richness to climate change. To
model the instantaneous response of woody plant
species richness to climate change, we predicted
future woody plant species richness with the averaged
plant GLM and future climatic variables (see below for
more details). Forecast 2 (no change of woody plants)
predicted future bird species richness from climatic
variables (future values) and present-day patterns of
woody plant species richness. Thus, both forecasts
used the same averaged bird GLM, the difference
being that future WOODRICH was used in Forecast 1,
whereas present-day WOODRICH was used in
Forecast 2.

To model the instantaneous response of woody
plant species richness to climate change in Forecast 1,
we first modelled current woody plant species richness
with the averaged plant GLM (using present-day cli-
matic variables, i.e. 1960–1989 climate, for each of
the 15 climate models separately) and then modelled
future woody plant species richness with the same
plant GLM (using future climatic variables, i.e.
2069–2098 climate, again for all climate models
separately). We then extracted for each grid cell the
change between modelled present-day and modelled
future woody plant species richness. We added this
change in modelled woody plant species richness to
the observed present-day WOODRICH values to esti-
mate future WOODRICH (assuming an instantaneous
response of woody plant species richness to climate
change). In Forecast 2, we used the observed pre-
sent-day WOODRICH without adding the change in
modelled woody plant species richness. So, both fore-
casts used observed present-day WOODRICH, but in
Forecast 1, the change between modelled present-day
and modelled future woody plant species richness was
added to the observed present-day plant richness. In
all cases, predicted negative values of WOODRICH
were set to zero, under the assumption that they indi-
cate unsuitability of the environment to plants. TOPO
values were assumed to remain constant until 2098.

For each of the two forecasts, we provide 15 predic-
tions of the potential changes in bird species richness
across Kenya, based on the 15 climate-change scen-
arios and WOODRICH as explained above. We
calculated the expected future changes in bird species
richness (for each of these 15 predictions per forecast)
as the difference between modelled current bird
species richness (modelled with 1960–1989 climate)
and projected future bird species richness (modelled
with 2069–2098 climate), similar to those of woody
plants. Using modelled current bird species richness
instead of observed species richness makes results
more comparable between predictive models. In all
Phil. Trans. R. Soc. B (2010)
cases, predicted negative values of bird species rich-
ness were also set to zero assuming that they indicate
unsuitability of the environment to birds. We finally
combined information from all 15 climate-change
projections to account for intermodel variations and
climate model uncertainties. We provide average
values of future changes in bird species richness
across Kenya for each forecast by calculating, for
each grid cell, the median value of predicted changes
in bird species richness across the 15 climate-change
scenarios. As a measure of uncertainty, we calculate
the interquartile range (IQR) of predicted values for
each grid cell across the 15 climate-change scenarios
for each of the two forecasts.
3. RESULTS
(a) Species richness and environment

Although located at the equator, Kenya exhibits strong
broad-scale geographical gradients in bird and woody
plant species richness and in environmental variables
(figure 1). Current patterns of bird species richness
peak in the southwestern parts of the country where
precipitation and topographic heterogeneity are high-
est. Woody plant species richness, in contrast, is
highest in the southernmost part of the country and
shows intermediate values in the southwestern part.
Areas in the north and east of Kenya are characterized
by high temperatures and low topographic heterogen-
eity and generally show low species numbers of both
birds and woody plants (figure 1).

(b) Climate-change scenarios

Averaged across all climate models, PREC was pre-
dicted to increase between the periods 1960–1989
and 2069–2098 by a median value of þ317 mm yr21

across Kenya (table 1). However, projected future
precipitation surfaces differed extremely between
GCMs, including both decreases and massive increases
in rainfall (table 1), suggesting very large uncertainties
in forecasting regional rainfall patterns at tropical
latitudes in Africa. Projections of future temperature
surfaces across Kenya were more similar between differ-
ent climate models and suggested median increases in
TEMP of 1.2–3.28C (table 1). Median TEMP across
all climate-change projections was projected to increase
on average by 2.48C across Kenya between the periods
1960–1989 and 2069–2098 (table 1).

(c) Model selection and validation

Predicting bird species richness only from environ-
mental variables had substantially lower success
(Spearman’s rank: Rs between 0.60 and 0.73) than
when woody plant species richness was also used as
a predictor (Rs between 0.82 and 0.85) (electronic
supplementary material, table S1). Four regression
models with bird species richness as a response vari-
able showed relatively similar support given the data
(highlighted in bold in electronic supplementary
material, table S1). All four regression models had
similar AIC values with DAIC � 3 and the same
explained variance (R2 ¼ 0.73). Accounting for spatial
autocorrelation, SLMs generally gave similar results to
GLMs (electronic supplementary material, table S1).
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Figure 1. Present-day geographical patterns of (a,b) species richness and (c–e) environment across Kenya at 0.58 resolution.
(a) Observed species richness of birds, (b) observed species richness of woody plants, (c) mean annual precipitation (mm yr21),
(d) mean annual temperature (8C), and (e) altitudinal range measuring topographic heterogeneity (highest minus lowest

elevation, m). Natural breaks classification is shown.
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Additionally, our cross-validation of the predictive
performance of both GLMs and SLMs within our
dataset indicated that these four models had similar
prediction success (Spearman’s rank: Rs either 0.84
or 0.85). Predicting woody plant species richness
within our dataset was most successful when PREC
was included (electronic supplementary material,
table S2). Similarly to the bird GLMs, three multiple
regression models for woody plant richness showed
relatively similar support given the data (electronic
supplementary material, table S2). These GLMs had
similar AIC values (DAIC � 6), explained 44–47%
of the variance in WOODRICH, and had similar
high prediction success in our cross-validation (Spear-
man’s rank: Rs between 0.68 and 0.71, electronic
supplementary material, table S2). Again, SLMs for
woody plant richness gave similar results to GLMs
(electronic supplementary material, table S2). Because
spatial autocorrelation had no notable effect, and
because of the general consistency in coefficients
across models (data not shown), we are confident
that the GLMs provide a robust framework for predic-
tion. We therefore chose the three plant GLMs and the
four bird GLMs to derive model-averaged parameter
estimates for predicting future plant and bird species
richness.

(d) Forecasts of bird species richness

Model-averaged parameter estimates indicated that
bird richness was most strongly determined by
Phil. Trans. R. Soc. B (2010)
WOODRICH and TEMP, whereas WOODRICH
was largely determined by PREC and TOPO (see
standardized partial regression coefficients in
table 2). Because of the great differences in precipi-
tation predictions between the GCMs (table 1), our
15 predictions of potential future changes in bird
species richness also differed widely between different
climate-change scenarios, especially for Forecast 1
(table 3). This was mainly driven by the great variabil-
ity in predicted PREC values that influenced future
WOODRICH values. In Forecast 1, some climate
models predicted median increases in bird species
richness across Kenya, whereas other climate models
predicted decreases (table 3). Predictions of Forecast 2
were more homogeneous between climate-change
models and generally predicted losses in bird species
richness (table 3). Median tendencies of predicted
future patterns of bird species richness differed
strongly between Forecasts 1 and 2 (figure 2a,b and
table 3), with Forecast 1 having significantly more
positive (and even reversed) predicted changes than
Forecast 2 (t-test comparing predicted median
changes of Forecast 1 with Forecast 2: t ¼ 24.6,
d.f. ¼ 318, p , 0.001). Geographically, median pre-
dictions of Forecast 1 were more heterogeneous than
those of Forecast 2 (figure 2a,b), suggesting an
increase in bird species richness in the central parts
of Kenya and decreases in some of the northern
parts. Uncertainties (measured as IQRs) were signifi-
cantly larger in Forecast 1 than Forecast 2 (t-test



Table 2. Parameter estimates for regression models used to

predict future patterns of bird and woody plant species
richness across Kenya. Parameter estimates (regression
coefficients) were obtained from model averaging (see §2)
using all regression models highlighted in bold in tables
S1 and S2 in the electronic supplementary material.

Standardized partial regression coefficients (ranging from
0 to 1) are given in brackets to indicate the relative
importance of each predictor variable. Abbreviations of
predictor variables: PREC, mean annual precipitation (mm);
TEMP, mean annual temperature (8C); TOPO, topographic

relief (highest minus lowest elevation, m); WOODRICH,
woody plant species richness (square-root transformed in all
analyses).

variables

bird species

richness

woody plant species
richness

(WOODRICH)

intercept 425 0.831

PREC 20.0010 (20.002) 0.0070 (0.492)
TEMP 21.513 (20.385) 20.0034 (20.029)
TOPO 0.0002 (0.001) 0.0017 (0.250)
WOODRICH 18.95 (0.568) —

Table 3. Predicted changes in bird species richness under

climate change. Values were derived from n ¼ 160 grid cells
across Kenya. Changes in bird species richness between the
periods 1960–1989 and 2069–2098 were calculated for
each individual grid cell as the difference between modelled
current bird species richness and modelled future bird

species richness. Bird species richness was either predicted
from Forecast 1 (instantaneous change of woody plants) or
Forecast 2 (no change of woody plants). Fifteen climate-
change projections (codes as in table 1) were used for each
type of forecast. Median forecasts and uncertainties (IQR,

interquartile ranges) were first calculated for each grid cell
across all 15 climate-change scenarios before the summary
statistics (min, median, max) were calculated across the 160
cells.

Forecast 1

(instantaneous
change of woody
plants)

Forecast 2

(no change
of woody
plants)

climate scenario min median max min median max

GFDL-A2 287 259 221 245 243 240
GFDL-A1B 283 249 213 238 237 234

GFDL-B1 255 230 26 224 224 223
ECHAM-A2 231 145 399 251 249 248
ECHAM-A1B 245 13 166 249 247 246
ECHAM-B1 286 237 69 234 232 231
HadCM3-A2 229 299 1012 252 245 233

HadCM3-A1B 262 59 494 243 239 227
HadCM3-B1 222 106 617 234 230 222
MIROC-A2 229 17 115 254 245 236
MIROC-A1B 224 22 128 247 240 230
MIROC-B1 219 14 77 233 227 223

NCAR-A2 232 23 57 236 234 229
NCAR-A1B 223 1 81 230 228 226
NCAR-B1 221 25 25 219 219 217
median forecast 228 7 98 239 236 233
uncertainty (IQR) 7 73 294 10 13 17
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comparing log-transformed IQRs of Forecast 1 with 2:
t ¼ 24.3, d.f. ¼ 318, p , 0.001), mainly because
uncertainties in climate models (especially predictions
of precipitation, table 1) played a more important role
in Forecast 1 than in Forecast 2. Uncertainties of Fore-
cast 1 were geographically structured, being largest in
the central and southwestern parts of Kenya
(figure 2c,d). Uncertainties of Forecast 2 were much
less pronounced (compare IQRs values in
figure 2c,d) and were slightly higher in the eastern
parts of Kenya.
4. DISCUSSION
Our results clearly demonstrate that the response of
woody plant species to climate change and regional
uncertainties in climate models can dramatically influ-
ence forecasts of potential future changes in bird
diversity. Models assuming a strong time lag in the
response of woody plants to climate change (Forecast 2)
forecasted significantly stronger decreases in bird
species richness under climate change than models
where woody plant species richness was allowed to
show an instantaneous response to climatic change
(Forecast 1). Thus, projected changes in bird species
richness in Kenya strongly depend on woody plants
and how they are included in forecast models. More-
over, strong variability in future precipitation patterns
as predicted by GCMs at tropical latitudes can further
introduce high levels of uncertainty in biodiversity
forecasts. Overall, our study challenges the appropri-
ateness of making forecasts of climate-change
impacts on biodiversity without taking biotic inter-
actions and uncertainties in regional climate models
into account.

In our study, based on our previous findings
(Kissling et al. 2008), we assumed that woody plant
richness affects bird species richness (probably
because it is an appropriate surrogate for bird habitat
Phil. Trans. R. Soc. B (2010)
complexity) and showed that including lagged
response times of woody plants has fundamental
implications for assessing climate-change impacts on
bird diversity. Time lags in the response of woody
plants to climate change are not unrealistic, given the
dispersal limitation, high age at maturity, and longevity
of many woody plant species. Future changes in
woody plant distributions are likely to be found some-
where in between the two extremes represented by
Forecasts 1 and 2 (compare Midgley et al. 2006), but
we know little about dispersal, establishment and seed-
ling survival of woody plants in the tropics. For
instance, long-distance dispersal events of woody
plant species could reduce the predicted negative
changes of Forecast 2, but such dispersal events are
rare and highly stochastic, and their quantification
remains challenging (Nathan 2006). On the other
hand, it typically takes at least 50–100 years to estab-
lish a novel, mature forest tree and current rates of
habitat loss, fragmentation and selective logging in tro-
pical landscapes make tree recruitment often unlikely.
We further note that our modelling approach is sim-
plistic because we do not address the response of
individual plant species, plant functional types, or
other changes in plant community structure and
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Figure 2. (a,b) Projected future changes in bird species richness and (c,d) model uncertainties across Kenya. (a) Forecast 1
(instantaneous response of woody plant richness to climate change). (b) Forecast 2 (no change, i.e. a time lag, in the response
of woody plant richness to climate change). (c) Uncertainty in Forecast 1. (d) Uncertainty in Forecast 2. Projected changes in
bird species richness (a,b) are median values across all 15 climate-change scenarios for each grid cell (see tables 1 and 3).
Uncertainties of forecasts (c,d) were measured as interquartile ranges (IQRs) from the same 15 predictions for each grid

cell. Note that scales in IQR maps differ to make intra-model uncertainties better visible, but uncertainties are much larger
in (c) Forecast 1 than in (d) Forecast 2.
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composition. However, independent research on the
potential climate change response of a California
shrubland songbird also supports our results, showing
that predicted future changes in the spatial distribution
of a habitat specialist largely depends on the inclusion
of structural vegetation changes (Preston et al. 2008).
Climate change responses of both bird habitat general-
ists and specialists clearly deserve further study.

Besides habitat structure, future changes in the
distribution of woody plants might also be important
for birds from a trophic perspective. Especially in the
tropics, many woody plants provide important food
resources for bird consumers including fleshy-fruited
trees and shrubs for frugivorous species (Shanahan
et al. 2001; Kissling et al. 2007). This is similarly
true for other vertebrate taxa such as mammals. More-
over, for many invertebrate species, such as
phytophagous insects, tight interactions and special-
ized relationships with woody plants have been
reported (Jaenike 1990; Novotny et al. 2006),
suggesting that responses of such animal taxa to cli-
mate change will depend even more strongly on
plants than those of vertebrates such as birds, for
which we have better data. We therefore stress that
Phil. Trans. R. Soc. B (2010)
the modelling and prediction of future changes in
(woody) plant distributions will be fundamental to
assessing the wider consequences of climate change
for animal biodiversity, and see an urgent need for
research into plant–animal interactions under climate
change.

Current climate models (GCMs) have been demon-
strated to reproduce observed features of recent
climate and past climate changes and are believed to
provide credible quantitative estimates of future cli-
mate change at continental and global spatial scales
(Solomon et al. 2007). Regional scale climate
models, however, remain in the exploratory phase
and only in some regions has downscaling of climate-
change simulations to the regional level been achieved
(Christensen et al. 2007). Many climate models thus
display substantial uncertainty in regional climate-
change estimates, with uncertainties being much
higher for precipitation than for temperature (Randall
et al. 2007). Our downscaled climate data clearly
demonstrate this for Kenya, but similar results might
be obtained for other tropical regions because large
uncertainties remain in the simulation of tropical
winds, clouds and precipitation regimes (Randall
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et al. 2007). One way to deal with such uncertainty in
outputs from climate models is to combine infor-
mation from widely different projections and to
extract the ‘signal’ that emerges from the noise associ-
ated with different model outputs (compare Araújo &
New 2007). We employed such an approach by
calculating average forecasts and geographical patterns
of uncertainties across 15 climate models. This
helped us to evaluate climate-related uncertainties
in our biodiversity forecasts under climate change.
Unfortunately, to date there is no clear guidance on
how to select the most appropriate climate-change
model for a given application or region (Beaumont
et al. 2008), and quantifying variation in regional
GCM projections thus remains crucial.

Many additional unknowns remain in forecasting
future patterns of biodiversity (Davis et al. 1998;
Pearson & Dawson 2003; Thomas et al. 2004;
Araújo & Rahbek 2006). Current forecasting tech-
niques often assume that species’ distributions are at
or near equilibrium with current climate (Pearson &
Dawson 2003) and the potential effects of dispersal
and recruitment limitation on current and future
species distributions remain understudied (Davis
et al. 1998; Nathan 2006; Svenning & Skov 2007).
Even when the response of species richness to climate
change can be adequately predicted, other attributes of
ecological communities might not respond in a similar
or predictable way (La Sorte et al. 2009). Further, we
lack information about which species might be able to
adapt to changing environmental conditions and how
the emergence of novel climatic conditions (Williams
et al. 2007) might promote the formation of novel
species associations or changes in current biotic inter-
actions. Land-use changes and interactions among
drivers of biodiversity change (Sala et al. 2000; Jetz
et al. 2007; Rüger et al. 2008) also need to be incorpor-
ated into global change analyses and could further
reduce estimates of potential future species richness
compared with purely climate-based models,
especially in the tropics (Jetz et al. 2007). These are
all areas where further research is urgently needed.
However, none of this is likely to diminish (but may
well enhance) the two central conclusions of this
study: (i) that regional predictions of the response of
biodiversity to climate change are strongly sensitive
to current regional-scale uncertainties in climate
models and (ii) that disregarding important biotic
interactions and time lags of biotic partners is likely
to bias such predictions.

In summary, our study highlights the urgent need
for a new generation of forecasting techniques to
assess climate-change impacts on biodiversity. We con-
sider it particularly important to (i) address current
and potential future patterns of biotic interactions at
broad geographical scales (Araújo & Luoto 2007;
Heikkinen et al. 2007; Kissling et al. 2007, 2008;
Schweiger et al. 2008), (ii) identify, explore and quan-
tify sources of uncertainty and expose the sensitivity of
predictions to the assumptions underlying them
(Thuiller 2004; Araújo et al. 2006; Pearson et al.
2006; Beaumont et al. 2008), and (iii) extend current
modelling techniques and test novel forecasting
approaches that allow better linking of species
Phil. Trans. R. Soc. B (2010)
distribution data with biotic interactions and other
processes, such as population dynamics, dispersal
and adaptation (Midgley et al. 2006; Keith et al.
2008; Montoya et al. 2009; Scheiter & Higgins
2009). Especially at tropical latitudes, current regional
climate-change projections are highly uncertain, high-
resolution distribution data for many plant and animal
species are lacking, and demographic processes and
population dynamics of most species are unknown.
We therefore urge researchers to obtain more data
from the tropics, where the majority of global biodiver-
sity is found, but where knowledge on global change
impacts remains poor.
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Species richness of migratory birds is influenced by
global climate change. Glob. Ecol. Biogeogr. 16, 55–64.
(doi:10.1111/j.1466-8238.2006.00252.x)

Lewis, A. & Pomeroy, D. 1989 A bird atlas of Kenya. Rotter-
dam, The Netherlands: Balkema.
Phil. Trans. R. Soc. B (2010)
Luoto, M. & Heikkinen, R. K. 2008 Disregarding topogra-
phical heterogeneity biases species turnover assessments
based on bioclimatic models. Glob. Change Biol. 14,

483–494. (doi:10.1111/j.1365-2486.2007.01527.x)
MacArthur, R. H. & MacArthur, J. W. 1961 On bird species

diversity. Ecology 42, 594–598. (doi:10.2307/1932254)
McCullagh, P. & Nelder, J. A. 1989 Generalized linear models.

London, UK: Chapman and Hall.

Midgley, G. F., Hughes, G. O., Thuiller, W. & Rebelo, A. G.
2006 Migration rate limitations on climate change-
induced range shifts in Cape Proteaceae. Divers. Distrib.
12, 555–562. (doi:10.1111/j.1366-9516.2006.00273.x)

Mitchell, T. D. & Jones, P. D. 2005 An improved method of
constructing a database of monthly climate observations
and associated high-resolution grids. Int. J. Climatol. 25,
693–712. (doi:10.1002/joc.1181)

Montoya, D., Purves, D. W., Urbieta, I. R. & Zavala, M. A.

2009 Do species distribution models explain spatial struc-
ture within tree species ranges? Glob. Ecol. Biogeogr. 18,
662–673. (doi:10.1111/j.1466-8238.2009.00478.x)

Nakicenovic, N. & Swart, R. 2000 Special Report on Emission
Scenarios of the Intergovernmental Panel on Climate Change.
New York, NY: Cambridge University Press.

Nathan, R. 2006 Long-distance dispersal of plants. Science
313, 786–788. (doi:10.1126/science.1124975)

Novotny, V., Drozd, P., Miller, S. E., Kulfan, M., Janda, M.,
Basset, Y. & Weiblen, G. D. 2006 Why are there so many

species of herbivorous insects in tropical rainforests?
Science 313, 1115–1118. (doi:10.1126/science.1129237)

O’Brien, E. M. 1998 Water–energy dynamics, climate, and
prediction of woody plant species richness: an interim

general model. J. Biogeogr. 25, 379–398. (doi:10.1046/j.
1365-2699.1998.252166.x)

O’Brien, E. M., Whittaker, R. J. & Field, R. 1998 Climate
and woody plant diversity in southern Africa: relation-
ships at species, genus and family levels. Ecography 21,

495–509. (doi:10.1111/j.1600-0587.1998.tb00441.x)
O’Brien, E. M., Field, R. & Whittaker, R. J. 2000 Climatic

gradients in woody plant (tree and shrub) diversity:
water-energy dynamics, residual variation and topogra-
phy. Oikos 89, 588–600. (doi:10.1034/j.1600-0706.

2000.890319.x)
Oesterle, H., Gerstengarbe, F. W. & Werner, P. 2003 Homo-

genisierung und Aktualisierung des Klimadatensatzes der
Climate Research Unit der University of East Anglia, Nor-
wich. Potsdam, Germany: Terra Nostra 6, Deutsche

Klimatagung.
Parmesan, C. 2006 Ecological and evolutionary responses

to recent climate change. Ann. Rev. Ecol. Evol. Syst.
37, 637–669. (doi:10.1146/annurev.ecolsys.37.091305.

110100)
Pearson, R. G. & Dawson, T. P. 2003 Predicting the impacts

of climate change on the distribution of species: are bio-
climate envelope models useful? Glob. Ecol. Biogeogr. 12,
361–371. (doi:10.1046/j.1466-822X.2003.00042.x)

Pearson, R. et al. 2006 Model-based uncertainty in species
range prediction. J. Biogeogr. 33, 1704–1711. (doi:10.
1111/j.1365-2699.2006.01460.x)

Preston, K. L., Rotenberry, J. T., Redak, R. A. & Allen,
M. F. 2008 Habitat shifts of endangered species under

altered climate conditions: importance of biotic inter-
actions. Glob. Change Biol. 14, 2501–2515.

Qian, H. 2007 Relationships between plant and animal
species richness at a regional scale in China. Conserv.
Biol. 21, 937–944. (doi:10.1111/j.1523-1739.2007.

00692.x)
Raftery, A. E. 1995 Bayesian model selection in social

research (with Discussion). In Sociological methodology
(ed. P. V. Marsden), pp. 111–196. Cambridge, MA:
Blackwell.

http://dx.doi.org/doi:10.1038/35842
http://dx.doi.org/doi:10.1890/04-1910
http://dx.doi.org/doi:10.1016/S0304-3800(00)00354-9
http://dx.doi.org/doi:10.1890/03-8006
http://dx.doi.org/doi:10.1111/j.1466-8238.2007.00345.x
http://dx.doi.org/doi:10.1111/j.1466-8238.2007.00345.x
http://dx.doi.org/doi:10.1371/journal.pone.0001439
http://dx.doi.org/doi:10.1371/journal.pone.0001439
http://dx.doi.org/doi:10.1086/282070
http://dx.doi.org/doi:10.1146/annurev.es.21.110190.001331
http://dx.doi.org/doi:10.1146/annurev.es.21.110190.001331
http://dx.doi.org/doi:10.1126/science.1072779
http://dx.doi.org/doi:10.1371/journal.pbio.0050157
http://dx.doi.org/doi:10.1371/journal.pbio.0050157
http://dx.doi.org/doi:10.1098/rsbl.2008.0049
http://dx.doi.org/doi:10.1098/rspb.2006.0311
http://dx.doi.org/doi:10.1111/j.1466-8238.2007.00379.x
http://dx.doi.org/doi:10.1111/j.1466-8238.2007.00379.x
http://dx.doi.org/doi:10.1098/rspb.2009.0162
http://dx.doi.org/doi:10.1098/rspb.2009.0162
http://dx.doi.org/doi:10.1111/j.1365-2699.2005.01254.x
http://dx.doi.org/doi:10.2307/1939924
http://dx.doi.org/doi:10.2307/1939924
http://dx.doi.org/doi:10.1111/j.1466-8238.2006.00252.x
http://dx.doi.org/doi:10.1111/j.1365-2486.2007.01527.x
http://dx.doi.org/doi:10.2307/1932254
http://dx.doi.org/doi:10.1111/j.1366-9516.2006.00273.x
http://dx.doi.org/doi:10.1002/joc.1181
http://dx.doi.org/doi:10.1111/j.1466-8238.2009.00478.x
http://dx.doi.org/doi:10.1126/science.1124975
http://dx.doi.org/doi:10.1126/science.1129237
http://dx.doi.org/doi:10.1046/j.1365-2699.1998.252166.x
http://dx.doi.org/doi:10.1046/j.1365-2699.1998.252166.x
http://dx.doi.org/doi:10.1111/j.1600-0587.1998.tb00441.x
http://dx.doi.org/doi:10.1034/j.1600-0706.2000.890319.x
http://dx.doi.org/doi:10.1034/j.1600-0706.2000.890319.x
http://dx.doi.org/doi:10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/doi:10.1146/annurev.ecolsys.37.091305.110100
http://dx.doi.org/doi:10.1046/j.1466-822X.2003.00042.x
http://dx.doi.org/doi:10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/doi:10.1111/j.1365-2699.2006.01460.x
http://dx.doi.org/doi:10.1111/j.1523-1739.2007.00692.x
http://dx.doi.org/doi:10.1111/j.1523-1739.2007.00692.x


Plant–bird richness under climate change W. D. Kissling et al. 2045
Randall, D. A. et al. 2007 Climate models and their evalu-
ation. In Climate Change 2007: the physical science basis.
Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change
(eds S. Solomon, D. Qin, M. Manning, Z. Chen, M.
Marquis, K. B. Averyt, M. Tignor & H. L. Miller),
pp. 589–662. Cambridge, UK: Cambridge University Press.
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