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Abstract
We examined the effects of chronic metals ingestion on social behavior in the normally highly social
prairie vole to test the hypothesis that metals may interact with central dopamine systems to produce
the social withdrawal characteristic of autism. Relative to water-treated controls, ten weeks of chronic
ingestion of either Hg++ or Cd++ via drinking water significantly reduced social contact by male
voles when they were given a choice between isolation or contact with an unfamiliar same-sex
conspecific. The effects of metals ingestion were specific to males: no effects of metals exposure
were seen in females. Metals ingestion did not alter behavior of males allowed to choose between
isolation or their familiar cagemates, rather than strangers. We also examined the possibility that
metals ingestion affects central dopamine functioning by testing the voles’ locomotor responses to
peripheral administration of amphetamine. As with the social behavior, we found a sex-specific effect
of metals on amphetamine responses. Males that consumed Hg++ did not increase their locomotor
activity in response to amphetamine, whereas similarly-treated females and males that ingested only
water significantly increased their locomotor activities. Thus, an ecologically relevant stimulus,
metals ingestion, produced two of the hallmark characteristics of autism – social avoidance and a
male-oriented bias. These results suggest that metals exposure may contribute to the development
of autism, possibly by interacting with central dopamine function, and support the use of prairie voles
as a model organism in which to study autism.
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Introduction
The autism spectrum disorders are widespread in the developed world and the incidence of
autism may be increasing. It is clear from several decades of study that autism is a complex
(of) disorder(s) involving both genetic and environmental factors, but there is far from

Address correspondence to: J. Thomas Curtis, Ph.D., Dept of Pharmacology & Physiology, Oklahoma State University Center for Health
Sciences, 1111 W17th St., Tulsa OK 74107, Phone: (918) 561-8471, tom.curtis@okstate.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Behav Brain Res. Author manuscript; available in PMC 2011 November 12.

Published in final edited form as:
Behav Brain Res. 2010 November 12; 213(1): 42–49. doi:10.1016/j.bbr.2010.04.028.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consensus as to the relative influence of each, or even if the same factors affect all autism
sufferers in the same fashion [23,27,55,58,69]. Significant effort has been expended toward
identifying genetic underpinnings of autism. However, observations such as the lack of total
concordance of autism in monozygotic twins [27], suggest that genetic causes cannot account
for all aspects of autism. Thus, it may be just as important to identify environmental triggers
as it is to identify genetic vulnerabilities (see also [58]).

One reason for the slow progress in gaining an understanding of autism is the relative lack of
ecologically relevant animal models in which to study potential causes of the disorder (but see
[73,74,78]). Any animal model that is intended as a platform on which to base studies of autism
must, at minimum, address the broad aspects and symptoms of autism: social dysfunction,
restricted or repetitive behaviors and/or perseveration, language impairments, and the fact that
sex differences are apparent in the incidence of autism [76,87,91]. Unfortunately, many of the
current animal models are limited in their ability to address the broader aspects of autism
[83]. Consequently, rather than modeling autism as a disorder, many animal studies focus on
specific symptoms of autism. For example, lesion studies typically are targeted toward brain
regions that may logically be implicated in autism. When successful, the brain lesions produce
behaviors characteristic of autism, and thereby provide important evidence supporting
involvement of specific brain regions in autism [7,21]. However, such techniques do not model
the disorder itself, which makes determination of causal factors and effective treatments
problematic. As an alternative to the currently used animal models, we propose a unique animal
model in which to study autism and a novel mechanism by which autism may be manifested.

Although there often are cognitive deficits associated with the disorder, at its core autism may
best be described as a socialization disorder, and the social impairments may persist throughout
life. In a comparison of autism symptoms in adults and adolescents, Seltzer et al. [76] found
that deficits in social behaviors were least likely to improve with age. Thus, examining social
behavior may be the most direct route to understanding autism. For the past two decades, prairie
voles (Microtus ochrogaster) have been the dominant animal model in which to study the
formation and maintenance of social affiliations [6,14] and, more recently, have gained the
attention of researchers interested in autism [44,93]. In contrast to more traditional laboratory
animals, prairie voles display social behaviors remarkably similar to those of humans, even
displaying characteristics of monogamy such as long-term pair-bonding, care of offspring by
both parents, and sharing of a nest even beyond the breeding season [15]. Further, autonomic
responses in voles are more similar to those of humans than they are to other rodent species
[37]. These parallels have led to the extensive use of voles to study quantitatively the
behavioral, neural, and physiological bases of social attachment [5,16,20,24,29,36,38,39,45,
52,88,89]. As a result, both the behavioral repertoire and the physiology of voles are well
documented, so there is a strong literature base upon which future studies can rest. Moreover,
voles likely possess much greater genetic variability than do the inbred strains of rats and mice
typically used as rodent models. For a disorder such as autism that may have multiple genetic
vulnerabilities, an animal model with more genetic variability may confer significant
advantages, including more closely paralleling the genetic variability of humans and serving
to reduce the possibility of false negatives.

A number of studies have implicated exposure to various metals in the development of autism
[1,26,32,62,71,90] but, to date, mechanisms by which metals exposure may cause autism have
been difficult to ascertain. Recently, two independent lines of research have converged to
provide a possible link between metals exposure and autism. First, there is evidence that low-
level exposure to metals (mercury, lead, copper and other multivalent cations) can alter
dopamine transporter (DAT) functioning [51,54] including that in cells derived from the ventral
striatum [42]. In vivo, one outcome of altered DAT functioning could be altered synaptic
dopamine concentrations, which may, in turn, result in abnormal dopamine receptor activation
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patterns in people with metals exposure. A second line of research has shown that changes in
patterns of dopamine receptor activation in the ventral striatum can fundamentally alter the
behavioral responses of prairie voles [4], such that exposure to a novel individual produces an
aversive response rather than an affiliative response during social interactions [5]. These
findings have led us to hypothesize that changes in dopamine functioning due to metals
exposure may contribute substantially to the symptoms associated with autism. As a first test
of this hypothesis, we provided sexually naïve adult prairie voles of both sexes with solutions
containing metals as their sole drinking water sources, while a second group of voles was
treated identically except that they received unadulterated de-ionized water to drink. After
several weeks of metals consumption, group comparisons of a variety of social and non-social
measures were performed.

METHODS
Subjects

Animals were housed in USDA approved facilities with general animal care provided by
Laboratory Animal Resources personnel. Animals were monitored daily and veterinary staff
was available for consultation regarding animal health and welfare. All experimental
manipulations, animal handling procedures, and behavioral testing were approved by the
Oklahoma State University Center for Health Sciences Institutional Animal Care and Use
Committee.

Subjects were sexually-naïve adult prairie voles of both sexes from a laboratory breeding-
colony descended from an Illinois population and were of the F3 and F4 generations relative
to the most recent out-crossing with wild stock. Breeding pairs (F2 and F3 generations) were
housed in plastic cages (20×25×45 cm) containing corncob bedding with hay as nesting
material. Ad libitum food (rabbit chow supplemented with sunflower seeds) and water were
available. Offspring were weaned at 19–21 days of age and were housed in same-sex pairs in
plastic cages (10×17×28 cm) maintained at 21°C with a 14:10 light:dark cycle. After weaning,
males were maintained in a separate room from females and the breeder stock until used in
experiments. However, during experimental manipulations, subjects and control animals of
both sexes were housed in a single room.

Metals exposure
Same-sex pairs were randomly assigned to treatment groups that received dilute (60 ppm)
mercuric chloride (HgCl2) or cadmium chloride (CdCl2) solutions as their sole drinking water
sources. These concentrations are near the low end of the range of concentrations found during
a survey of the toxicology literature. Control pairs received unadulterated drinking water.
Groups otherwise were treated identically. Fresh solutions were supplied as part of normal
cage maintenance, although solutions were replaced if they became contaminated with bedding
outside of the normal cage maintenance regimen. Fresh metals solutions were prepared weekly.
In sub-groups of animals of each sex, water and metal ingestion by sibling pairs were monitored
by weighing bottles each time solutions were changed. Since animals required multiple
housing, ingestion was assumed to be equally distributed between the two individuals in each
same-sex pair. For most animals, behavioral testing took place around the tenth week of
exposure. A separate group of males was subjected to behavioral testing after about 4 weeks
of Hg ingestion to examine whether treatment effects would be present after shorter metals
exposure.

Behavioral testing
Social interactions were examined using an apparatus consisting of two parallel cages
(10×17×28 cm) connected by a tube (7.5×16 cm). One cage was always empty and, depending

Curtis et al. Page 3

Behav Brain Res. Author manuscript; available in PMC 2011 November 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on the goal of the test, the other cage contained either an unfamiliar vole of the same sex and
of similar age and size as the subject, or the subject’s familiar same-sex cage-mate, as a stimulus
animal. The stimulus animals were tethered loosely to confine them to one cage while the
subject had unfettered access to both cages. Subjects were released into the empty cage and
their behavior was monitored for 3 hours. Movements between cages were counted using a
customized computer program (R. Henderson, Florida State University) that monitored light-
beams across the tube connecting the cages. All social interaction testing was digitally recorded
for later detailed analysis of social behavior. The primary dependent measure was time spent
by the subject in quiet direct contact (with or without auto- or allo-grooming) with the stimulus
animal. The number of crossings between cages was used as an index of locomotor activity.
In two cases, unusual aggression on the part of the stimulus animal necessitated excluding
subjects from the final behavioral analysis.

Statistical analyses consisted of two-way ANOVA (sex × metal) to examine sex effects of
metals exposure, or two-way ANOVA (stimulus animal × metal) when males were tested for
responses toward a stranger vs. toward a familiar partner. Significant (p < 0.05) main effects
or interactions were examined further using Student-Neuman-Keuls (SNK) analyses.

Additional groups of 6–8 animals of each sex were assigned to groups that received either
untreated drinking water or drinking water containing 60 ppm Hg++. After 10 weeks, locomotor
behaviors by these animals in response to amphetamine were tested. Locomotor activity was
measured twice for each animal, once after being injected with a 0.5mg/kg dose of d-
amphetamine (in 0.1 ml/40g of body weight of isotonic saline vehicle), and once after receiving
an equivalent volume of the saline vehicle alone. Testing occurred on two consecutive days
with the order of treatments counter-balanced. Immediately after being injected, each vole was
placed into an open-field arena (floor area 43 × 43 cm, Noldus) for ten minutes and locomotor
behavior was digitally recorded using a video camera mounted approximately 2 m directly
overhead. The total distance traveled by each animal during the test was quantified using
Noldus EthoVision XT6. The performance of each animal was defined as the difference
between the distances traveled after the vehicle and amphetamine injections.

Tissue collection
After behavioral testing, most voles were weighed and sacrificed; the brains were harvested
and divided into several portions and stored at −80°C until used for tissue analyses.

Brain mercury concentration
A subsample of brainstems (n = 6/treatment/sex) was assayed for tissue mercury concentration
at Texas Tech University, Lubbock, Texas, using established procedures [17]. Each brainstem
was digested with HNO3 at elevated temperatures, treated with peroxide, and diluted to 10 ml
with de-ionized water, as described in EPA protocol 3050B. Digested samples then were
analyzed using a cold vapor mercury procedure. Solutions of known concentration were used
to create standard curves. No mercury was detected in blanks and recovery from spiked samples
was between 85 and 106%. The detection limit was 0.04 mg/kg of tissue. All control samples
were below reliable detection limits for tissue Hg++ content. For these samples, the actual
values generated in the analyses were used for statistical purposes, but the results are reported
as below detection limits.

RESULTS
Animal demographics and metals exposure

All animals were at least 59 days of age at the onset of any treatments or testing. At the time
of the behavioral testing, the mean age of animals that received ten week metals exposure was
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147.9 ± 3.5 days (n = 86) and there were no sex differences in age at testing (F1,85 = 1.85, p =
0.18; males – 144.4 ± 3.7 days, females - 154.0 ± 6.8 days). There also were no differences in
the duration of metals exposure for sex (F1,42 = 1.76, p = 0.19; males – 72 ± 1.4 days, females
- 75 ± 1.6 days) or for metal (F1,42 = 1.84, p = 0.18; Hg++ - 71 ± 1.7 days, Cd++ – 76 ± 0.4
days). Males tested after shorter metals exposure received Hg++ in their drinking water for 30.7
± 1.1 days prior to testing. Due to the shorter treatment duration, males in this experiment were
tested at an earlier age (101.5 ± 1.4 days of age).

Groups that received only water and groups that received water containing Hg++ or Cd++ did
not differ in the total amount of liquid ingested during the first week of exposure (Fig 1). Total
liquid ingestion by one group of animals that received Hg++ was monitored for the entire 10
week exposure period. There were no sex differences (n = 6 pairs of each sex) in total amount
of mercury ingested, either in terms of absolute amounts ingested (F1,11 = 1.66, p = 0.22; males
– 41.3 ± 3.1 mg, females - 50.8 ± 7.7 mg) or when intakes were expressed as amount per unit
body weight (F1,11 = 2.51, p = 0.14; males - 1.1 ± 0.1 mg/g of body weight, females – 1.4 ±
0.2 mg/g of body weight). There were significant sex differences in body weight at termination
(F1,52 = 16.91, p < 0.001), with males being somewhat heavier than females (males- 42.9 ±
1.1 g, females – 38.0 ± 0.8 g). In addition, Cd++-treated males were heavier (47.5 ± 1.3 g) than
either Hg++-treated (40.5 ± 1.8 g, p < 0.004) or control males (41.5 ± 1.5 g, p < 0.02). There
were higher levels of Hg++ in the brains of animals that received Hg++ (0.39 ± 0.09 μg/g tissue)
than in the animals that consumed only water (< 0.04 μg/g tissue; F2,20 = 17.42, p < 0.001).
When brain tissue from only those animals that received Hg++ was compared, there were no
sex differences (F1,10 = 0.23, p = 0.64; males – 0.34 ± 0.05 μg/g of tissue, females – 0.43 ±
0.10 μg/g of tissue).

Choice test – sex comparisons
When the amount of time that the subjects (n = 10/group) spent engaged in quiet, direct contact
with an unfamiliar stranger was compared, a strong sex by treatment interaction was found
(F1,36 = 10.53, p < 0.01). Male voles that consumed water containing Hg++ or Cd++ spent half
as much time, or less, in contact with the stranger compared to control males (Fig 2; H2O-
treated v. Hg++ -treated, p < 0.002; H2O-treated v. Cd-treated, p < 0.001), while contact by
Hg++- and Cd++-treated males did not differ (p = 0.09). In contrast to the effects seen in males,
female voles that ingested metals in their drinking water did not differ from control females in
the amount of time spent in direct contact with a stranger (Fig 2; H2O-treated v. Hg++ -treated,
p = 0.60; H2O-treated v. Cd-treated, p = 0.15).

Choice test – stranger v. familiar stimulus animal
Males that consumed metals in their drinking water were given the choice between an empty
cage and a cage containing either their familiar cage-mates or unfamiliar strangers (Fig 3).
There were significant effects of metal exposure (F2,49 = 5.53, p < 0.01) and the type of stimulus
animal used in the choice test (F1,49 = 16.64, p < 0.001). Males that consumed only water did
not differ in the amounts of time spent with either a stranger or their familiar cage-mates. In
contrast, males that ingested Hg++ or Cd++ in their drinking water avoided strangers, but not
their familiar cage-mates.

Choice test – shorter time course
There was a significant treatment effect for males tested after 4 weeks of Hg++ exposure
(F1,35 = 11.9, p < 0.002). As was seen with the longer exposure time, males that consumed
Hg++ for 4 weeks spent less time in contact with the unfamiliar stimulus animal (Fig. 4) than
did control males.
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Non-social behaviors
There were no effects of sex (F1,60 = 0.41, p = 0.53) or metals consumption (F2,60 = 0.49, p =
0.62) on locomotor activity during the exposure to the stranger (Fig 5). Similarly, there were
no effects of metal treatment (F1,38 = 0.15, p = 0.70) or stimulus animal type (F1,38 = 1.10, p
= 0.30) on locomotor activity when males were tested for responses to a stranger v. to a familiar
cage-mate (Fig 5).

A separate group of Hg++-treated voles was tested for locomotor responses to amphetamine
administration. There was a significant interaction between sex and treatment (F1,22 = 4.66, p
< 0.05). Male voles that received Hg++ (Fig 6) displayed significantly blunted responses
relative to similarly treated females (p < 0.02) or to males that received only water (p < 0.02).
Hg++ treatment had no effect on amphetamine responses in females (H2O v. Hg++, p = 0.76).
Counter-balancing the order of injections did not affect the animals’ responses as there were
no significant differences in locomotor activity after saline injections on the first or second
days of treatment (F1,24 = 1.21, p = 0.28).

Discussion
We have used ecologically relevant stimuli in a novel animal model to produce changes in
ethologically valid measures of behavior that parallel two of the defining characteristics of
autism. Our primary finding is that chronic ingestion of metals by a normally very social animal,
the prairie vole, produces decreases in social contact which may parallel the social deficits
observed in autistic patients. Further, we found that the effects of metals ingestion on social
behavior are confined to males, which may parallel the male-bias characteristic of autism. In
addition, we found that metals ingestion also alters a non-social behavior that is widely known
to be dopamine-mediated, increased locomotor activity after amphetamine administration, and
this change also was restricted to males. To our knowledge, this is the first use of prairie voles
to test specific hypotheses regarding the processes underlying autism.

A variety of studies have provided evidence, either direct or indirect, that central dopamine
plays a role in autism. For example, dopamine is involved in many of the behavioral and
cognitive functions that are impaired in autistic patients [8,25,33,40,50] and in many cases, the
effects of dopamine manipulations are sex-specific [2,19,60,66]. In addition, drugs that target
central dopamine systems can have significant effects (positive or negative) on autism
symptoms [22,40,50]. Further, the stereotyped dyskinesias associated with autism have been
shown to derive from hyperdopaminergic activity rather than from decreases in opposing
neurochemical actions[8,33]. Finally, polymorphisms of several proteins involved in dopamine
metabolism and in dopamine receptor genes have been correlated with various aspects of
autism [30,41,49], and knockout mice that lack the dopamine transporter are more likely to
display aversive responses in a social encounter [68]. Thus, genetic differences in dopamine
systems could contribute to the variability in susceptibility to autism, particularly in the face
of a diverse array of environmental triggers that can interact with central dopamine functions.

The responses to unfamiliar animals vs. to familiar animals in our metals-treated voles are
analogous to the responses to strangers vs. to mates by prairie voles after pair-bonding [5].
Pair-bond formation in this species involves changes in D1-type dopamine receptor function
in the ventral striatum. As a result of these changes, novelty-induced dopamine release that
occurs during a subsequent encounter with an unfamiliar vole elicits an aversive rather than
an affiliative response as would occur in a non-pair-bonded vole [5]. We propose that similar
processes might account for the social aversion often seen in autistic patients and hypothesize
that changes in dopamine functioning which alter D1 receptor activation contribute to the
deficits in social behavior seen in autistic patients. More specifically, in the case of metals
exposure, decreased density or activity of dopamine clearance mechanisms may lead to
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abnormal synaptic levels of dopamine, resulting in increased D1 activation. Note that the
changes associated with pair bonding are, to some extent, permanent. Pair-bonded voles that
lose their mates rarely form a second pair bond, despite the fact that there may still be some
social interaction with conspecifics [65]. This may be analogous to the difficulties exhibited
by some autistic patients in forming social attachments [61]. Since the mechanism for adult
pair-bonding likely shares common features with infant-parent bonds [57], the occasional lack
of strong bonds between autistic patients and their parents [72] may be explained by alterations
of dopamine systems that preclude the formation of appropriate social bonds. Thus, the
competing hypotheses regarding processes underlying autism outlined by Buitelaar (impaired
attachment v. approach-avoidance conflicts [13]) instead may reflect two aspects of the same
fundamental processes in the brain (also see [92]).

One of the more striking results in the present study was the robust and consistent difference
in the effects of metals ingestion between male and female voles. The sex differences in the
aversive responses to a novel individual after metals treatment resemble the known differences
in the incidences of autism in boys and girls. These behavioral differences were not due to sex
differences in metal ingestion or to differences in accumulation of mercury in brain tissue, nor
did they appear to be the result of generalized effects of long-term exposure to mercury since
there were no differences in total water consumption or in animal weights at the end of the
experiment. Sex-specific changes in locomotor activity associated with metals exposure such
as those we found in the present study have previously been observed [70] and Aragona et al.
[3] reported sex differences in both the rewarding aspects of amphetamine administration, and
dopamine mediated changes in social affiliation. In each of these studies, the sex differences
were attributed to sex differences in dopamine functioning, in the latter two cases, via
differences in sensitivity to dopamine. It also should be noted that central dopamine interacts
with the neuropeptides oxytocin (through co-localization of receptors in the nucleus
accumbens), and vasopressin (via projections from the nucleus accumbens to the ventral
pallidum) to modulate vole social interactions [94]. An intriguing possibility is that sex
differences in these neuromodulatory systems serve either to “protect” females from the effects
of metals (oxytocin) or to make males more susceptible to metals effects (vasopressin).

But can altered dopamine function account for any of the other symptoms/behaviors associated
with autism? We believe that the answer is at least a qualified “Yes”. Dopaminergic projections
to the frontal cortex likely play a role in executive function and abnormal patterns of dopamine
receptor activation can interfere with such function [81]. Thus, altered dopamine functioning
could contribute to the repetitive behaviors typically associated with autism. In fact, mice
lacking the dopamine transporter display enhanced perseverative responses and have difficulty
suppressing inappropriate responses [31], and take much longer to adapt to a novel situation
[34]. The possibility for dopamine involvement in autism is further supported by the
observation that autistic patients displayed reduced activity in the frontal, striatal, and parietal
regions when confronted with a task that required a shift in cognitive set [77]. Finally, it should
again be noted that the metals-induced social avoidance was limited to that toward strangers,
while interactions with familiar animals were unimpaired. This may be an important parallel
to the observation that autistic children performed on a par with control children in tasks with
a predictable pattern, but showed deficits when no pattern was present [46]. This latter
observation may reflect the differences in mesolimbic dopamine system functioning when
reward is predictable as opposed to unpredictable [75]. In fact, changes in dopamine release
associated with differences in predictability could account for the importance of a structured
environment in treating autistic children [43].

This interpretation suggests that metals exposure should produce changes in other dopamine-
mediated responses. To test this possibility, we examined another, non-social, dopamine-
mediated behavior - locomotor responses to peripheral administration of amphetamine.
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Changes in locomotor responses to amphetamine have been reported after chronic exposure to
manganese [56] and cadmium in rats, although the directions of the changes are not always
consistent [86]. We found that locomotor responses to amphetamine administration were
reduced after mercury ingestion, which is consistent with other reports of effects of metals on
dopamine mediated behaviors [56,86] or dopamine metabolism [82], particularly within the
mesolimbic dopamine system [48]. The fact that the sex differences we observed in
amphetamine responses after metals exposure paralleled the altered social behaviors
strengthens the argument that the changes in social behavior may be dopamine-mediated.
Together, these results further support our working hypothesis that changes in central dopamine
function after metals exposure might contribute to the etiology of autism, and suggest
involvement of the ventral striatum.

Many of the altered behaviors in the present study result from exposure to mercury. We chose
to use mercury largely because more is known regarding the toxic effects of mercury than about
any other metal save possibly lead. However, we recognize that any discussion of mercury in
an autism context requires acknowledgement of the vaccine controversy [63,64]. Although
widely discredited [12,59,80,85], the idea that thimerasol, a compound containing mercury and
formerly used as a preservative in childhood vaccines, is responsible for autism, gained a life
of its own [28]. Parents, desperate for a solution, gravitated toward this idea, and many are
reluctant to accept the scientific community’s assurances that preservatives in vaccines likely
play little role in the development of autism. Unfortunately, for many in the autism field, this
controversy has resulted in the mercury being thrown out with the thimerasol. In fact, mercury
remains at least a potential contributing factor for autism [18], and should continue to be studied
in that context. That having been said, however, it is important to note that a variety of metals
such as lead, aluminum, cadmium, some of the lanthanides, copper and manganese (all
multivalent cations) can negatively impact central dopamine metabolism[11,53,84,95]. The
fact that we were able to replicate the effects of mercury exposure by treating the animals with
cadmium provides important support for the idea that it might be important to examine
classes of environmental influences on the development of autism rather than looking for a
specific cause. This suggestion is supported further by observations that environmental
exposure to multiple toxins simultaneously is not only possible, but may in fact be likely
[90]. The existence of multiple insults, all of which can produce the same or similar symptoms,
may account for the observed inconsistencies between individual exposure to specific stimuli
and the incidence of the disorder. In this context, it should be noted that among a group of
autistic patients [79], stimulated increases in excretion levels for three different metals were
seen in different individuals (cadmium, lead, and mercury, respectively). Similarly, hair
analysis revealed elevated mercury, lead, and uranium, although the data presentation does not
allow comparison between individual subjects [26]. Finally, it is important to note that,
although we have concentrated on metals effects on dopamine-mediated behaviors, other
environmental factors such as endocrine disruptors and pesticides also can alter dopamine
function (reviewed by [47]). Together, these results suggest that future correlative and
retrospective studies might find it valuable to test for exposure to a range of toxins instead of
focusing on a single cause of autism.

One obvious caveat inherent in the present study is the fact that metals exposure occurred
during adulthood while autism is a childhood-onset disorder. It is unknown at this point whether
metals exposure during the perinatal period would produce similar changes in behavior.
However, prenatal exposure to mercury produces sex specific changes in locomotor activity
[70], and perinatal exposure to toxins has been shown to alter DAT function, perhaps
permanently [67]. More to the point, altered dopamine function during the perinatal period can
be tied, at least indirectly, to autism. For example, Caesarian birth is a risk factor for autism
[35] and can cause changes in dopamine receptor binding in rats [9]. Importantly, in rats, these
changes are not apparent until three months after birth [9], which may be an important parallel
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to the onset of autism typically occurring at 2–3 years of age in children. Further, some
obstetrical complications can permanently alter the very dopamine systems [10] that we
propose are responsible for the behavioral effects of metals that we observed in our voles. The
present study establishes social interactions by prairie voles as an ecologically valid measure
by which the effects of autism risk factors may be tested. Future studies may extend the model
by exposing vole pups to metals during defined portions of the perinatal period and then
examining their responses during social interactions as adults.

Significant strides have been made in understanding autism and animal studies have
contributed to these advances. However, ultimate understanding of this disorder will require
more than modeling the symptoms. To be of maximum utility, an animal model of autism must
address three fundamental questions. First - What causes autism? Addressing this question will
allow hypotheses regarding specific causative agents to be tested and will provide insights into
potential environmental insults that may trigger the disorder. The second question is - How
does it cause autism? Being able to address this question will allow not only hypothesis testing
of the mechanism(s) by which a causative agent produces autism symptoms, but also will
provide a framework for assessing different classes of causative agents. Answering the third
question - Why does it cause autism? - will allow important insights into why two children in
what seem to be identical circumstances do not both suffer from autism. When the ability to
answer these questions can be combined in the same animal model, the rate of progress in
understanding autism should increase significantly. Our results show that prairie vole social
responses are sensitive to environmental influences at ecologically relevant doses and change
in ways that are consistent with what already is known about autism. Here, a putative risk factor
for autism (metals exposure) produced a symptom of autism (aversion to social novelty),
possibly via changes in a neurotransmitter system known to affect social behavior (dopamine)
in brain regions known to influence social behavior (mesolimbic areas) in a sex-specific fashion
(autism is more prevalent in males). As a result, we have potential insight into two of three
questions outlined above (What? and How?). We currently are examining how polymorphisms
in genes associated with dopamine function may convey resistance or susceptibility to autism
risks. The results of those studies may allow us to add an answer to the Why? question as well.
In fact, we feel that the prairie vole model may well allow these questions to be addressed
simultaneously.
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Fig 1.
The presence of 60ppm HgCl2 or CdCl2 in drinking water did not affect the amount of liquid
ingested by prairie voles. Cumulative liquid intakes during the first 8 days of access did not
differ between animals that received water only or a metals solution as their sole drinking water
source, nor were there any sex differences in total liquid ingested. Dark bars indicate male
totals, lighter bars indicate female totals.
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Fig 2.
Chronic ingestion of metals altered social behavior in male prairie voles. Male prairie voles
that consumed either Hg++ or Cd++ in their drinking water spent significantly less time in
contact with an unfamiliar, same-sex conspecific than did males that received only
unadulterated water. Social contact did not differ between males that received Hg++ or Cd++.
In contrast, metals ingestion did not alter the amounts of time females spent in contact with a
same-sex stranger. * p < 0.002.
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Fig 3.
Male prairie voles only displayed reduced social contact when the stimulus animal was an
unfamiliar animal. Males that were given a choice between isolation and contact with another
vole displayed no effects of metals ingestion if the stimulus animal was the subject’s same-sex
cagemate. In contrast, metals-treated males that were exposed to strangers displayed reduced
amounts of social contact relative to water-treated controls. Data for stranger-exposed males
are the same data as were used in Fig 2 and are presented here to provide a point of comparison.
* p < 0.002.
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Fig 4.
Male prairie voles that received Hg++ in their drinking water for four weeks displayed reduced
time spent with the unfamiliar same-sex conspecific, relative to males that received water only.
The magnitude of the decrease was similar to that seen from males that received metals for 10
weeks. * p < 0.002.
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Fig 5.
Unstimulated locomotor activity was unchanged by metals treatment. Regardless of animals’
sex, metal ingested, or stimulus animal used in the behavioral testing, animals that received
metals in their drinking water did not differ from water-treated controls in their locomotor
activity during the social choice testing.
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Fig 6.
Metals ingestion altered locomotor activity in response to amphetamine administration. Male
prairie voles that experienced chronic exposure to Hg++ in their drinking water did not display
an increase in locomotor activity when given an intraperitoneal injection of 0.5mg/kg of
amphetamine over that seen after control injections. In contrast, males that received only water
traveled a greater distance in an open-field arena after amphetamine than they did after control
injections. Locomotor responses of Hg++-treated males to amphetamine also differed from
those of similarly treated females. There were no treatment effects between water-treated and
metals-treated females. * p < 0.02 relative to control males or to Hg++-treated females.
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