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Abstract
The first organocatalytic enantioselective radical polycyclization has been accomplished using singly
occupied molecular orbital (SOMO) catalysis. The presented strategy relies on a selective single-
electron oxidation of chiral enamines formed by condensation of polyenals with an imidazolidinone
catalyst employing a suitable copper(II) oxidant. The reaction proceeds under mildly acidic
conditions at room temperature and shows compatibility with an array of electron-poor as well as
electron-rich functional groups. Upon termination by radical arylation, followed by subsequent
oxidation and rearomatization, a range of polycyclic aldehydes has been accessed (12 examples,
54-77% yield, 85-93% ee). The enantioselective formation of up to six new carbocycles in a single
catalyst-controlled cascade is described. Evidence for a radical-based cascade mechanism is
indicated by a series of experimental results.

Inspired by the biosynthetic origins of steroids and terpenoidal natural products, synthetic
organic chemistry has witnessed considerable efforts in the field of biomimetic polyene
cyclization.1 Most importantly, cationic polycyclizations, originally pioneered by van
Tamelen, Johnson, and Goldsmith, have emerged as a valuable tool for the generation of diverse
polycylic skeleta.2,3 While substrate- or auxiliary-mediated induction has been traditionally
employed to render such cascade reactions stereoselective, recent advances by Yamamoto,
Ishihara, and Gagné have shown that catalytic enantiocontrol can also be exploited in these
cation-driven bond constructions.4 In contrast, radical-mediated polyene cyclizations, as
originally proposed (and dismissed) by Breslow as a biosynthetic pathway,5 have received
considerably less attention.1,6 Moreover, while auxiliary-based cascade radical cyclizations
have been reported,6 enantioselective approaches via catalysis remain largely elusive.7,8 With
the objective to develop a general method for asymmetric catalytic polyene cyclizations, we
reasoned that the application of our previously reported SOMO-activation strategy9 should
allow us to establish a powerful cascade reaction10 via a SET-induced open-shell pathway.5,
6e-f,11 In this communication, we report the successful execution of these ideals and a new
application of SOMO catalysis to the enantioselective construction of multiple C–C bonds and
contiguous stereocenters in the context of steroidal and terpenoidal architecture.

Design Plan
We hypothesized that a suitably functionalized aldehyde (e.g., 1) bearing the requisite degree
of tethered unsaturation should condense with imidazolidinone catalyst 2 to give α-imino
radical intermediate 3 upon oxidation with an appropriate metal oxidant (Scheme 1). At this
stage, we expected radical cation 3 to engage in a series of 6-endo-trig radical cyclizations
terminated by a suitable arene to give cyclohexadienyl radical 4. A second oxidation step would
then furnish the corresponding cyclohexadienyl cation which, upon rearomatization and
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liberation of the catalyst, would deliver the requisite pentacycle 5.12 In analogy to our previous
SOMO-catalysis studies,9g we presumed that catalyst 2 would favor the α-imino radical
geometry as shown for 3 in which the polyene chain is oriented away from the bulky tert-butyl
substituent. At the same time the aryl moiety on the catalyst framework should effectively
shield the Si-face leaving the Re-face exposed to addition across the proximal trisubstituted
alkene. As a key design element, the catalyst-induced enantio- and diastereocontrol that arises
in the production of the first carbocycle should be structurally relayed in subsequent ring
formations. Moreover, we recognized that the electronic properties of the tethered polyene
would play a pivotal role in partitioning the putative single-electron pathway towards cascade
ring construction, in lieu of non-productive mechanisms such as (i) radical oxidation or (ii)
non-regioselective alkene addition. To this end, polyolefins (such as 1), that incorporate an
alternating sequence of polarity-inverted C=C bonds (acrylonitrile and isobutene moieties)
were chosen as suitable substrates that would electronically match nucleophilic olefins with
electron-deficient radical intermediates (and vice versa). Moreover, the selection of
trisubstituted nucleophilic olefins was expected to favor the desired 6-endo-trig mechanism
over a competing 5-exo-trig mode, as radical additions to fully substituted carbons are strongly
disfavored.13 Similarly, the use of unsaturated nitriles should enforce 6-endo-regiocontrol
while functional conversion of C≡N to a range of common steroidal substituents (H, CHO,
Me) is known to be operationally trivial.6f,14

Our proposed polycyclization strategy was first evaluated using bicyclization substrate 6,
imidazolidinone 2a, and a series of metal oxidants. Surprisingly, our initial survey revealed
that strong oxidants which had been successful in previous SOMO-activation studies (e.g.,
cerium(IV) ammonium nitrate (CAN)9a-d,f or [Fe(phen)3](PF6)3

9g) did not generate any of the
desired tricyclic product 7. In both cases, products derived from premature oxidation of the
tertiary alkyl radical intermediate or capture of the radical by external nucleophiles were
predominant.9d In contrast, the use of Cu(OTf)2 in acetonitrile with sodium trifluoro-acetate
(NaTFA) as a base furnished a small amount of the desired tricycle 7 albeit in low
enantioselectivity (Table 1, entry 1).15,16 Subsequent optimization studies revealed that and
slow addition of the oxidant (via syringe pump) greatly improved the yield of desired tricyclic
product 7 presumably due to the kinetic preference for a unimolecular cascade process versus
an interrupted pathway that involves bimolecular radical oxidation. While it is possible that
the carbocation intermediates from an interrupted step may still participate in a productive
cyclization pathway, it is clear that β-H elimination remains the dominant mechanism in this
case.17 A subsequent evaluation of catalyst architecture revealed markedly improved
enantioselection with catalyst 2b which replaces the benzyl group of catalyst 2a with the
extended shielding of a (1-naphthalene)methyl moiety (74% ee, entry 4). Moreover, a survey
of reaction media revealed a pronounced effect on enantiomeric excess in that a mixture of
isobutyronitrile with 1,2-dimethoxyethane (3:2) gave rise to synthetically useful results (70%
yield, 87% ee, entry 6).

We next evaluated the generality of our newly developed organocatalytic protocol in a series
of cascade bicyclizations (Table 2). A wide array of arenes readily act as terminating groups;
in addition to electron-neutral phenyl rings (7, 70% yield 87% ee), electron-rich and poor aryl
aldehydes also participate to furnish 8-12 in good yields and comparable enantioselectivty
(65-77% yield, 85-90% ee).18 While the reaction yields for all aryl-terminators examined were
similar, we observed that electron-deficient arenes were successful over a larger range of
reaction concentrations, a result that supports the matched interaction of a nucleophilic trialkyl
radical with an electron-poor terminator in the final SRAr cyclization.19 In such cases, we
presume that electron-withdrawing substituents increase the substitution rate and stabilize the
newly formed cyclohexadienyl radical intermediate. Notably, when meta-substituted arenes
were subjected to these cascade conditions, cyclization at the aryl-2-position was predominant
(to render products 10 and 12), again emphasizing the radical nature of this process (2-4:1

Rendler and MacMillan Page 2

J Am Chem Soc. Author manuscript; available in PMC 2011 April 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ortho:para selectivity, 65-75% yield, 88-90% ee).9g,19 Indeed, the prevalent formation of
ortho-substituted product 12 is in sharp contrast to the literature precedent for para-selectivity
when cationic conditions were employed with similar polyene substrates.2d It is important to
note that all products of this survey were obtained as single diastereomers.20

We next tested the capacity of our SOMO catalysis strategy to accomplish polyene
tricyclization. Based on our design principles (outlined above), we assumed that aldehydic
substrates that incorporate an alternating sequence of electron-rich/electron-poor olefinic
acceptors (isobutene and acrylonitrile) would be suitably matched to allow intramolecular
radical chain propagation prior to coupling and termination with a suitable π-rich aryl ring.
9g,19 To our delight, a range of tricyclization substrates readily furnished the desired products
13-15 in moderate to good yields and useful enantioselectivities (Table 2, 54-71% yield,
86-92% ee).21 It should be noted that electron-rich benzene (13) and indole (14) terminators
can be tolerated using these mild oxidative conditions. Moreover, the successful generation of
tricyclic aldehyde 15 reveals that π-nucleophilic olefins such as 1,1-disubstituted styrenes can
also serve as suitable terminating groups.

As outlined in Scheme 2, we finally sought to probe the limitations of this radical cyclization
strategy via application to extended ring systems such as tetra-, penta- and hexacycles.
Remarkably, for the SOMO-catalyzed tetracyclization of trienal 1 we observed similar levels
of reaction efficiency and enantiocontrol to those obtained in bicycle and tricycle formation
(pentacycle 5, 56% yield, 92% ee, single diastereomer). Moreover, extension of this multi-
bond forming reaction to tetraene cascade ring construction cleanly afforded the
pentacyclization product 16 in almost identical yield and enantiomeric excess (63% yield, 93%
ee). Perhaps most notably, this new SOMO-polyene cyclization concept has been successfully
extended to the enantioselective22 production of the hexacyclization adduct 17 as single
diastereomer and in 62% yield (corresponding to an average yield of 92% per bond formation).
In the course of this cascade bond construction, a total of eleven contiguous stereocenters, of
which five are all-carbon quaternary centers, were formed from a simple acyclic starting
material under the influence of imidazolidinone 2b. It is instructive to consider that the last
stereogenic center formed in the course of this cascade resides 11.7 Å from the catalyst binding
point23 thus showcasing the stereoinduction efficiency of this new SOMO cyclization
sequence.

In summary, we have developed the first catalytic enantioselective cyclization strategy to
access steroidal and terpenoidal frameworks using organocatalysis. This strategy represents an
ambient temperature protocol, which is previously unprecendented in SOMO-activation
catalysis with respect to carbon-carbon bond formation. Future work will be devoted to the
application of this new technology to the synthesis of complex natural products and
pharmaceutically relevant entities.
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Scheme 1.
Enantioselective Polycyclization via SOMO Catalysis.
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Scheme 2.
Extended Ring Systems by Organo-SOMO Catalysis.a
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Table 2

Scope Studies in Enantioselective Bi- and Tricyclization.a-c

7: 70% yield 10d: 65% yield 13: 61% yield

87% ee 90% eee 91% ee
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8: 74% yield 11: 77% yield 14: 71% yield

88% ee 87% ee 92% ee
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9: 76% yield 12d: 75% yield 15: 54% yield
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85% ee 88% eee 86% ee

a
Conditions: Slow addition (7 h) of Cu(OTf)2 (2.5 equiv), NaTFA (2.0 equiv), and TFA (3.0 equiv) in i-PrCN (2 parts) to aldehyde and catalyst (30

mol%) in i-PrCN/DME (1:2) to give 0.08 M solution and subsequent stirring for 17 h at room temp.

b
Isolated yield.

c
ee determined by chiral HPLC analysis.

d
Mixture of ortho/para (4:1 for 10; 2:1 for 12).

e
ee of ortho product; 91% ee for para regioisomer of 12.
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