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Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to
gene expression in both immune and non-immune cells. The identification of protein factors and
cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture
of precisely orchestrated events required to both regulate and establish the decay process. One gene
that is highly regulated at the posttranscriptional level is CD40 ligand (CD154 or CD40L). CD154
on CD4+ T cells is tightly controlled by an interacting network of transcriptional and
posttranscriptional processes that result in precise surface levels of protein throughout an extended
time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by
a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal
expression of CD154. In this review, we discuss known and potential roles of major mRNA decay
pathways in lymphocytes and focus on the unique posttranscriptional mechanisms leading to CD154
expression by activated CD4+ T cells.

Progression of an immune response requires the coordinated expression of ligands, receptors
and cytokines. The expression of these regulatory molecules is tightly controlled at multiple
levels upon cell activation. At the epigenetic level these events are orchestrated by changes in
chromatin conformation allowing binding of an array of transcription factors and rapid
induction of gene expression.1 Further control is modulated at the posttranscriptional level by
regulating the decay rate and localization of transcripts such that the required level of translation
is achieved. During the last two decades the study of posttranscriptional regulation of immune
and non-immune related genes has advanced significantly and is now recognized as being
central in regulating gene expression. 2–7

Eukaryotic mRNAs transcribed by RNA polymerase II are made resistant from exonuclease
degradation by incorporation of the 5´ 7-methylguanosine cap and the 3´ poly(A) tail.8, 9 These
two essential elements are added during transcription and their interaction with cytoplasmic
eIF4E and poly(A)-binding protein (PABP) enhances both translation and protection from
exonuclease activity.10 Although these factors are common to every mRNA, a subset of
transcripts are also susceptible to regulation mediated by RNA binding proteins interacting
with cis-acting elements encoded within the 3´- or 5´-untranslated regions (UTRs). Binding of
specific trans-acting factors to these regulatory elements has a wide range of consequences
resulting in enhanced or diminished transcript stability and/or changes in the overall
translational capacity of a specific mRNA.

Upon activation, lymphocytes must undergo a series of rapid phenotypic and functional
changes that allow them to proliferate and express specific effector functions in order to
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neutralize pathogen. A balanced pattern of gene expression during such changes is an essential
prerequisite to establish an appropriate immune response. Short-lived mRNA transcripts allow
for a much more rapid response to changing environmental or developmental cues and can
limit transcript availability at times when expression of a specific set of proteins would
otherwise be detrimental.11 Conversely, long-lived transcripts are a more energy efficient
alternative when sustained expression of a protein is required.12 Since lymphocyte activation
is characterized by transitions between different checkpoints during which the fate of an
immune response is decided, diversification at the level of mRNA stability of different
transcripts provide a valuable tool to regulate the magnitude of a response. These changes in
mRNA stability are controlled by the regulatory activity of many different RNA binding
proteins whose function is dictated by signaling pathways during distinct stages of cell
maturation and inflammation.5, 13 This review will explore these mechanisms of
posttranscriptional regulation of immune related genes with a focus on factors controlling
CD154 mRNA stability.

AU-rich elements
The most studied transcript instability signature in lymphocytes is the AU-rich element (ARE).
14 This element is present in the 3´UTRs of many rapidly induced mRNAs and is often
characterized by different length repeats of the cis-acting AUUUA pentamers organized in
stem loop structures.15 The number, length and surrounding sequences of ARE repeats are
decisive factors for the recruitment of the family of ARE binding proteins (AUBP), which
includes the AU-rich binding factor-1 (AUF1), tristetraprolin (TTP), KH splicing regulatory
protein (KSRP), Human-antigen R (HuR) as well as others.14, 16, 17 To date, the stability of
several immune related-transcripts has been linked to AUBP binding including TNFα,18
IL-2,19 IL-3,20 IL-8,21 IL-10,21, 22 VEGF,23 COX224 and MMP13.25 In addition to
experimentally identified transcripts, microarray technology has established the cohort of
ARE-containing genes that constitute the ARE-mRNA Database (ARED)26 and provided a
grouping of ARE containing mRNAs based on their role during immune cell activation.27

The mechanisms by which AUBPs regulate mRNA decay is under extensive investigation and
is known to include mRNA targeting to the 3´–5´ cleavage activity of the cytoplasmic
multiprotein component known as the exosome28, or by formation of processing bodies (P-
bodies); cytoplasmic messenger ribonucleoproteins foci characterized by the presence of
decapping enzymes and 5´-3´ RNA processing proteins.29 Differential AUBPs binding has
also being shown to either increase or decrease endo-ribonuclease activity or translation of
target mRNAs.3, 30, 31 Specifically, AUBPs binding to AREs can have opposite outcomes
on the half-life (t1/2) of transcripts either by recruitment of the deadenylation machinery and
subsequent rapid degradation by the exosome32, 33 or by masking the ARE to increase
transcript stability and prevent endonuclease activity.34 In some instances AUBPs with
different properties compete for binding to the same cis-acting element. This is the case with
TTP binding to an ARE within the TNFα 3´UTR that results in enhanced degradation by
recruitment of the exosome.35 However, TTP binding to the TNFα ARE can be out competed
by HuR resulting in the increased stabilization of the transcript.18 Also, the IL-2 mRNA, which
has a 3´UTR rich in AREs, is stabilized by the NF90 AUBP following CD28 co-stimulation
of CD4+ T cells suggesting that NF90 binding prevents the interaction of other decay promoting
AUBPs.36 Finally, the same AUBP can function to stabilize or decay an mRNA which is the
case with AUF1 which exits as four distinct isoforms and functions as a destabilizing factor in
K562 cells37 and a stabilizing factor in NIH 3T3 cells.38

Vavassori and Covey Page 2

RNA Biol. Author manuscript; available in PMC 2010 June 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



GU-rich elements
Global analysis of mRNA degradation patterns in resting and activated T lymphocytes
identified a sizeable number of transcripts exhibiting activation dependent changes in
posttranscriptional regulation.39 Only a small minority of these transcripts was found to
contain ARE sequences within their 3´UTRs. In contrast, the vast majority of mRNA regulated
at the posttranscriptional level in T lymphocytes contained a GU-rich element (GRE). The
presence of GU repeats in the 3´UTR corresponded to enhanced transcript instability40 and the
CUG-binding protein 1 (CUGBP1) was identified as a factor that bound GREs41 and stabilized
transcripts.40 While specific studies have shown that CUGBP1 can recruit the deadenylation
machinery42 others report that this factor functions to enhance translation of target genes.43
Therefore, it would appear that a subset of GREcontaining transcripts, like their ARE-
containing counterparts, are targeted for stability or degradation through a GRE-specific
pathway in response to varying cellular conditions.

CA-rich elements
The most common di-nucleotide motif in mammals is the CA repeat.44 This element is widely
used in genetic linkage analyses and a correspondence between microsatelite CA
polymorphisms within 3´UTRs and incidence of disease has been demonstrated in Type I
diabetes, rheumatoid arthritis and systemic lupus erythematousus.45–48 The ubiquitously
expressed heterogeneous ribonuclear protein (hnRNP)-L maintains a high affinity for ribo-CA-
repeats in introns, exons and regulatory regions through the interaction of three distinct RNA
binding domains (RBDs).49 This factor is implicated in multiple steps of RNA processing
including splice-site selectivity,50, 51 nuclear-cytoplasmic transport,52, 53 IRESmediated
translation54 and RNA stability.51 In T cells, the expression of different spliced isoforms of
CD45 is mediated through an activation-induced pathway of exon exclusion through selective
binding of both hnRNP-L and a homologue hnRNP-LL.55–57 Also, hnRNP-L binding to
3’UTR CA-repeats has been shown to impact the stability of transcripts encoding endothelial
isoform of nitric oxide synthase (eNOS),58 inducible nitric oxide synthase (iNOS)
mRNA59, human vascular endothelial growth factor (VEGF) 60 and CD154.61

CU-rich elements
Two distinct CU-rich elements have been implicated in posttranscriptional regulation of
multiple eukaryotic mRNA transcripts. These are the Differentiation Control Element (DICE)
and the CU-Rich Element (CURE).62, 63 Although the distinction between these two elements
is debatable,63 DICE is characterized by the consensus architecture (C/U)CCANx CCC(U/A)
(C/U)y UC(C/U)CC.64 This sequence motif is bound by the heterogeneous ribonuclear protein
(hnRNP) K (E2/E1, αCP, PCBP) resulting in the stabilization of the target molecule65 with a
corresponding induction66 or repression67 of translation. Examples of DICE-directed post-
transcriptional regulation include the modulation of 15-lipoxygenase mRNA stability by
hnRNP-K and -E1.66 Also, DICE sequences within the 3´UTR of human p21-activated kinase
1 (Pak1) were shown to bind hnRNP-E1.68

A CURE binding protein that has been extensively characterized is the polypyrimidine tract-
binding protein (PTB). PTB has been implicated in the post-transcriptional regulation of
inducible nitric oxide synthetase (iNOS),69 insulin,70 VEGF,71 and CD154.72, 73 In
lymphocytes, this protein is present in two ubiquitously expressed isoforms of 50 and 55 kDa
(PTB-1 and PTB-4), which contain four RNA Binding Domains (RBD) separated by
unstructured linker sequences.74 Both PTB-1 and PTB-4 are shuttling proteins with a novel
bipartite N-terminal nuclear localization sequence (NLS) that is bound by importin-α.75 This
protein functions as a cytoplasmic receptor to promote nuclear localization of bipartite NLS-
containing proteins.76 Translocation of PTB between the nuclear and cytoplasmic
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compartments is controlled by phosphorylation at Ser-16 by 3´–5´ cAMP dependant protein
kinase A (PKA)77 and this process per se appears to be uncoupled to RNA export.78 The
activity of PTB in post-transcriptional regulation requires the formation of protein complexes
that may include nucleolin,79 hnRNP-L,80 Cold Shock Domain (CSD)71 as well as additional
heterologous RNA binding proteins (reviewed in ref. 81).

Posttranscriptional regulation of CD154 (CD40 ligand) mRNA
A critical immune regulatory protein that is controlled at the level of posttranscriptional control
is CD40 ligand (CD40L or CD154). The interaction of transiently expressed CD154 on
CD4+ T cells with the constitutively expressed CD40 on antigen-presenting cells (APCs)
generates critical thymus dependent (TD) responses and enhances a subset of innate responses
to bacterial and viral pathogens.82–84

Several studies have shown that CD154 mRNA expression is regulated at both the
transcriptional and posttranscriptional levels in response to T cell receptor (TCR) activation.
Within 10 min of activation intracellular stores of CD154 protein are translocated to the
extracellular surface and CD154 expression is quickly enhanced by increased gene
transcription, which results in maximal mRNA levels occurring after 6 h of continuous
stimulation. At approximately 12 h of stimulation the CD154 mRNA levels drop to a basal
level that remains constant throughout the subsequent activation period.85–87 Early expression
analysis revealed that CD154 transcription is dependent on the activation of the Ca2+/
calmodulin pathway88 whereas transcript stabilization is increased in response to treatment
with cAMP analogues in ionomycin-stimulated peripheral blood mononuclear cells (PBMC).
89 Other reports indicated that co-culture of PHA-activated CD4+ T cells with human
endothelial cells (EC) causes direct changes in CD154 mRNA stability through an LFA-3-
dependent process.90 However, unlike its effect on ARE-mediated decay,91, 92 co-stimulation
through CD28 was shown to induce only a modest increase in CD154 transcript stability.93

The posttranscriptional mechanisms underlying CD154 expression have been extensively
investigated.73, 93, 94 In human CD4+ T cells the CD154 transcript was found to decay with a
t1/2 of less than 40 min during the first 12 h of TCR activation and with a t1/2 of approximately
2.2 h following 24 h of continuous stimulation.93 Biphasic posttranscriptional regulation of
this mRNA was found to depend on the activation-induced binding of ribonucleoprotein (RNP)
complexes containing PTB to a region of the CD154 3’UTR at extended times following
activation.94 A similar mechanism of posttranscriptional regulation was demonstrated in
response to TLR9 stimulation in primary B cells where multiple transcripts were stabilized by
the binding of a PTB-containing complex (B-cpx I) to CU-rich elements within their 3´UTRs.
95 Thus, both T- and B-lymphocytes maintain a similar non-ARE pathway of mRNA stability
that is directly linked to antigen activation.

cis-elements and trans-factors involved in CD154 mRNA regulation
A thorough analysis of cis- and trans-acting factors involved in CD154 mRNA decay revealed
that two PTB containing complexes (Complex I and Complex II) bind to three distinct
sequences spanning nucleotides 1300 to 1589 of CD154 mRNA (XbaI-E1, E1-E5 and E5-
HaeIII), within the 3´UTR region defined by the Xba I and Hae III restriction sites (X-H) (Fig
1).94 Further analysis revealed that PTB is the major RNA binding component of the RNP
complexes72, 73 and that nucleolin and hnRNP-L are additional components of Complex I and
II, respectively.61, 79, 80 Formation of these RNP complexes is only seen at extended times of
activation corresponding to the increased stability of the transcript, suggesting their direct
involvement in modulating activation-induced CD154 mRNA stability.72, 94
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The minimal sequences required for each complex binding were identified in in vitro studies.
80 The contribution of each minimal sequence to stabilizing a heterologous transcript
(Renilla luciferase) and modulating reporter activity was tested in Jurkat/D1.1 cells which
constitutively express Complex I and II (Table I). The centrally located E1-E5 region (Fig 1,
Site B), which is one of the two minimum Complex I binding sequences94 was found to provide
the highest level of transcript stability and activity.80 A second unit of Complex I was found
to bind to a region defined by Xba I and E1 (Fig. 1, Site A) and insertion of this sequence at
the 3’UTR of Renilla luciferase was also shown to increase expression, although at a much
lower level than that seen with Site B. Further analysis of Site A revealed that the region
between Xba I and nucleotide 1351 was responsible for the reduced luciferase activity and that
this reduction was caused by enhanced luciferase mRNA instability (Table I). Together these
findings support a model where binding of Complex I to Sites A and B results in enhanced
protection of the transcript from rapid degradation mediated by adjacent sequences between
the Xba I site and nucleotide 1348 (Fig. 2). This model also explains the high level of mRNA
decay at early times following T cell activation when there is an absence of Complex I binding
to the CD154 transcript.94

Analysis of the 3´ sequence of the X-H region downstream of the E5 site identified the binding
site for Complex II (Fig. 1, Site C) This region contains a contracted CU-rich stretch and a
polymorphic CA repeat72 and is the weakest of the three individual regions with respect to its
ability to enhance luciferase expression (Table I). Interestingly, Complex II binding was shown
to require the whole length of this region. In addition to PTB, hnRNP-L was identified as a
protein that bound to this sequence through interactions with the CArepeats.80 Hamilton and
colleagues recently reported that the binding of hnRNP-L to the CD154 CA-repeat in HeLa
cells correlated both with transcripts containing shortened poly(A) tails and increased
translation of a heterologous transcript.61 The allelic and genotypic distribution of the
polymorphic CD154 repeat has been studied as a genetic marker in specific autoimmune
diseases and the higher number of CA repeats correlate with disease incidence.46, 47 Notably,
deregulating CD154 expression is associated with an increase in autoantibodies in both mouse
and humans and this may be achieved in part through posttranscriptional and translational
processes that result in enhanced expression during an immune response.96–100

Analysis of CD154 transcript upon in vivo activation
Similar to the regulation of human, the mouse CD154 transcript maintains a biphasic pattern
of stability that is activation-dependent, however, the t1/2 values in both the early and late stages
are considerably shortened (∼23 min and ∼45min) (Vavassori, et. al., submitted). The question
of whether the activation induced program of mRNA stability functions in vivo following
antigen challenge has been addressed by priming animals with antigen plus adjuvant or
adjuvant alone and challenging the T cells ex vivo with the same antigen. Analysis of RNA
t1/2 profiles of the unprimed and primed lymphocyte populations demonstrated that several
days following injection, CD154 mRNA decayed in unprimed T cells with a t1/2 of
approximately 30 min which increased two-fold to approximately 50 min in in vivo primed
cells. These findings revealed that restimulating CD4+ T cells with antigen resulted in an
increase in CD154 transcript stability relative to cells that were exposed to antigen for the first
time and strongly suggested a role for regulated CD154 mRNA stability in vivo (Vavassori et.
al., submitted).

A comparison of CD154 mRNA decay with the overall pattern of CD154 regulation led us to
propose that mRNA stability is largely responsible for appropriate protein levels at late times
of activation. This is based on the unexpected finding that overall steady state levels of CD154
mRNA are inversely linked to transcript stability where at 6 h post-activation the message level
is highest and the stability lowest and vice versa. Previous data suggested that purified CD4+
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T cells express CD154 for extended times of activation in the presence or absence of co-
stimulation101–105 and that expression is biphasic with an early peak detected at 6 h and a
second peak at 24 h.106–109 Since this pattern of expression closely corresponds to our biphasic
pattern of mRNA stability it suggests that there is as yet an undefined role for enhanced CD154
expression at late times of T cell activation. Future work will focus on identifying the signaling
pathways of CD154 mRNA stability and defining the functional consequences of this pattern
of expression in both B cell and T cell activation.
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Figure 1.
Schematic diagram of the CD154 mRNA showing the three distinct Complex I/II binding sites
in the 3’UTR. The CD154 stability element, defined by the restriction sites Xba I to Hae III
(nt 1300 to 1589), is divided into three sub-regions: A (Xba I-E1, dashed underlined), B (E1–
E5, underlined) and C (E5-Hae III, boxed). 5’ A (1300–1348) is destabilizing and 1348-E1 is
stabilizing and contains a Complex I binding site (see Table I) (see Laughlin, et. al. 2008).
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Figure 2.
Model of posttranscriptional regulation of CD154. Resting CD4+ T cells retain low CD154-
specific transcription, minimal amounts of short-lived CD154 mRNA and virtually little to no
detectable surface expression of the protein. Within 6 h following antigen presentation by APCs
a peak in transcription drives high levels of surface expression. At this time the CD154 message
is being rapidly degraded. At extended times of activation, low levels of CD154 mRNA are
stabilized by ribocomplexing on the 3’UTR which drives a second peak of surface expression.
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TABLE I

Activity of the Different Regions of the CD154 Stability Element1

Region Tested Luciferase
Activity

(Fold over
pRLSV40)

2.93+/−0.32

3.1+/−0.29

3.88+/−0.8

0.26+/−0.05

1.08+/−0.05

4.52+/−0.55

1.33+/−0.12

2.25+/−0.11

0.22+/−0.2

1
The different regions of the CD154 stability regions were inserted into the 3′ UTR of the Renilla luciferase operon contained within the pRLSV40

vector. Jurkat D1.1 cells were transfected with the various constructs and luciferase activity measured 48 h later. Shown are the mean values +/−
SEMs calculated for each construct over pRLSV40 vector alone (see Laughlin, et. al. 2008).
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