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Abstract
Transposable elements (TE), defined as discrete pieces of DNA that can move from site to another
site in genomes, represent significant components of eukaryotic genomes, including primates.
Comparative genome-wide analyses have revealed the considerable structural and functional impact
of TE families on primate genomes. Insights into these questions have come in part from the
development of computational methods that allow detailed and reliable identification, annotation and
evolutionary analyses of the many TE families that populate primate genomes. Here, we present an
overview of these computational methods, and describe efficient data mining strategies for providing
a comprehensive picture of TE biology in newly available genome sequences.
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1. Introduction
Transposable elements (TE), defined as discrete pieces of DNA that can move from site to
another site in genomes, have long been considered as non-significant components of genomes.
This view started to change, however, when whole genome sequences became available.
Hence, nearly half of the human genome is now recognized as being of TE origin (1). It is
likely that this is an underestimate because some ancient TEs in the genome may have degraded
beyond recognition by current methods. Primates constitute an excellent taxonomic group in
which to analyze TE diversity and evolution because, in addition to humans, complete genome
sequences of the chimpanzee and rhesus macaque are now available (2;3) with more genome
sequences on the way. Comparative genome-wide analyses have revealed the considerable
structural and functional impact of TE families on primate genomes.

The primary mode of TE-mediated instability is de novo integration of new elements, which
can have a variety of functional consequences (4). However, additional changes in local
sequence architecture arising as a by-product of TE activity include, but are not limited to,
insertion-mediated deletions (5;6), recombination-mediated deletions (7;8), segmental
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duplications (9;10), inversions (11;12) and inter- or intra-chromosomal transduction of host
genomic sequence (13;14). Paradoxically, TE activity is not associated with genomic instability
alone; retrotransposon mRNAs can also occasionally serve as molecular bandages for repairing
potentially lethal DNA double-strand breaks (15;16). Another interesting aspect of TE biology
in primate genomes has been the discovery that functions encoded by TEs originally for their
own purposes can be efficiently adapted by host genomes into unrelated beneficial roles (17;
18). This process of so-called molecular domestication illustrates that TEs may on occasion
share a mutualistic relationship with their host genomes, and that the “parasite” tag historically
attached to TEs may be somewhat unfair in some cases.

In a broader sense, these observations raise the question of the nature of the host-TE relationship
throughout evolution. A popular opinion is that within the evolutionary timescale of the primate
radiation, most TE families have been slightly deleterious or at best neutral within the genome,
and have achieved their high numbers through a finely tuned strategy of parasitism (19;20;
21). However, contrary to this viewpoint, various analyses have proposed different functional
roles for some TE families, such as origins of replication, gene expression regulators, agents
of DNA repair and X-chromosome inactivation or scaffolds for meiotic replication (22;23;
24). These views need not be reciprocally exclusive, and it may be overly simplistic to treat
the interactions between TE families and primate genomes as being a zero-sum game. Indeed,
a systems biology approach wherein interactions between host genomes and TEs are seen in
the context of an ecosystem may be a suitable way of representing this complex relationship
(25;26). In any event, addressing these questions requires exhaustive and reliable identification,
annotation and evolutionary analyses of the many TE families that populate primate genomes.
A number of computational methods have been developed to this end, which are reviewed in
the following protocol.

2. Materials
Computational TE analyses can be performed on a local desktop machine with internet access.
However, large-scale studies require a local software installation, typically in a UNIX
environment (see Note 1) with considerable memory (preferably 4 GB, 16GB, or more RAM,
depending on the study size). Common (bio-) computational skills should be sufficient for
successful use and implementation of the required software.

3. Methods
3.1. TE identification

In this section, we describe methods to identify: (i) TEs for which prior sequence knowledge
exists, (ii) TEs with no prior information available (i.e. de novo identification), and (iii) TEs
which are differentially inserted among genomes (i.e. polymorphic for presence or absence).

3.1.1. Identification of known TEs
1. TE library: to identify known TEs in a target sequence, we rely on an existing TE

library containing the consensus sequences (see section 3.2.2) of multiple TE families.
The most comprehensive database of eukaryotic TEs is Repbase (http://girinst.org/)
(27;28). Repbase can be searched for consensus sequences directly, or a desired
library can be downloaded.

Note 1While UNIX is typically stated as a requirement, many of these tools also work under the UNIX-based Macintosh OS X operating
system, and also under Microsoft Windows with environments like Cygwin or MSYS.
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2. Selection of genome sequences: human genomic sequences can be retrieved from
UCSC (http://genome.ucsc.edu; select genomes and species of interest) (see Note
2).

3. TE annotation: using the selected TE library as reference, TEs in the query sequence
are identified by similarity searches and annotated using RepeatMasker
(http://repeatmasker.org) (see Note 3). Analysis of a relatively small data set can be
performed online at http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker. For
larger analyses (e.g. whole genomes), we suggest a local installation of RepeatMasker
(http://www.repeatmasker.org/RMDownload.html) (see Note 4).

4. Submission of query sequences to RepeatMasker: RepeatMasker requires files to be
in the FASTA format (see Note 5). Submission of several sequences at once is
possible. There is no explicit maximum size constraint for query sequence(s).
However, lengthy sequences often are slow to process, accompanied by the risk of an
error message caused by connection time-out. The query sequence can be uploaded
or pasted into the sequence window on the RepeatMasker web site. Select
“Cross_match” as the search engine, and “slow” as the speed/sensitivity to ensure a
search with the highest level of TE annotation (highest sensitivity; see Note 6). A
DNA source is then selected, that determines the choice of TE library. We suggest
selecting “Repetitive sequences in lower case” from the masking option bar to show
the annotated repetitive sequence in the output file in lower case (see Notes 7, 8).

5. Results: the output presents the annotation of repeats in the query sequence. The
general output indicates what search options were selected; which (if any) and how
many TEs are identified; what percentage of the query sequence contains TEs; and
several result files that can be saved or reviewed in the web interface. The HTML
version of the results gives detailed information about the identified TEs, including
length, orientation, TE-subfamily, and matching region. Another important analysis
output is the ID number(s) of the identified TEs. This indicates whether multiple TEs
or a single element with interruptions have been identified (see Note 9). In addition,
an alignment of the identified TE to the TE subfamily consensus sequence for which
the sequence was identified as the best match is available.

3.1.2. De novo TE identification by genome self-alignment—De novo identification
of repeats has proven challenging, especially for large and TE-rich genomes. So, a single
dominant method for this task is not yet established. Commonly used software packages include

Note 2The human genome can be in theory replaced by any other genome. If working with a genome for which a library does not exist
and no analysis of TEs in a closely related species has been performed, de novo identification of TEs needs to be performed first to create
a personal library for the species (see section 3.1.2.). Alternately, an analysis on the basis of protein similarities can be performed (e.g.
see http://www.repeatmasker.org/cgi-bin/RepeatProteinMaskRequest). However, the latter approach does not detect TEs that lack typical
protein structures, e.g. SINEs are not identified.
Note 3The classic Repbase library is modified for RepeatMasker, in particular to improve the annotation of long TEs.
Note 4Also required are: (i) a UNIX-based system with perl 5.8.0 or higher, (ii) either Cross_Match (obtained from
http://www.phrap.org, select “Phred/Phrap/Consed”) or WU Blast (available from http://blast.wustl.edu/licensing/), and (iii) a TE library
downloadable from http://www.girinst.org.
Note 5FASTA is a text-based file format that represents nucleic acid or protein sequences and is characterized by a text description line
beginning with > (no space between > and the text), followed by sequence in the next text line.
Note 6Cross_match is described as more sensitive in identifying TEs compared to WU Blast.
Note 7We also suggest that readers familiarize themselves with other options for possible integration within their analysis. These options
are largely self-explanatory. In addition, the RepeatMasker documentation provides further detailed information.
Note 8In principle, the same analysis can be performed with a local installation of RepeatMasker. The corresponding parameters can be
selected from the command line.
Note 9The ID information is important because long elements are particularly disposed to have multiple Ns (i.e. ambiguous or
unsequenced bases) within their sequence boundaries (depending on the quality of the genome assembly), and many TEs may also be
nested within other TEs. Using ID information, it can often be distinguished if the fragments of the TE belong to one or two separate
insertions. While the ID information in most cases is accurate, we recommend checking this information manually if this information is
of particular interest for the performed analysis.
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PILER (29), ReAS (30), RECON (31), and RepeatScout (32). Below we describe the use of
RepeatScout (http://repeatscout.bioprojects.org/) (see Note 10>):

1. Prerequisites: preferably, a computer with LINUX or UNIX and at least 4GB (ideally
more) of RAM and a C compiler (typically freely available on UNIX machines) are
needed.

2. Downloading and installing RepeatScout: RepeatScout_1.0.0 is available from
http://repeatscout.bioprojects.org/. The software should be extracted and compiled
with a command such as: tar –zxf RepeatScout-1.0.2.tar.gz; cd RepeatScout-1; make
This yields two executable files: build_lmer_table and RepeatScout-v1.

3. Genome download: assembled genomes can be obtained from NCBI
(ftp://ftp.ncbi.nih.gov/genomes) or UCSC
(http://hgdownload.cse.ucsc.edu/downloads.html. For a full-genome analysis,
download the chromFa.tar.gz file (see Note 11).

4. Repeat identification: first, an “l-mer” table is constructed; “l” (which defaults to 3)
represents the length of the l-mer seeds and should be adjusted to meet the specific
needs of the analysis. The following setting for l is suggested (see Note 12): ceil(log_4
(L)+1)with ceil(x) = smallest integer greater than x; log_4(x) = log base 4 of x; L:
length of input sequence. A typical execution sequence to build an l-mer table begins
with a command like: build_lmer_table –sequence source.fa –freq source.freq This
calculates the frequency of l-mers in the specified source.fa DNA sequence. Next, an
output file containing the de novo identified repeats is created. RepeatScout-v1 is
executed with the built l-mer table (source.freq) and the sequence (source.fa) in the
following manner: RepeatScout-v1 –sequence source.fa –freq source.freq –output
repeats.fa

5. Filtering out non-TE sequences: repetitive elements include TEs as well as low-
complexity elements, segmental duplications, or exons. Non-TE sequences may be
filtered out with further processing. Low-complexity repeats may be removed with
the perl script “filter-stage-1.prl.” Next, RepeatMasker (see section 3.1.1) is run with
the filtered RepeatScout-v1 library. “filter-stage-2.prl” excludes all repeats with very
low copy numbers (default < 10). Lastly, segmental duplications and exons are
identified and may be erased from the library by using the locations identified by
RepeatMasker and matching them with gff files containing segmental duplications
and exons.

3.1.3. De novo identification of polymorphic TEs by genome alignment to
another genome

1. Preconditions: two genome sequences are required (see Note 13). This approach has
been successfully implemented for human Alu (33) and LINE-1 (34) elements. A
computer with the UNIX or LINUX operating system (or compatible variants) is
needed. The user should be comfortable working at the command line. The ability to
write programs in Perl, Python, and/or shell scripts is also valuable.

Note 10RepeatScout requires assembled sequences, or at least scaffolds of a genome for the annotation of repeats. The assembly of new
genomes, especially without general knowledge of the repeat composition, is challenging and may result in loss of repetitive sequences.
ReAS is one of few programs for the de novo identification of TEs that requires whole shotgun reads and not assembled genomes.
Note 11For many users, an analysis of a single or fractional chromosome per-run may be a present-day limit, given common RAM
configurations and the RepeatScout v1 software itself. RepeatScout v1 does not provide intrinsic support for multiple CPUs; and its
internal use of signed 4-byte integers limits runs to FASTA files with a maximum of 2 Gbp.
Note 12A list of modifiable parameters, which usually do not need to be adjusted, can be found in the help file (--h) for RepeatScout.
Note 13Alternately, sequence traces can be used with some procedural modifications; we highlight these in the notes of the appropriate
sections.
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2. Local installation of BLAST (Basic Local Alignment Search Tool) (35): BLAST,
downloadable from ftp://ftp.ncbi.nih.gov/blast/, exists as a pre-compiled program
suitable for many operating systems.

3. Selection and download of genomes: while we will provide a detailed description of
this method for two human genomes, obtained from NCBI at
ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/ (see Note 14), in principle any two
genomes can be used for this analysis. In our case, the first genome (hereafter genome
A) is the human reference genome (ref_genome in NCBI). The second human genome
(hereafter genome B) is the publicly available version of the Celera genome (alt_
genome in NCBI). 4) Download of TE consensus sequence: a TE consensus sequence
of interest (here Alu) is downloaded from Repbase as a query sequence (see Note
15).

4. Identification of TEs and extraction of all matching TEs from genome A: genome A
is queried with the Alu consensus sequence using the local installation of BLAST,
and all candidate elements including 300 bp of flanking sequence on either side are
extracted from genome A sequence.

5. Querying genome B with extracted loci from genome A: each extracted locus from
genome A is used as a query sequence against genome B. If the query sequence
matches in length and identity to a level of ≥ 98%, the locus is disqualified as a
polymorphic candidate and discharged. In contrast, if either the Alu element alone or
the flanking sequence is identified as a best match, the locus is a potential polymorphic
candidate, and is used for a second, more detailed analysis. For the second analysis
we take the Alu element out of the sequence and attach the flanking sequences to each
other. This can be done with several BioPython commands such as:

flankSize = 300 #choose a flanking sequence of 300bp
seqSize = len(mySeq) #find the length of DNA sequence mySeq
flankHead = mySeq[0:flankSize] #extract the head flanking portion
flankTail = mySeq[seqSize-flankSize:seqSize] #extract the tail
joinedSeq = flankHead + flankTail #assemble the two fragments together

The flanking sequence of each locus is again queried against genome B to identify
close-to-perfect matches of the flanking sequence. Close-to-perfect matches
correspond to loci considered to contain polymorphic Alu elements present in genome
A and absent in genome B. Other loci are discarded.

6. Identification of TEs from genome B absent in genome A: genome A is swapped with
genome B, and steps 5 and 6 are repeated.

7. Comparison of confirmed polymorphic TEs to dbRIP: polymorphic human
retrotransposons can be checked for novelty using the dbRIP database, a database of
polymorphic human retrotransposons, by submitting the candidate loci to
http://falcon.roswellpark.org:9090/searchRIP.html (36).

8. Confirmation of computational results: apart from a detailed manual confirmation of
the data set, we recommend performing wet-bench PCR analyses on a panel of
individual genomic DNA samples to confirm that the identified TEs are indeed
polymorphic for insertion presence or absence (see Ray et al., in this issue).

Note 14Genomes of other species are also available from ftp://ftp.ncbi.nih.gov/genomes. Different versions of assembled reference
genomes can be downloaded from UCSC (http://genome.ucsc.edu). To our knowledge the ref_genome is not available from UCSC.
Note 15Depending on the TE of interest, an approximately 50 bp-long conserved region of the TE may be used as a query sequence.
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3.2. TE classification
In this section, we describe methods: (i) to classify TEs into groups of closely related copies
(termed subfamilies), and (ii) to construct consensus sequences of TE subfamilies.

3.2.1. TE subfamily classification—A transpositionally active TE in a genome can
produce novel copies of itself, each of which is initially identical in nucleotide sequence to the
copy that generated it. Therefore, any sequence feature present in the ancestral TE copy will
be shared with its “progeny”. TE subfamilies are thus defined as collections of TE copies
exclusively sharing diagnostic sequence features. Such features typically include nucleotide
substitutions located at homologous sites in all copies within a subfamily, termed “shared
sequence variants” (SSV). SSVs are distinguishable from post-insertional random
substitutions, which would show no site preference. Efficient SSV identification forms the
basis for computational classification of TE copies into discrete subfamilies. A schematic
algorithm for this purpose is described below:

1. Generation of a multiple alignment of TE copies of interest: this can be achieved by
running the ClustalW alignment program (see Note 16), using a fasta file of the TE
sequences as input. Visually inspect the alignment and make further refinements using
a suitable sequence alignment editor, such as BioEdit
(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) or Megalign
(http://www.dnastar.com/products/lasergene.php). The alignment forms the input for
the algorithms mentioned in the next step.

2. Automated TE subfamily classification: to the best of our knowledge, only two
specialized algorithms exist for this purpose: (a) MASC (Multiple Aligned Sequence
Classification) (37) hierarchically and recursively splits the multiple alignment into
smaller groups of two, continuing till the absence of multiple SSVs invalidates further
subdivision. Although MASC is not currently available as a binary distribution, the
original algorithm has been described in detail elsewhere (38) and reasonable
competence with bioinformatics programming should enable users to adapt it for their
specific analyses. (b) A second approach would be to use a modification of the
MULTIPROFILER algorithm (39) to scan the multiple alignment for groups of TEs
characterized by overrepresented n-tuples of SSVs (where n has an integral value >1),
followed by a final step where subfamilies differing from their closest relatives by a
single SSV are identified using a probability-based approach. Although this approach
has till now been used for the construction of consensus sequences only for the Alu
family (40), a set of Perl and C programs is available at
http://www-cse.ucsd.edu/groups/bioinformatics/software.html#alu-subfam), that
should in principle be modifiable for other TE families.

3.2.2. Construction of TE subfamily consensus sequences—Over time, TE copies
of a “source” TE for any particular subfamily each accumulate random substitutions, and for
even moderately old subfamilies, individual members may be quite different from the original
source TE. However, the same random nature of these substitutions means that, for any
particular subfamily, most elements will retain the original nucleotide of the ancestral TE copy
at individual positions along the length of the TE. Thus, by using a majority-rule algorithm
that also accounts for increased mutation frequencies at CpG dinucleotides (i.e., wherever a C
is followed by a G in 5′ to 3′ orientation), it is possible to accurately reconstruct the ancestral
sequence that gave rise to the members of a TE subfamily. We describe a schematic algorithm
below:

Note 16ClustalW is available as a command line interface or as a graphical user interface (ClustalX), downloadable at
ftp://ftp.ebi.ac.uk/pub/software/clustalw2/. It is also implemented in biological sequence analyses software, such as BioEdit.
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1. Construct a multiple alignment of TE copies grouped together as a subfamily (see
section 3.2.1): quality of the multiple alignment will directly influence the accuracy
of the reconstructed consensus sequences, and manual curation of the initial
computational alignment will almost always result in a better finished product. Higher
numbers of copies in the alignment will result in a consensus sequence with greater
statistical support.

2. For each position, determine the majority nucleotide. Most multiple alignment
software suites allow this to be done in a few clicks (e.g., in BioEdit, click alignment
> positional frequency summary, or in MegAlign, click view > alignment report).

3. CpG dinucleotides have sixfold higher mutation rates compared to other
dinucleotides, mostly through transitions at one of the two positions leading to either
CpA or TpG (41). However, post-insertional substitutions mimicking CpA or TpG
dinucleotides present in the ancestral consensus sequence can be sorted out on the
basis of the proportion of subfamily members that carry a particular dinucleotide. If
the ancestral state was either CpA or TpG, most copies will retain this state and the
consensus sequence will tend to be unequivocal. If, however, a CpG in the original
consensus sequence mutates to CpA or TpG, the ancestral and derived states will be
present in almost equal proportions, and the resulting ambiguity at the dinucleotide
position can be used to correct the consensus sequence to CpG.

4. The accuracy of the consensus sequence reconstructed using the above two steps can
be tested using the following formula: S = S1S2 + (1 − S1)(1−S2)/3, where S1 and
S2 represent sequence similarities between TE elements 1 and 2 of a particular family
and the reconstructed source element, and S represents the mutual sequence similarity
between the two copies (42). Close correspondence between the observed and
expected values of S indicates that the consensus sequence is an accurate
reconstruction (43) (see Note 17).

3.3. Analyses of TE evolution
To decipher the evolutionary history of TE subfamilies and address questions about e.g. their
timing of transpositional activity, several approaches can be used. For example, very recently
active TEs are expected to exhibit differential distribution among individuals, i.e. individual
copies will be polymorphic for presence or absence at orthologous genomic sites among the
compared samples. The method described in section 3.1.3 allows identification of such
differentially inserted TE loci. TE insertions that are responsible for genetic disorders are
examples of active subfamilies for which copies have inserted in the genome within the recent
past. At a deeper timescale, TE subfamilies that have been active at different evolutionary
periods are also expected to be differentially inserted among species. The timing of subfamily
activity can thus be deduced from the timing of divergence of the host genomes that carry or
lack copies of the TE subfamily of interest (44). In this section, we describe further
computational approaches: (i) to estimate the age (i.e. the timing of transpositional activity) of
TE subfamilies independently of the genomic location of the copies, and (ii) to infer TE
amplification dynamics by reconstructing phylogenetic relationships among members of TE
subfamilies.

3.3.1. Inference of TE subfamily ages—Because a subfamily consensus sequence (as
obtained in section 3.2.2) represents the putative sequence of the active TE copy that gave rise
to other copies in the subfamily, and because individual copies gradually diverge from the

Note 17For subfamilies with relatively recent periods of activity, individual copies will be similar to the consensus sequence; however,
for older repeats individual members are usually far more divergent, and a well-constructed subfamily consensus sequence is the only
suitable query for computational data mining.
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“source” copy across time, the quantity of sequence divergence accumulated by individual
copies relative to their reconstructed consensus sequence can be used to infer the approximate
age of the TE subfamily, provided that the substitution rate is known for the lineage being
investigated.

Average sequence divergence of individual copies to their consensus sequence can be obtained
by creating a multiple alignment containing TE copies from a subfamily together with the
subfamily consensus sequence. Pairwise genetic distances between the consensus sequence
and each individual copy are calculated, and then averaged. Such calculations can be performed
with various software packages for evolutionary and phylogenetic analyses, such as MEGA
(45) (see Note 18):

1. Open a fasta alignment with the text editor implemented in MEGA and convert the
alignment to the MEGA format (containing a .meg extension). The converted file can
then be opened with the data analyses module of MEGA.

2. Create a group containing the consensus sequence and another group containing all
individual subfamily copies: click Data > Setup/Select taxa & groups

3. Calculate average divergence between the two groups: click Distances > Compute
Between Groups Means

4. Subfamily age is calculated as the average divergence to consensus divided by the
substitution rate (see Note 19).

3.3.2. Phylogenetic analyses—Phylogenetic analyses can be performed to infer the
relationships between individual copies within a subfamily and explore subfamily
amplification dynamics. Several major methods of tree reconstruction are available, that differ
in their underlying philosophy, including distance-, parsimony- and probability-based
methodologies. Each method has its own advantages and drawbacks, and no single method is
the best for all analyses. A number of software suites are available to conduct phylogenetic
analyses, including MEGA. A comprehensive list of phylogenetic packages available for
download or usable via a web interface can be found at
http://evolution.genetics.washington.edu/phylip/software.html. Phylogenetic reconstruction
starts with a multiple alignment of the TE copies of interest, which is achieved as described in
section 3.2.2. The alignment is then used for tree reconstruction. For example, in MEGA,
multiple phylogeny algorithms are available by clicking Phylogeny > Construct Phylogeny.
Alternatively, for datasets with low sequence divergence, higher phylogenetic resolution may
be reached by using network phylogenetic approaches (46;47). Several programs for
reconstructing networks are available, such as NETWORK (48) (see Note 20).
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