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Abstract

The glutamatergic neurotransmission in the suprachiasmatic nucleus (SCN) plays a central role in the entrainment of the
circadian rhythms to environmental light-dark cycles. Although the glutamatergic effect operating via NMDAR (N-methyl D-
aspartate receptor) is well elucidated, much less is known about a role of AMPAR (a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid receptor) in circadian entrainment. Here we show that, in the mouse SCN, GluR2 and GluR4 AMPAR subtypes
are abundantly expressed in the retinorecipient area. In vivo microinjection of AMPA in the SCN during the early subjective
night phase-delays the behavioral rhythm. In the organotypic SCN slice culture, AMPA application induces phase-dependent
phase-shifts of core-clock gene transcription rhythms. These data demonstrate that activation of AMPAR is capable of
phase-shifting the circadian clock both in vivo and in vitro, and are consistent with the hypothesis that activation of AMPA
receptors is a critical step in the transmission of photic information to the SCN.
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Introduction

Circadian oscillations within the neuronal networks of the

suprachiasmatic nucleus (SCN) and their entrainment to environ-

mental time-cues are key features of the circadian system [1,2].

Autonomous oscillations, generated by clock genes interlocked in

transcription/translation feedback loops in the SCN [3,4], are

synchronized to environmental light-dark cycles. The retinohy-

pothalamic tract conveys photic information to the SCN [5,6].

Glutamate is thought to be the main transmitter in this pathway

[7,8], since optic nerve stimulation in vitro increases the release of
3H-glutamate from the retinohypothalamic terminals in the SCN

[9]. Supporting this view, the two principal ionotropic glutamate

receptors, a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

receptor (AMPAR) and N-methyl D-aspartate receptor (NMDAR)

are known to be localized in the SCN [10].

The phase-shifting effect of NMDAR activation has been

thoroughly investigated. NMDA microinjection in the hamster

SCN was shown to produce light-like phase shifts of circadian

locomotor activity rhythms [11]. When applied to SCN slices in vitro,

NMDA induced phase shifts in the rhythms of neuronal firing rate

[12,13]. The phase-shifting effect of NMDA on core-clock oscillatory

rhythms was also observed in real-time monitoring system using

organotypic SCN slice cultures obtained from transgenic mice

expressing luciferase under the control of the core clock gene Period1

promoter (Per1-luc) [14]. Together with the findings that the

pretreatment of the SCN with a NMDAR antagonist prevents

light-induced phase shifts in mice and hamsters [15,16], it is believed

that photic information processing relies on NMDAR-mediated

neurotransmission in the entrainment of behavioral rhythms.

In contrast, the effect of AMPAR signaling on photic

entrainment is still obscure. Since in vivo application of an AMPAR

antagonist prevents light-induced phase shifts of the locomotor

activity rhythms [16], AMPAR signaling is likely to contribute to

photic entrainment. Yet, AMPAR signaling appears to be only

partially involved in NMDAR mediated signals, since an AMPAR

antagonist had only a partial inhibitory effect on NMDA-induced

phase shift [11]. This is in line with the general view of

glutamatergic transmission [17], which begins with a fast response

generated by AMPAR [18], and the resultant membrane

depolarization then leads uncoupling of magnesium block of

NMDAR channels to allow calcium entry into the neurons

[19,20], suggesting the role of AMPAR activation is just a

prerequisite for NMDAR activation.
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Does AMPAR signaling per se have the ability to induce phase-

shifts? In the SCN slices in vitro, Shibata and coworkers

demonstrated that AMPA application induced phase-shifts of

neuronal firing rhythms similar to NMDA [13]. Moreover, it was

recently shown that AMPA application increased the calcium

concentration in the SCN slices [21]. These studies prompted us to

re-evaluate the effects of AMPA both on the regulation of phase-

shifts of behavioral rhythms and on clock gene expression. Here

we report: 1) localizations of cells expressing each subtype of

AMPAR in the mouse SCN, 2) the effect of AMPA-microinjection

in the SCN on locomotor activity rhythms, and 3) the effect of

AMPA on core clock gene expression rhythm using the real-time

monitoring system of Per1-luc SCN slice cultures. These results

provide evidence that activation of AMPAR per se is capable of

phase-shifting the circadian clock both in vivo and in vitro, and

highlight the contributions of AMPA receptor signaling which

might have been underestimated behind NMDA receptor

signaling.

Results

Expression of AMPA receptors in the mouse SCN
First, we examined the cellular expressions of each AMPAR

subunit in the mouse SCN using in situ hybridization with

digoxigenin-labeled riboprobes. GluR2 and GluR4 mRNA were

highly expressed in densely distributed neurons of the middle to

ventrolateral region of the SCN (Figure 1A). GluR1 was

expressed moderately in the dorsal and very sparsely in the

ventral SCN, and GluR3 was not detected at all. The expression

pattern of GluR2 and GluR4 AMPARs suggest a role for these

receptor subtypes in entrainment, since ventrolateral neurons

receive inputs from glutamatergic retinohypothalamic nerve

endings [22,23].

AMPA-induced behavioral phase shifts
In order to examine the role of AMPAR signaling in the

entrainment of mouse circadian locomotor activity rhythms, we

directly microinjected AMPA in the mouse SCN via a pre-

implanted cannula. It is known that light-induced phase-shifts are

maximum in the early night in this strain of animals [24].

Therefore, we administered AMPA at circadian time (CT) 14

(2 hours after the beginning of the subjective night at CT12,

defined as the time of locomotor activity onset). In vivo

microinjection of AMPA in the SCN resulted in a delay of

circadian locomotor activity rhythms when delivered at CT14

(AMPA, 267.864.6 min, n = 8; vehicle, 27.461.6, n = 3;

negative and positive values represent phase delays and phase

advances, respectively) (Figure 1B, C). The AMPA-induced

phase delays were completely inhibited by coadministration of an

AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydro-

benzo[f]quinoxaline -7-sulfonamide (NBQX) (AMPA + NBQX,

26.663.8 min, n = 3) (Figure 1D). Microinjection of NBQX

alone did not significantly induce phase shift (NBQX,

21.461.4 min, n = 3) (Figure 1F).

Since the magnitude and directions of phase-shifts are known to

vary depending on the time of light stimulation [24], we also

microinjected AMPA at different circadian times. AMPA

microinjection did not induce phase-shifts both at CT6 (AMPA,

21.560.5 min, n = 4; vehicle +1.464.1 min, n = 3) and at CT22

(AMPA, +5.062.9 min, n = 3; vehicle, 22.461.4 min, n = 3)

(Figure S1). Together, these findings indicate that the action of

AMPAR signaling is phase-dependent, with a pronounced phase-

delaying effect during the early night when light stimulation also

induces phase delays.

To examine the involvement of NMDAR in the AMPAR

mediated phase-delays at CT14, we co-administered a NMDAR

antagonist, (2R)-2-amino-5-phosphono-pentanoic acid (AP5), si-

multaneously with AMPA. AMPA-induced phase-delays were

completely inhibited by coadministration of AP5 (AMPA + AP5,

26.365.2 min, n = 4) (Figure 1E). Microinjection of AP5 alone

did not produce significant phase shifts (AP5, 25.062.4 min,

n = 5) (Figure 1G). These findings suggest that AMPAR

activation per se subsequently activates NMDAR, which is also

necessary for the AMPA-induced phase-shift.

AMPA rapidly induces clock gene in the SCN
The key role of Per1 in entrainment was speculated from the

evidences that the application of Per1 antisense oligonucleotides

blocked the light-induced phase shifts of the behavioral rhythms

[25,26]. Indeed, the rapid induction of Per1 was observed after a

phase-shifting light exposure [27] or NMDA microinjection in the

SCN [28]. Here we examined the expression of this gene after

AMPA microinjection to the SCN at CT14, and found that

AMPA rapidly induced higher levels of Per1 mRNA in the SCN

compared to vehicle-injected SCN (vehicle, 1.0060.14, n = 3;

AMPA, 1.7860.14, n = 3) (Figure 1I).

AMPA-induced phase-dependent phase-shift of core
clock transcription rhythms in SCN slice cultures

Next, we examined whether the AMPA-induced behavioral

phase-shifts are reproduced in phase-shifts of core clock oscilla-

tions, using organotypic SCN slice cultures obtained from Per1-luc

transgenic mice [14]. When AMPA was applied 6 hr after the

peak point of the luminescence (i.e. during the decreasing phase),

the next peak was significantly phase delayed compared to control

medium application (AMPA, 23.1860.45 hr, n = 7; control,

20.6860.26 hr, n = 3) (Figure 2A, B). In contrast, when AMPA

was applied 14 hr after the peak (i.e. between the trough and the

next increasing phase), the next peak was significantly phase

advanced (AMPA, +1.9260.24 hr, n = 3; control, +0.3160.14 hr,

n = 3) (Figure 2C, D).

Since we found phase-dependent phase shifts of core clock

oscillations using this in vitro real-time monitoring system, we

systemically analyzed the AMPA effects over the 24 hours.

Figure 2E shows AMPA-induced phase-shifts at various time

points. The directions and magnitude of AMPA-induced phase

shifts were dependent on the circadian phase. AMPA applications

at 2–6 hr after the peak caused phase delays, whereas the

applications at 14–16 hr caused phase advances. The contour of

the phase-response curve (PRC) corresponds well with the PRC

obtained with light-induced phase shifts of locomotor activity

rhythms in vivo [24] or with NMDA-induced phase shifts in

cultured SCN slices [14].

Discussion

AMPAR activation is believed to be just a prerequisite for

NMDAR activation which eventually leads to neuronal firings and

physiological changes such as long-term potentiation formation in

hippocampal neurons [17]. In this study, however, we showed that

AMPA microinjection into the SCN per se resulted in phase delays

of locomotor activity rhythms and phase-shifts in core clock gene

oscillations in organotypic SCN slice cultures. Still, since a

NMDAR antagonist inhibited the AMPA-induced phase-shift,

the following activation of NMDAR must be necessary for the

AMPA-induced phase-shift. Taken together with the previous

observations that NMDA-induced behavioral phase shifts are also

attenuated by AMPAR antagonists [11,28], we propose that

AMPA Phase-Shifts Clock
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AMPAR and NMDAR signaling reciprocally regulate glutama-

tergic signaling and determine the magnitude of phase-shifts of

behavioral rhythms.

AMPA-induced phase-dependent phase-shifts were observed

both in in vivo behavioral rhythms and in in vitro core clock

oscillation rhythms. However, some differences were observed:

large phase-delays caused by AMPA in the early subjective night

and no phase-shift in the subjective day are commonly observed,

but the phase-advances during the late subjective night were only

observed in vitro. Although several technical issues, such as the

concentration of agonist used and method of injection, may

explain these discrepancies, it is likewise possible that the presence

of inhibitory afferents to the SCN may cause the differences

observed between our in vitro and in vivo experiments. Actually,

Mintz and coworkers reported that the degree of NMDA-induced

phase-advances during the late subjective night was lower than

that of light pulse-induced, although the phase-delays during the

early subjective night obtained by both methods were quite similar

Figure 1. AMPA microinjection at CT14 induced phase delays and Per1 expressions in vivo. (A) Topographic analysis of AMPA receptor
mRNA expressions (GluR1-4) in the mouse SCN by in situ hybridization using digoxigenin-labeled riboprobes. Scale bar, 200 mm. (B–G) Representative
double-plotted actograms of circadian locomotor activity rhythms in mice injected with either (B) vehicle, (C) AMPA, (D) AMPA + NBQX, (E) AMPA +
AP5, (F) NBQX or (G) AP5. Mice were maintained in constant darkness and microinjections were given at CT14 (marked by asterisks) under dim red
light illumination. The magnitude of the phase delays was calculated by comparing eye-fitted lines drawn according to the onset of the locomotor
activity before and after the microinjection. (H) Summary of phase delays (Mean 6 SEM) induced by microinjection of drugs at CT14. Minus values
mean phase delays. Numbers at the bars denote sample sizes for each condition. ** p,0.01 (one-way ANOVA, followed by Scheffe’s multiple
comparisons). (I) Acute induction of Per1 mRNA (Mean 6 SEM) induced by AMPA or vehicle microinjection, detected by in situ hybridization using
[33P]-labeled riboprobes. The average value of vehicle microinjection was set to 1. * p,0.05 (Student’s t-test). Inset panels show representative
autoradiograph images of Per1 mRNA expression induced by vehicle (left) or AMPA (right) microinjection at CT14. Scale bar, 500 mm.
doi:10.1371/journal.pone.0010951.g001
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Figure 2. AMPA-induced phase shifts of luminescence rhythms in organotypic SCN slice cultures. Images of the representative results
are shown in the upper panels. The corresponding graphs are shown below, defining the second peak values (time 0) as 100%. AMPA application, (A)
at 6 hr or (C) at 14 hr after the peak of the luminescence, induced phase delays and advances, respectively. Control medium treatment without
AMPA (B) at 6 hr or (D) at 14 hr after the peak had no effect on the phase. p,0.01 (both at 6 hr and at 14 hr, AMPA vs. control, Student’s t-test). To
calculate the period length, each middle point between peak and trough in the increasing phase was first determined, and the time at the middle
point was subtracted by the time at the previous middle point. (E) PRC obtained with SCN slice cultures stimulated by AMPA application. The x axis
represents the normalized time after the peak (1 normalized hour = free running period/24 hr). The y axis represents the magnitude of phase shifts
normalized by multiplying each shift in hour by the factor of 24 hr/free-running period. Plus and minus values mean phase advances and delays,
respectively. Each value is the Mean 6 SEM. The data obtained from multiple SCN slices during two hours were averaged. Hours shown on the x axis
represent the middle of each two hours interval. One-way ANOVA revealed significant differences in PRC amplitudes obtained by AMPA application,
but not in that obtained by control application (see Materials and Method). Post-hoc analysis using Scheffe’s multiple comparisons revealed that the
magnitude of AMPA-induced phase shifts at 6 hr was significantly different from the magnitudes at all other time points except at 2 and 4 hr
(p,0.01).
doi:10.1371/journal.pone.0010951.g002
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[11]. Interestingly, Moriya and coworkers reported that anirace-

tam, an enhancer of AMPAR activity, augmented light-induced

phase-shifts at CT14, but not at CT20 [21]. These findings

strongly suggest that light-induced phase-advances during the late

subjective night need not only glutamatergic stimuli, but also

additional factor(s).

In this point, it is noteworthy that abundant inhibitory

serotonergic inputs from the midbrain innervate the retinal

terminals and retinorecipient cells in the SCN [29]. Since

serotonergic inhibitory signals are regulated in a circadian manner

and are highest in the late subjective night in the SCN [30],

AMPAR activation in vivo was not sufficient to induce phase-

advances during the late subjective night. However, in the SCN

slice cultures where inhibitory serotonergic afferents were

mechanistically eliminated, AMPA application might be capable

of inducing phase-advances. Besides, the effect of SCN-rich

astrocytes in vivo [31] and in vitro [32] might have some effects on

the discrepancy between in vivo and in vitro, since astrocytes

regulate glutamate signaling through glutamate uptake from and/

or glutamate release to synapses [33].

In this study, we observed AMPA-induced phase-dependent

phase-shifts both in locomotor behavioral rhythms and in core-

clock transcription oscillations in SCN slice cultures. These data

suggest that the activation of AMPAR is a critical step in

behavioral entrainment to light-dark cycles, and highlight the

contributions of AMPAR in glutamatergic signaling, which have

been underestimated behind NMDAR signaling.

Materials and Methods

Animals and Monitoring Behavioral Rhythms
Male C57BL/6 mice at 7–8 weeks age (JAPS, Osaka, Japan)

were acclimated for at least one week in an environment with a

12-hr light and 12-hr dark cycle, maintained at 2262uC, with

food and water provided ad libitum. Locomotor activity was

detected by passive infrared sensors (FA-05 F5B; Omron, Kyoto,

Japan). Data were collected and analyzed with Chronobiology kit

(Stanford Software Systems, Stanford, CA), as described previ-

ously [34]. Circadian time and phase shifts of activity rhythms

were analyzed with Clocklab software (Actimetrics, Wilmette, IL).

All animal procedures described in this study were approved by

the Animal Research Committee of Kyoto University (2010-43)

and The Committee for Animal Research of Kobe University

(P060601).

In Vivo AMPA and/or Antagonist Microinjection
Mice were deeply anesthetized with a cocktail of ketamine

(50 mg/kg) and xylazine (20 mg/kg) and a small hole was drilled

0.4 mm caudal from bregma. A 5.0 mm length guide cannula was

stereotaxically implanted, aimed at the SCN, and a dummy

cannula was inserted into the guide cannula until AMPA and/or

antagonist microinjection. After guide cannula implantation, mice

were housed in DD to establish stable free-running locomotor

activity rhythms. After 10 days of stable behavioral rhythms, mice

were briefly anesthetized with ether, and microinjected using a

5.5 mm length injection needle connected to a 10 ml Hamilton

syringe via a polyethylene tube, in dim red light illumination

environment. 1 ml of 0.25 mM AMPA (Tocris, Ellisville, MO),

0.5 mM NBQX (Tocris), 0.5 mM AP5 (Tocris), 0.25 mM AMPA

plus 0.5 mM NBQX, 0.25 mM AMPA plus 0.5 mM AP5, or

artificial cerebrospinal fluid as vehicle (147 mM NaCl, 4 mM

KCl, 1.2 mM CaCl2, pH 7.0) was injected at a rate of 0.2 ml/min

at CT14 or CT22. AMPA or antagonist was dissolved in artificial

cerebrospinal fluid. AMPA plus either NBQX or AP5 were

simultaneously microinjected as a drug cocktail. After each

injection, the needle was left in place for at least 2 min.

In Situ Hybridization
The induction of Per1 mRNA was measured using a

radiolabeled antisense riboprobe covering nucleotides 844–1626

of Per1 mRNA (Genbank, NM_011065). The corresponding

cDNA fragment was cloned and used as a template for riboprobe

synthesis. The riboprobes were radiolabeled with [33P]UTP

(PerkinElmer, Waltham, MA) using a standard protocol for cRNA

synthesis. AMPA microinjection was performed at CT14 and mice

were again housed in DD until CT15 when mice were sacrificed.

In situ hybridization was performed according to the method

detailed previously [27]. Autoradiography films (Kodak Biomax)

were then exposed to the air-dried sections, and signals were

quantified by MCID image analyzing system (Imaging Research

Inc., Canada) after conversion into the relative optical densities

using 14C-autoradiographic microscales (Amersham, UK).

For visualizing AMPAR subtypes at the cellular levels, we

generated gene-specific probes as follows: GluR1 antisense probe

covering nucleotides 434–1090 of GluR1 mRNA (Genbank,

NM_001113325.1); nucleotides 631–1394 (NM_001039195.1)

for GluR2; nucleotides 766–1524 (NM_016886.3) for GluR3 and

nucleotides 295–884 (NM_019691.4) for GluR4. Digoxigenin-

labeled antisense cRNA probes were synthesized using digox-

igenin-UTP (Roche Diagnostics GmbH, Mannheim, Germany)

following a standard protocol of cRNA synthesis. The sections

hybridized with digoxigenin-labeled probes were processed for

immunochemistry with the nucleic acid detection kit (Roche

Diagnostics GmbH). Signals were visualized in a solution

containing nitroblue tetrazolium salt (0.34 mg/ml, Roche Diag-

nostics GmbH) and 5-bromo-4-chloro-3-indolyl phosphate tolui-

dinium salt (0.18 mg/ml, Roche Diagnostics GmbH).

In Vitro AMPA Application and Bioluminescence
Recording

The organotypic SCN slice cultures of Per1-luc neonatal

transgenic mice (4- to 7-day-old) were obtained as described

previously [14]. SCN slice cultures were maintained in a sealed 24-

well cell culture plate, with 240 ml of culture medium containing

1 mM luciferin per well at 35uC during bioluminescence

recording. For AMPAR stimulation, the SCN slice cultures were

transferred at various time points to control medium (50%

minimum essential medium, 50% Hank’s balanced salt solution,

36 mM glucose, and penicillin/streptomycin), with or without

AMPA (5 mM), for 30 min at 35uC, and were then washed three

times with control medium for 10 min at 35uC. After the washes,

the SCN slice cultures were returned to the original culture

medium. Sample sizes at each time point were as below: at 0 hr,

control n = 3, AMPA n = 4; 2 hr, 3, 3; 4 hr, 5, 5; 6 hr, 3, 7; 8 hr,

7, 6; 10 hr, 5, 5; 12 hr, 3, 5; 14 hr, 3, 3; 16 hr, 5, 5; 18 hr, 2, 2;

20 hr, 2, 1 and 22 hr, 1, 2, respectively. One-way ANOVA was

performed with the data obtained during 0–16 hr time points.

Supporting Information

Figure S1 The effect of AMPA microinjection at CT6 and

CT22 on mouse circadian locomotor activity rhythms. Represen-

tative double-plotted actograms of circadian locomotor activity

rhythms in mice injected with either vehicle or AMPA. Mice were

maintained in constant darkness and microinjections were given

(A) at CT6 or (B) at CT22 (marked by asterisks) under dim red

light illumination. The magnitude of the phase shifts was

calculated as described in the legend of Figure 1. (C) Mean 6
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SEM of phase shifts induced by AMPA microinjection at CT6 or

at CT22. Phase shifts at CT14 are also shown for comparison.

Negative and positive values represent phase delays and advances,

respectively. p = 0.43 (at CT6) or 0.089 (at CT22) (Student’s t-test).

Found at: doi:10.1371/journal.pone.0010951.s001 (0.25 MB TIF)
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