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Abstract
Objective—This study was intended to examine variations in electroencephalographic (EEG)
complexity in response to photic stimulation (PS) during aging to test the hypothesis that the aging
process reduces physiologic complexity and functional responsiveness.

Methods—Multiscale entropy (MSE), an estimate of time-series signal complexity associated with
long-range temporal correlation, is used as a recently proposed method for quantifying EEG
complexity with multiple coarse-grained sequences. We recorded EEG in 13 healthy elderly subjects
and 12 healthy young subjects during pre-PS and post-PS conditions and estimated their respective
MSE values.

Results—For the pre-PS condition, no significant complexity difference was found between the
groups. However, a significant MSE change (complexity increase) was found post-PS only in young
subjects, thereby revealing a power-law scaling property, which means long-range temporal
correlation.

Conclusions—Enhancement of long-range temporal correlation in young subjects after PS might
reflect a cortical response to stimuli, which was absent in elderly subjects. These results are consistent
with the general “loss of complexity/diminished functional response to stimuli” theory of aging.

Significance—Our findings demonstrate that application of MSE analysis to EEG is a powerful
approach for studying age-related changes in brain function.
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1. Introduction
Physiological systems are regulated by multiple couplings and feedback loops. Their output
signals exhibit complex fluctuations, which are not simply attributable to noise but which rather
include complexities associated with long-range temporal correlation (Goldberger et al.,
2002). A general concept that has emerged from investigations of aging is that it may diminish
physiological complexity and reduce an organism’s adaptive capacity (Goldberger et al.,
2002; Kyriazis, 2003; Lipsitz and Goldberger, 1992; Pincus, 2001). A diminished functional
response to stimuli with aging has therefore been proposed as a generic feature of age-related
pathology (Kyriazis, 2003; Lipsitz and Goldberger, 1992). One of main features of
physiological aging, then, could be described as “loss of complexity/diminished functional
response to stimuli”.

Brain activity is characterized by dynamic processes with various interactions among several
brain regions (reviewed in Sporns et al., 2000), consisting of both stochastic and deterministic
processes (reviewed in Tononi et al., 1998). In this context, quantification of nonlinear
dynamical electroencephalographic (EEG) activity might be a powerful approach to
understanding changes in patterns of brain activity that occur with aging (reviewed in Stam,
2005; reviewed in Tononi et al., 1998).

One of the traditional entropy-based analyses of physiological time series is dynamic entropy
methods. Kolmogorov and Sinai extended the statistic Shannon entropy to a dynamical version,
i.e., entropy production rate over time, termed KS entropy (Kolmogorov, 1958). As KS entropy
assumes stationary, long and fine-resolution time-series, KS entropy has limited application
to real data. Based upon the investigations of chaotic time-series nonlinearity (Eckmann et al.,
1986; Grassberger and Procaccia, 1983a,b; Pawelzik and Schuster, 1987), Pincus (1991)
proposed approximate entropy (ApEn; Pincus, 1991, 1995) as a technically tractable KS
entropy. Approximate entropy is a measure of the irregularity/predictability of finite length
time-series. Subsequently, Richman and Moorman (2000) developed sample entropy
(SampEn), which is KS entropy as defined by correlation entropy instead of Shannon entropy.
Their work demonstrated that SampEn is more tractable than ApEn (Richman and Moorman,
2000). These two entropy indices are useful for analyzing short and noisy real physiological
signals (Pincus and Goldberger, 1994) and have been usefully applied to EEG data (Abásolo
et al., 2005; Bouillon et al., 2004; Burioka et al., 2003, 2005; Ferenets et al., 2006; Papadelis
et al., 2007).

Complexity that is inherent in physiological systems has a more restrictive concept: complex
systems are neither completely regular nor absolutely random (Zhang, 1991; Costa et al.,
2005; Goldberger et al., 2002; reviewed in Tononi et al., 1998). Thus, although measures of
entropy index “irregularity/predictability”, they are not direct estimates of physiological
complexity (Costa et al., 2005; Goldberger et al., 2002). Both ApEn and SampEn give high
values with random data, even though the data does not comprise intrinsic physiological
complexity (Costa et al., 2002, 2005). Thus, ApEn and SampEn as a measure of irregularity/
predictability do not imply an intrinsic physiological complexity (Costa et al., 2002, 2005).
Costa et al. (2002) introduced multiscale entropy analysis (MSE), which is an assessment of
entropy across multiple scales, based on SampEn measures of entropy. This procedure permits
the detection of signal fluctuations that may be due to the presence of memory effects in
physiological systems that exist across multiple time scales, through the use of multiple coarse-
grained sequences. The particular pattern of entropy values across the varying scales permits
a differentiation between noise and meaningful complexity. Further, because of the coarse-
graining procedure, MSE can also detect long-range temporal correlations, thereby assessing
whether there are “memory” or “history” effects in underlying signal dynamics (Costa et al.,
2005). Such approaches have been fruitfully applied to physiologic data, for instance, in
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evaluating heart rate variability to distinguish normal from pathologic rhythms (Chialvo,
2002; Costa et al., 2005; Ferrario et al., 2006). MSE may provide similar insights regarding
the complex dynamics of other physiological signals such as EEG neural activity and how
these are changed by aging and clinical disorders (Escudero et al., 2006).

Photic stimulation (PS) is a commonly used cerebral activation method in routine EEG
examination and can be used to probe for underlying brain dysfunction (Takahashi, 1987).
Most previous studies employing PS have examined the so-called photic driving response
during PS. It is a harmonic response to the PS frequency (Kikuchi et al., 2002a,b, 2003; Wada
et al., 1998). Though there are no previous reports examining neural responses to PS in the
post-PS interval, we chose to examine the post-PS responses since they may be more amenable
to the nonlinear measures of brain signal complexity employed in this study. Harmonic
responses evoked during PS are linear in nature and may obscure naturally occurring
nonlinearities in brain signals. These harmonic responses dominate during the administration
of PS, while any nonlinear brain activations may only manifest more clearly in the interval just
following PS. Therefore, we focused on a nonlinear analysis of post-PS effects in the brain
activities of young vs. elderly subjects, thus providing a novel approach for understanding of
brain activity and identifying neurophysiologic signatures associated with aging or disease
states.

The present pilot study used MSE to investigate EEG complexity variations in response to PS
in young vs. elderly subjects. We employed MSE as a novel approach for characterizing age-
related changes in cortical network integrity and functional responsiveness.

2. Methods and materials
2.1. Subjects

The study was performed at the Department of Neuropsychiatry, University of Fukui, Japan.
In this study, 13 healthy young subjects (7 male, 6 female, average age 29.2 years, SD = 3.8
years, range = 21–34 years) participated along with 15 healthy elderly subjects (7 male, 8
female, average age of 64.5 years, SD = 4.2 years, range = 56–71 years). All subjects were
nonsmokers and medication-free. Subjects with major medical or neurological conditions
including epilepsy or head trauma in the past, or a lifetime history of alcohol or drug dependence
were excluded. Conventional MRI was performed to exclude subjects with major brain
abnormalities. In addition, subjects with scores on the Mini-Mental State Examination of less
than 27 were excluded. After a complete explanation of the study, written informed consent
was obtained from each subject. The Ethics Committee of the University of Fukui approved
the study protocol.

2.2. EEG recording and photic stimulation (PS)
The subjects were studied while seated in an electrically shielded, soundproof, light-controlled
recording room. Standard scalp electrodes were placed in accordance with the International
10–20 System. Subjects’ EEGs were recorded using an 18-channel electroencephalograph
(EEG-4518; Nihon Kohden Corp., Tokyo, Japan) at 14 electrode sites: F3, F4, F7, F8, C3, C4,
P3, P4, T3, T4, T5, T6, O1, and O2 referenced to linked ear lobe electrodes. Eye movements
were monitored using bipolar electro-oculographic (EOG) derivations. The EEG signals (200
Hz sampling frequency) were recorded with a time constant of 0.3 s, a high cut-off frequency
of 120 Hz, and a sensitivity of 50 μV/7 mm. Impedance was less than 5 kΩ for each electrode.
No other software was used for filtering or reconstruction. The data were stored on a magnetic
optical disk for off-line analyses.
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PS consisted of flashes of white flicker at 3, 6, 10, 15, 20, and 30 Hz with a flash intensity of
14,000 cd/m2. Each frequency was applied for 10 s, with a 10-s pause between stimuli. The
PS stimuli were delivered by a photostimulator and stroboscopic lamp (EEG-4518; Nihon
Kohden Corp.) placed 25 cm from the subject’s eyelids. All subjects were instructed to relax
and keep their eyes closed throughout the recording period. Selection of segments recorded
during the eyes-closed but awake state, was based on visual inspection of EEG and EOG
recordings. The subject was considered to be fully awake when alpha activity appeared
predominantly over the posterior regions in conjunction with fast eye movements in the EOG
channel (Wada et al., 1996). Continuous 20-s, artifact-free epochs were selected manually,
immediately before PS and immediately after all frequencies (i.e., 3, 6, 10, 15, 20, and 30 Hz)
of PS were performed. To obtain artifact-free epochs, PS was started after sufficient duration
of an absolute artifact-free resting condition epoch (more than 20-s) was attained. We used
these two epochs (pre- and post-PS) for MSE analyses. One subject from the young group and
two subjects from the elderly group were eliminated from subsequent MSE analyses because
their EEG recordings included eye or body movement artifacts during the post-PS epoch. Thus,
results for 12 healthy young subjects (6 male, 6 female, average age 29.2 years, SD = 4.0 years,
range = 21–34 years) and 13 healthy elderly subjects (5 male, 8 female, average age 64.3 years,
SD = 4.5 years, range = 56–71 years) are presented.

2.3. Multiscale entropy (MSE)
Multiscale entropy analysis is described as following. Considering an EEG time-series
{x1,x2, …} as observations of the stochastic variable x, dynamic sample entropy is defined as
(Richman and Moorman, 2000):

where Cm(r) = {number of pairs (i, j) with , i ≠ j}/{number of all probable pairs,
i.e., (N − m + 1)(N − m)}. Therein, xm is a vector of mmembers time series of (N − m) length,
and  denotes the distance between points  and  in the space of dimension m, and
r means the effective filter for measuring consistency of time series.

We first embedded the time series into a m dimensional space in the form of a vector
 and counted the points which stay around  within the distance r.

Then, we summed up all counts to produce the numerator of Cm(r). Cm(r) means a correlation
degree by its definition, which is popular as a correlation integral for fractal analysis.
−loge[Cm(r)] is information content, and the difference of m and m + 1 information contents:
hsamp(r,m,N) = (−loge[Cm+1(r)]) − (−loge[Cm(r)]) defines the rate of loss of information
content, or alternatively, is a measure of entropy production rate. In the case we adopt general
entropy, Renyi entropy of order q, generalized KS entropies are also defined (Pawelzik and
Schuster, 1987). Sample entropy corresponds to second order (q = 2) KS entropy, and
approximate entropy, first (q = 1) order KS entropy.

The original EEG time series {x1,x2, …,xN} is coarse-grained by the scale factor τ, with non-
overlapping windows (sometimes referred to as creating an aggregated time series):

Fig. 1 shows a schematic illustration of the coarse-grained procedure (adapted from Eckmann
et al., 1986).
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Various theoretical and clinical applications have shown that m = 1 or 2, and r = 0.1–0.25 of
the standard deviation of the data points provides good statistical validity for SampEn. For the
present analyses, we used a time series of length N = 4000 (i.e., 20-s × 200 Hz) with m = 2 and
r = 0.2, which are values that have been applied in preceding EEG studies (Burioka et al.,
2005; Chialvo, 2002). Because the length of each coarse-grained sequence is τ times shorter
than the length of the original signal, for τ = 20, the coarse-grained sequence has only 200
points in this study. On the other hand, SampEn requires signal lengths of 10m to 20m points
to provide reliable estimation (Richman and Moorman, 2000). For that reason, we also
calculated MSE values with m = 1 to facilitate comparison with MSE with m = 2. Consequently,
MSEs of both m = 1 and m = 2 were highly correlated. We used m = 2 to calculate MSE values.

2.4. Power analysis
In addition to MSE analysis, we performed power analysis of EEG measurements using a
computer program specifically designed for EEG, ‘BIMUTAS II’ (Kissei-Comtec). A Hanning
window was applied to each artifact-free 2.56-s epoch (sampling rate 200 Hz), and the spectral
density was calculated using a fast Fourier transform (FFT). From the consecutive 20-s which
are used for MSE analyses, a total of 7 artifact-free epochs were continuously selected to
calculate absolute EEG power (μV2). Then the frequency spectrum was collapsed into
frequency bands of delta (2–6 Hz), theta (6–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and
gamma (30–40 Hz). For each frequency band, we then calculated a measure of relative power
hange (power in each frequency divided by total power across all frequency bands) for
statistical analyses.

2.5. Statistical analysis
Statistical analyses were carried out using software (SPSS Windows ver. 16; SPSS Japan Inc.,
Tokyo, Japan). Some SampEn values for each scale factor were found to have a skewed
distribution and were therefore log-transformed to achieve a normal distribution. A two-tailed
α level of 0.05 was considered statistically significant for all analyses. The Greenhouse–Geisser
adjustment was applied to the degrees of freedom for all analyses.

For MSE nalyses, repeated measures analysis of variance (ANOVA) was performed with
groups (young vs. elderly) as between-subject factors. Then the hemisphere (left vs. right),
condition (pre-PS vs. post-PS), and scale factor (τ: 20 scales), as within-subject factors, were
used to test differences in MSE among paired electrode sites. In addition to the each electrode
site, we calculated averaged MSE values (averageMSE) for each hemisphere and performed
ANOVA with groups (young vs. elderly) as between-subject factors, and the hemisphere (left
vs. right), condition (pre-PS vs. post-PS), and scale factor (τ: 20 scales), as within-subject
factors.

Post-hoc ANOVA was performed with groups (young vs. elderly) as between-subject factors.
Then within-subject factors analyses for hemisphere (left vs. right) and scale factor (τ: 20
scales) were performed to test for group differences in MSE for each condition (pre-PS, post-
PS). Additionally, post-hoc ANOVA, with condition (pre-PS vs. post-PS), hemisphere (left
vs. right), and scale factor (τ: 20 scales) as within-subject factors, were used to test for
condition-dependent differences in MSE for each group (young, elderly). For significant group-
by-scale factor or condition-by-scale factor interactions, independent or paired t-tests were
used to compare group and condition differences separately for each scale factor.

The MSE curve tends to be a straight line over scale factors of between τ = 10 and 20. Therefore,
we calculated the regression coefficient (i.e., scale factor as the independent variable and
SampEn value as the dependent variable) to characterize the profile of the MSE slope over the
scale factor of 10–20. The regression coefficients were distributed normally. Then we
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performed ANOVA with groups (young vs. elderly) as between-subject factors, and condition
(pre-PS vs. post-PS) as within-subject factors to explore the change of MSE slope after PS.

For relative power analysis, repeated measures ANOVA were performed with groups (young
vs. elderly) as between-subject factors. Then the hemisphere (left vs. right), condition (pre-PS
vs. post-PS) as within-subject factors, were used to test differences for each frequency band
(delta, theta, alpha, beta and gamma), among paired electrode sites. Additionally, independent
and paired t-tests were used to compare group and condition differences separately for each
frequency band and electrode sites.

3. Results
3.1. Multiscale entropy value

Results of ANOVA revealed no group-by-hemisphere-by-condition-by-scale factor interaction
in any paired electrode sites. However, a significant group-by-condition-by-scale factor
interaction was identified for each paired electrode site [F3/4, F(19,437) = 7.4, P = 0.0002;
F7/8, F(19,437) = 3.9, P = 0.014; C3/4, F(19,437) = 5.4, P = 0.003; P3/4, F(19,437) = 7.0, P
= 0.0006; T3/4, F(19,437) = 8.0, P = 0.00008; T5/6, F(19,437) = 9.0, P = 0.00003; O1/2, F
(19,437) = 5.0, P = 0.008] and AverageMSE [F(19,437) = 8.0, P = 0.00008].

Post-hoc ANOVAs for testing group differences in the pre-PS condition among paired
electrode sites revealed no significant interaction or main effect, although the post-PS condition
identified significant group-by-scale factor interactions at all paired electrode sites [F3/4, F
(19,437) = 7.2, P = 0.002; F7/8, F(19,437) = 4.3, P = 0.025; C3/4, F(19,437) = 7.7, P = 0.0008;
P3/4, F(19,437) = 10.3, P = 0.0001; T3/4, F (19,437) = 8.8, P = 0.001; T5/6, F(19,437) = 8.3,
P = 0.0007; O1/2, F(19,437) = 6.4, P = 0.002] and AverageMSE [F(19,437) = 12.6, P = 0.0001]
(Fig. 2). No significant main effect was found for the hemisphere at any paired electrode sites.
Independent follow-up t-tests were conducted for each electrode site in the post-PS condition
to assess the group-by-scale factor interactions in the post-PS condition. Significant group
differences were found for the higher scale factors except for the F7 and F8 electrode sites
(Fig. 2).

Significant condition-by-scale factor interactions were found using ANOVAs for testing
condition-based differences in the young group at all paired electrode sites [F3/4, F(19,209) =
11.7, P = 0.0004; F7/8, F(19,209) = 3.7, P = 0.042; C3/4, F(19,209)=7.4, P = 0.003; P3/4, F
(19,209) = 13.4, P = 0.0001; T3/4, F(19,209) = 11.6, P = 0.00007; T5/6, F (19,209) = 15.7,
P = 0.000007; O1/2, F (19,209) = 13.8, P = 0.0001] and AverageMSE [F(19,437) = 11.6, P =
0.00007]. In the elderly group, no significant condition-by-scale factor interaction was
identified (Fig. 2). No significant main effect existed for hemispheres at any paired electrode
site. Follow-up paired t-tests were conducted for each electrode site in the young group to
assess the condition-by-scale factor interaction in the young group (Fig. 2). Significant
condition differences were found for lower and higher factor scales, except for the F7 and F8
electrode sites (Fig. 2).

3.2. Slope of multiscale entropy
We also analyzed regression coefficients for MSE slopes over scale factors of 10–20 to clarify
the slope of MSE (i.e., over a scale factor 10–20) further.

Results of ANOVA revealed no group-by-hemisphere-by-condition, group-by-hemisphere, or
hemisphere-by-condition interaction in any paired electrode sites. No significant main effect
was found for hemisphere at any paired electrode site. However, significant group-by-condition
interactions were identified for all paired electrode sites except for C3/4 [F3/4, F(1,23) = 11.9,
P = 0.002; F7/8, F(1,23) = 11.3, P = 0.003; P3/4, F(1,23) = 9.5, P = 0.005; T3/4, F(1,23) =
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11.0, P = 0.003; T5/6, F(1,23) = 21.0, P = 0.0001; O1/2, F(1,23) = 9.1, P = 0.006, but not in
C3/4, F(1,23) = 3.8, P = 0.06] (Fig. 3). Results of paired t-tests comparing condition effects
for the after-PS condition showed a significant increase of the regression coefficient in the
young subjects in F3, F4, F7, C4, P3, P4, T3, T4, T5, T6, O1, and O2, but not in elderly subjects
(Fig. 3). Results of unpaired t-tests comparing group effects revealed that the young subjects
had significantly higher regression coefficients than the elderly subjects in Post-PS conditions
in all sites, but not for Pre-PS (Fig. 3).

3.3. Power analysis
Results of ANOVA revealed no group-by-hemisphere-by-condition interaction or main effect
in any paired electrode sites for each frequency band. Post-hoc ANOVAs for testing group and
condition-dependent differences revealed significant group-by-condition interaction for theta
band in F3/4, C3/4 and P3/4 [F(1,23) = 9.6, P = 0.005; F(1,23) = 8.0, P = 0.01; F(1,23) = 6.1,
P = 0.020], and alpha band in P3/4 and T5/6 [F(1,23) = 4.8, P = 0.039; F(1,23) = 4.8, P =
0.038]. Main effect for group were identified for delta band in F3/4, C3/4, P3/4, T3/4, T5/6
and O1/2 [F(1,23) = 6.9, P = 0.015; F(1,23) = 13.5, P = 0.001; F(1,23) = 12.9, P = 0.002; F
(1,23) = 12.9, P = 0.002; F(1,23) = 17.9, P = 0.0003; F(1,23) = 6.6, P = 0.017]. No main effect
for condition was identified. Results of independent or paired t-tests were demonstrated in (Fig.
4).

4. Discussion
In this study, we employed multiscale entropy to evaluate EEG signal complexity in young
and elderly subjects in response to PS. The recently proposed SampEn-MSE method is
excellent for analyzing short and noisy experimental datasets (reviewed in Pincus, 2006). Our
findings from MSE analysis suggest that EEG complexity apparently increased after PS in
young but not in elderly subjects. This EEG change after PS in young subjects reflects a good
cortical response to stimuli: elderly subjects displayed an attenuated response that was
consistent with the hypothesis that the ability to respond dynamically to an external stimulus,
decreases with age (Goldberger et al., 2002; Kyriazis, 2003; Pincus, 2001). These results agree
well with a general “loss of complexity/diminished functional response to stimuli” theory of
aging and demonstrate the potential utility of MSE for investigating the pathophysiology of
aging based on EEG measurements.

Several prior studies have applied ApEn or SampEn analysis to EEG data. Burioka et al.
(2003, 2005) demonstrated the utility of ApEn in estimating the sleep stage and brain activity.
Papadelis et al. (2007) measured EEG irregularity using ApEn in various hypoxic conditions.
They revealed that irregularity decreases with hypoxia. Ferenets et al. (2006) and Bouillon et
al. (2004) demonstrated the usefulness of ApEn in evaluating the depth of sedation induced by
anesthetic agents. Abásolo et al. (2005) demonstrated decreased irregularity of EEG
background activity of Alzheimer’s disease using ApEn. However, these studies are based on
a single scale factor (i.e., calculated on only the original data), rendering it difficult to infer the
existence of long-range temporal correlations associated with intrinsic physiological system
complexity. A few studies have demonstrated the usefulness of MSE in exploring brain activity.
Escudero et al. (2006) applied MSE to examine background EEG activity in Alzheimer’s
disease patients. They found significantly different MSE slopes between Alzheimer’s disease
patients and age-matched controls indicating that Alzheimer’s patients showed markedly
decreased EEG complexity. Bhattacharya et al. (2005) investigated the nature of spontaneous
fluctuations of single neurons from the human hippocampal–amygdala complex using MSE,
finding evidence for long-range temporal correlations in the neural firing pattern.

The slopes of the MSE curve therefore provide a valuable approach for interpreting EEG data
(Bhattacharya et al., 2005; Escudero et al., 2006). In particular, a gradual monotonic decrease
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in SampEn values with increasing scale factor represents an independent random time
sequence. In this study, MSE values tended to increase with smaller scale factors and to
decrease or remain constant in higher scale factors (Fig. 2). Multiscale entropy slopes over a
scale factor of 10–20 tended to be straight lines. Closer inspection revealed that the regression
coefficient approaches zero in young subjects after PS (Fig. 3). In other words, SampEn values
in higher scale factors tended to be constant values: parallel to the x-axis (Fig. 2). Constant
SampEn values suggest the existence of a power-law scaling property. The power-law scaling
property is characteristic of nonlinearity (Bak et al., 1987; Stanley et al., 1994) associated with
intrinsic complexity in physiological systems (Goldberger et al., 2002). Further, long-range
temporal correlations of MSE represent a “memory” or “history” effect in global
neuroanatomical network activity in the brain, which means that EEG activities are not fully
temporally independent: they share mutual relations (Bhattacharya et al., 2005; Lowen et al.,
1997). In summary, investigation of MSE analysis provides an indication of nonlinear
dynamics in EEG, which cannot be found using single scale factor dynamic entropies.

Power analyses demonstrated that young subjects showed modulation of their spectral profiles
that was lacking in the elderly subjects, consistent with previous reports (Kikuchi et al.,
2002a). Considering the fact that MSE analysis provide information of nonlinear dynamics in
EEG, we can assume that enhancement of long-range temporal correlations could be the
neuropathological background of EEG power alterlations in young subject with visual stimuli.

A common finding in age-related change in electrophysiological studies using visual stimuli,
is a frontal distribution of alterations (Amenedo and Díaz, 1998; Fabiani et al., 1998; Friedman
et al., 1997; reviewed in Friedman, 2003). In this study, changes in MSE values post-PS in
young subjects were observed throughout widespread brain regions (Figs. 2 and 3), possibly
reflecting global alterations across neural networks. However, considering the fact that
electrical activity in each scalp electrode might not have its origin in the brain area directly
underneath the electrode, it is difficult to infer the precise of spatial distribution of regional
changes. Complementary techniques with a better spatial resolution such as
magnetoencephalogram are necessary to obtain more precise inferences of scalp distribution.

The existence of PS-related harmonic activity during the post-PS interval or arousal effects
after PS must be considered. However, no specific SampEn value change was observed in the
specific frequency associated with flicker frequency across all the scale factors. In attempts to
control for arousal effects, we eliminated any EEG epochs that indicated drowsiness under
visual inspection (Wada et al., 1996). Additionally, power analysis of pre-PS condition also
demonstrated no difference between groups. These results might explain the irrelevance of
harmonic response to post-PS conditions and arousal effects. Another important question is
why no significant difference of SampEn was found between the two groups in the pre-PS
condition. Linear EEG studies, such as those involving spectral power analyses, indicate a
global slowing of the background EEG with age (Klimesch, 1999). On the other hand, Shigeta
et al. (1995) reported that aged but healthy individuals showed no slowing of the background
EEG in their longitudinal study. Accordingly, we found no significant power spectrum
difference between the two groups in the pre-PS condition.

This pilot study is a first step in the inspection of the age-related EEG variation using MSE
with small sample size. Additional longitudinal studies, with several kinds of stimuli and
increased sample number, including individuals from various age groups, are necessary to
extend the current findings. Nevertheless, our findings support the potential usefulness of MSE
analysis in characterizing variability in EEG signal complexity across different populations.
The findings suggest that MSE can help elucidate age-related decline in brain function through
the detection of intrinsic complexity associated with long-range temporal correlation in EEG
signals.
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Fig. 1.
Schematic illustration of the coarse-graining procedure for scale factors 1, 2, 3, and 10. Adapted
from Costa et al. (2005).
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Fig. 2.
Multiscale entropy (MSE) analysis of 13 elderly subjects (triangle) and 12 young subjects
(square) in both pre (blue)-PS and post (red)-PS condition for each site and average of each
site. Each panel presents the average of the left and right MSE values. Post-hoc comparisons
between the pre-PS and post-PS conditions in young subjects: aP < 0.01. Post-hoc comparisons
between young and elderly subjects in the post-PS condition: bP < 0.01, cP < 0.001. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this paper.)
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Fig. 3.
Regression coefficients for MSE slopes over scale factor 10–20 for each site. Each panel
presents the average of the regression coefficients of 13 elderly subjects (blue) and 12 young
subjects (red) in both the pre-PS and post-PS conditions (error bars indicate the standard error).
Post-hoc comparisons between the pre-PS and post-PS condition in young subjects: *P <
0.05, **P < 0.01. Post-hoc comparisons of young and elderly subjects in the post-PS
condition; *P < 0.05, **P < 0.01. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)
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Fig. 4.
Relative power analysis of 13 elderly subjects (triangle) and 12 young subjects (square) in both
pre (blue)-PS and post (red)-PS condition for each site. Each panel presents the average of the
left and right relative power values. Post-hoc comparisons between the pre-PS and post-PS
conditions in young subjects: †P < 0.05, ‡P < 0.01. Post-hoc comparisons between young and
elderly subjects in the post-PS condition: *P < 0.05, **P < 0.01. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this paper.)
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