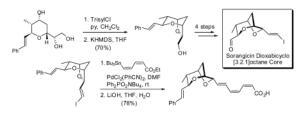


NIH Public Access

Author Manuscript

Org Lett. Author manuscript; available in PMC 2010 June 4.


Published in final edited form as: Org Lett. 2009 March 5; 11(5): 1099–1102. doi:10.1021/ol802942j.

An Efficient, Second-Generation Synthesis of the Signature Dioxabicyclo[3.2.1]octane Core of (+)-Sorangicin A and Elaboration of the (Z,Z,E)-Triene Acid System

Amos B. Smith III^{*} and Shuzhi Dong

Department of Chemistry, Laboratory for Research on the Structure of Matter, and Monell Chemical Senses Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

An efficient, second-generation synthesis of the signature dioxabicyclo[3.2.1]octane core of (+)sorangicin A (1), in conjunction with an effective, stereocontrolled protocol to arrive at the requisite *Z*,*Z*,*E* triene acid system has been developed. Highlights of the core construction entail a threecomponent union, a KHMDS-promoted epoxide ring formation-ring opening cascade, a Takai olefination and a chemoselective Sharpless dihydroxylation. Assembly of the triene acid system was then achieved via Stille cross-coupling with the ethyl ester of (*Z*,*Z*)-5-tributylstannyl-2,4pentadienoic acid, followed by mild hydrolysis preserving the triene configuration.

The sorangicins comprise a family of architecturally complex macrolide antibiotics isolated from a fermentation broth of the myxobacteria *Sorangium cellulosum* (strain So ce 12). ¹ The most potent and prevalent congener, (+)-sorangicin A (1), was found to be highly effective against a spectrum of both Gram-positive (MIC 0.01–0.3 µg/mL) and Gram-negative bacteria (MIC 3–25 µg/mL). Subsequent studies revealed that (+)- sorangicin A (1) inhibits bacterial RNA-polymerase in both *E. coli* and *S. aureus*, while not affecting eukaryotic cells.²

The structure of (+)-sorangicin A (1),³ endowed with a highly unsaturated 31-membered macrolactone, a rare (Z,Z,E)-trienoate linkage, and the signature dioxabicyclo- [3.2.1]octane, in conjunction with the important biological properties, has engendered considerable interest within the synthetic and biomedical communities.⁴ Indeed, significant progress toward the total synthesis of (+)-sorangicin A has been recorded by the Schinzer5 and Crimmins6 groups, in addition to our laboratory.7

From the outset, our synthetic analysis of (+)-sorangicin A (1) called for disconnections at the macrocyclic lactone, the C(38–39) σ -bond, and both the C(15–16) and C(29–30) *trans*-disubstituted olefins to yield three advanced subtargets: bicyclic ether (–)-2, tetrahydropyran

smithab@sas.upenn.edu.

Supporting Information Available: Experimental procedures and full spectroscopic data are available free of charge via the Internet at http://pubs.acs.org.

(-)-3 and dihydropyran 4 (Scheme 1).⁷ To construct the dioxabicyclo[3.2.1]octane core of (-)-2, our first-generation route featured an acid-promoted intramolecular cascade of epoxide openings, the first facilitated and controlled chemoselectively by a $Co_2(CO)_6$ -alkyne complex of bis-epoxide (+)-5 and the second mediated by BF₃•OEt₂.^{7a} Although effective, the route was not highly efficient vis-à-vis material advancement. We now report a second-generation synthesis of (-)-2, in conjunction with the development of an effective, highly stereocontrolled protocol to elaborate the C(37–43) (*Z*,*Z*,*E*)-triene acid unit.

Reanalysis of the structure of (-)-2 led to the observation that disconnection of the bicyclic ether fragment at the C(36)–O bond would lead to a tetrahydropyran,⁸ sharing the same 2,6-*trans*-relationship as 4, and thus potentially available via a similar substrate-controlled stereoselective conjugate addition of a Michael donor to a similar dihydropyrone as employed to construct 4.^{7b}

Toward this end, dihydropyrone (-)-6 was readily prepared in 86% yield (33:1 dr) via a hetero Diels-Alder (HDA) reaction between the Danishefsky diene and aldehyde (-)-8, ⁹ catalyzed by the chromium(III)-Schiff base 9, the same Jacobsen catalyst employed for our earlier synthesis of dihydropyrone (-)-7 (Scheme 2).¹⁰

Attention next turned to the three-component union of dihydropyrone (–)-**6** with MeI and a suitable Michael donor, the latter corresponding to a surrogate aldehyde. The literature however is not rich with such examples, due presumably to deactivation of the enone by the ring oxygen. $11^{,7b}$ In fact, dihydropyrone (–)-**6** proved to be a reluctant Michael acceptor. For example, use of the cuprate derived from BnOCH₂SnBu₃ displayed no reactivity. This result may however be a donor problem, given the low reactivity of this type of organometallic addend towards Michael addition as observed by Fuchs et al.¹²

We turned next to the commercially available β -bromostyrene (10) as a prospective nucleophile progenitor, with a view to achieving olefin cleavage at a later stage to access the C(30)aldehyde. Application of the Noyori three-component prostaglandin coupling protocol,¹³ involving Li halogen exchange of the bromine in 10 with t-BuLi at -78 °C, ¹⁴ followed in turn by addition of Me₂Zn, warming to 0 °C to furnish a mixed zincate, and then addition of dihydropyrone (-)-6 at -78 °C effectively led to conjugate addition. ¹⁵ Although forcing conditions (ca. 10 equiv. MeI and HMPA at -40 °C) were required to quench the resultant enolate (11), a single diastereomer (+)-12 was obtained in modest yield (51%), along with the formation of a significant amount of α, α' -bismethylated product (+)-13 (20%). This result is not without precedent. Alexakis et al. observed unusual reactivity of a Zn-methyl group with an enolate similar to **11** upon trapping with allyl bromide.¹⁶ We reasoned that during the slow enolate capture process, **11** possessing the Zn-methyl group, is sufficiently basic in the presence of excess HMPA to deprotonate (+)-12, and in turn lead via methylation to (+)-13. Lowering the alkylation temperature from -40 °C to -60 °C only led to longer reaction times and an increase of (+)-13 (38%). Higher temperature (-20 °C) however did have a beneficial effect on the yield of (+)-12; the same trend was observed by Alexakis et al. In the end, we discovered that the reactivity of the zinc enolate (11) could be successfully down-regulated by addition of CuI-PBu₃ just prior to the addition of MeI, which led to a slower, but more selective reaction to furnish (+)-12 in 73% yield. Confirmation of the requisite 2,3,6-trans-cis-configuration was obtained by NOESY studies (Scheme 2).

Final elaboration to (-)-2 began with L-Selectride reduction of (+)-12 to furnish (-)-14 as a single diastereomer (Scheme 3); confirmation of the requisite configuration at C(33) was again achieved by NOESY correlations. The acetonide moiety was then removed with aqueous acetic acid to furnish triol (-)-15.

With (-)-15 in hand, we turned to the critical task of generating the two atom bridge. Triol (-)-15 was treated with KHMDS (1 equiv.), followed by slow addition of the bulky Ntriisopropylbenzenesulfonylimidazole (Trisyl- Imid; 1 equiv.) to effect regioselective sulfonylation of the least hindered hydroxyl. In analogy with the work of Crimmins et al,⁶ treatment of the resultant trisylate (16) with an additional 2 equivalents of KHMDS then promoted a reaction cascade involving epoxide ring formation, followed by ring opening to generate the bridged bicycle. ¹⁷ Although this "one-pot" protocol delivered the desired product (-)-18, the yield was disappointing (ca. 33%), due to over-sulforvlation to form (-)-19 (ca. 36%). Lower reaction temperatures or the use of potassium *tert*-butoxide did not improve the situation. A less elegant, two-step protocol was thus explored. The primary hydroxyl of (-)-15 was first selectively sulforylated with triisopropylbenzenesulfonyl chloride (TrisylCl) employing pyridine/CH₂Cl₂ (2:3) as solvent at room temperature.¹⁸ Under these conditions, sulfonylation of the secondary hydroxyl was suppressed; in addition the resultant sulfonate (-)-20 proved stable to purification and handling. The primary sulfonate was then treated with one equivalent of KHMDS to furnish bicyclic ether (-)-18 in high yield, possessing spectral data in complete accord with the data reported by the Crimmins laboratory.⁶ Bicycle (-)-18, comprising the signature dioxabicyclo- [3.2.1]octane core of (+)-sorangicin A (1), was thus available in 6 steps and 35% overall yield from (-)-8.

To arrive at (–)-2 (Scheme 4), (–)-18 was oxidized employing Parikh-Doering conditions,¹⁹ and the resultant sensitive aldehyde 21 immediately subjected to Takai olefination without purification.²⁰ Initial experiments on small scale employing THF as solvent afforded an E/Z diastereomeric mixture (3.2:1); the olefin configurations were assigned respectively based on ¹H NMR coupling constants (15.8 Hz *vs.* 8 Hz).²¹ The observed low E/Z selectivity was unexpected given that α -alkoxy-aldehydes in general exhibit near complete (E)-selectivity. 22 Larger-scale reactions also proved problematic, furnishing the vinyl iodides in significantly lower yield. Recourse to a mixture of dioxane/THF (4:1; v/v) as solvent system,²³ although not significantly improving the selectivity, did improve the scale-up issue to furnish (–)-22 and (–)-23 in 52 and 16% respectively, on half gram reaction scale.

Required at this stage was differentiation of the two olefins present in (–)-22 to access aldehyde (–)-2. We reasoned that the electron withdrawing and donating biases respectively of the iodide and phenyl substituents would permit chemoselective functionalization of the more electron rich olefin. Gratifyingly, Sharpless dihydroxylation of (–)-22 at room temperature proceeded only at the styrene moiety to generate the corresponding diol, ²⁴ which upon reaction with NaIO₄ employing buffered conditions, furnished (–)-2 identical in all respects to material prepared previously in our laboratory.^{7a}

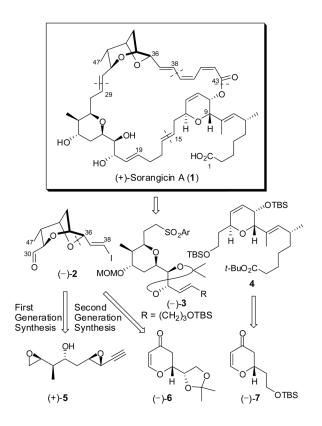
Having achieved an effective, second-generation synthesis of (-)-2, we turned next to explore possible tactics to construct the sensitive (*Z*,*Z*,*E*)-triene acid fragment. Vinyl iodide (-)-22 was selected as a model system. Stille cross-coupling with known (*Z*,*Z*)-dienoate 24 led to (+)-25 (Scheme 5).²⁵ Best results were obtained using bis(benzonitrile)-dichloropalladium(II) as catalyst in DMF, along with excess Ph₂PO₂NBu₄ (6 equiv.) as a tin scavenger ²⁶ to suppress *Z*/*E* isomerization. Under these conditions, (+)-25 was produced in 96% yield as a single isomer (>20:1). Correlations derived from NOESY studies, as well as coupling constants confirmed the desired (*Z*,*Z*,*E*)-configuration of (+)-25 (Scheme 5). Hydrolysis of trienoate (+)-25 was then achieved with LiOH in aqueous THF to furnish acid (+)-26 in 81% yield, with complete preservation of the olefin configuration.

In summary, an effective, scalable route to (-)-2 possessing the C(30–38) signature core of (+)-sorangicin A (1) has been achieved in 10 steps from (-)-8. In addition, an effective protocol has been developed for prospective elaboration of the C(37–43) (*Z*,*Z*,*E*)-triene acid

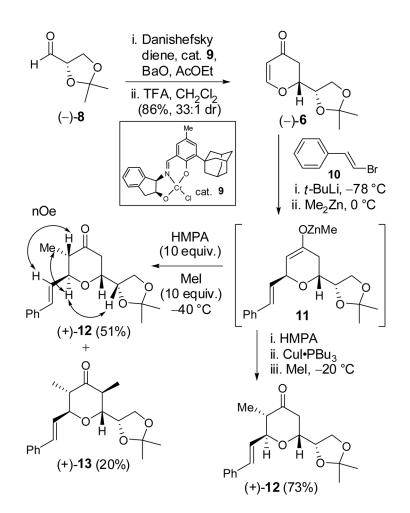
functionality, required for any successful (+)- sorangicin A (1) endgame. Progress towards the total synthesis of (+)-sorangicin A (1) will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

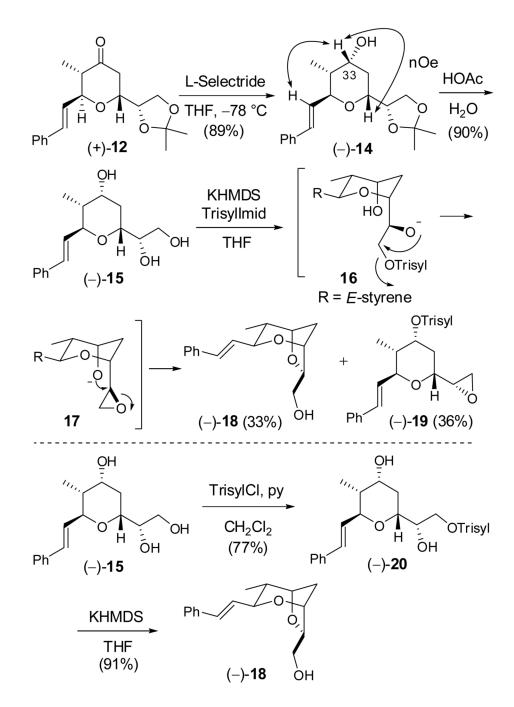

Acknowledgments

Support was provided by the National Institutes of Health through Grant No. GM- 29028. We thank Drs. George Furst (University of Pennsylvania) and Rakesh Kohli (University of Pennsylvania) for assistance in obtaining NMR spectra and high-resolution mass spectra, respectively, and Dr. Kallol Basu (Schering-Plough Corporation) for the insightful discussions.

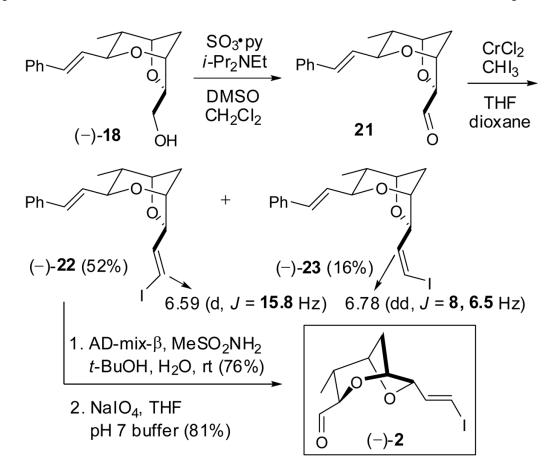

References

- 1. (a) Jansen R, Wray V, Irschik H, Reichenbach H, Höfle G. Tetrahedron Lett 1985;26:6031. (b) Jansen R, Irschik H, Reichenbach H, Schomburg D, Wray V, Höfle G. Liebigs Ann Chem 1989:111.
- 2. Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H. J Antibiot 1987;40:7. [PubMed: 3104268]
- 3. The stereocenter at C(10) in (+)-sorangicin A, as confirmed by Professor R. Jansen (GBF, Braunschweig, Germany) is *S*, not *R* as depicted in reference 4b. We thank Prof. Jansen for this clarification.
- 4. (a) Jansen R, Schummer D, Irschik H, Höfle G. Liebigs Ann Chem 1990:975. (b) Schummer D, Irschik H, Höfle G. Liebigs Ann Chem 1993:293. (c) Campbell EA, Pavlova O, Zenkin N, Leon F, Irschik H, Jansen R, Severinov K, Darst SA. EMBO J 2005;24:674. [PubMed: 15692574]
- 5. Schinzer D, Schulz C, Krug O. Synlett 2004;15:2689.
- 6. Crimmins MT, Haley MW. Org Lett 2006;8:4223. [PubMed: 16956192]
- (a) Smith AB III, Fox RJ. Org Lett 2004;6:1477. [PubMed: 15101771] (b) Smith AB III, Fox RJ, Vanecko JA. Org Lett 2005;7:3099. [PubMed: 15987215]
- A similar disconnection was elegantly employed by the Crimmins laboratory in an efficient approach to (-)-18; see ref. 6.
- 9. Aldehyde (-)-8, although commercially available, was prepared in two steps from L-gulonic acid γlactone; see Hubschwerlen C, Specklin JL, Higelin J. Organic Syntheses 1995;72:1.
- 10. Joly GD, Jacobsen EN. Org Lett 2002;4:1795. [PubMed: 12000301]
- 11. Paterson I, Steven A, Luckhurst CA. Org Biomol Chem 2004;2:3026. [PubMed: 15480468]
- 12. Hutchinson DK, Fuchs PL. J Am Chem Soc 1987;109:4930.
- 13. Suzuki M, Morita Y, Koyano H, Koga M, Noyori R. Tetrahedron 1990;46:4809.
- 14. It is critical to add β -bromostyrene to *t*-BuLi; the inverse addition led to low conversion.
- 15. Commercial β-bromostyrene is a trans/cis mixture (ca. 9:1); interestingly only one geometric product was observed. This result could be attributed to unproductive 1,4-addition of the cis-isomer, cf.: Fürstner A, Grela K, Mathes C, Lehmann CW. J Am Chem Soc 2000;122:11799.
- 16. Rathgeb X, March S, Alexakis A. J Org Chem 2006;71:5737. [PubMed: 16839156]
- 17. Dounay AB, Florence GJ, Saito A, Forsyth CJ. Tetrahedron 2002;58:1865.
- 18. Kojima N, Maezaki N, Tominaga H, Asai M, Yanai M, Tanaka T. Chem Eur J 2003;9:4980.
- 19. Parikh J, Doering W. J Am Chem Soc 1967;89:5505.
- 20. Takai K, Nitta K, Utimoto K. J Am Chem Soc 1986;108:7408.
- 21. Z-Vinyl iodide (–)-23 could be useful for the synthesis of (+)- Srangicin A1.
- 22. Kende AS, DeVita RJ. Tetrahedron Lett 1990;31:307.
- 23. Evans DA, Black WC. J Am Chem Soc 1993;115:4497.
- 24. Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong KS, Kwong HL, Morikawa K, Wang ZM, Xu D, Zhang XL. J Org Chem 1992;57:2768.
- Franci X, Martina SLX, McGrady JE, Webb MR, Donald C, Taylor RJK. Tetrahedron Lett 2003;44:7735.

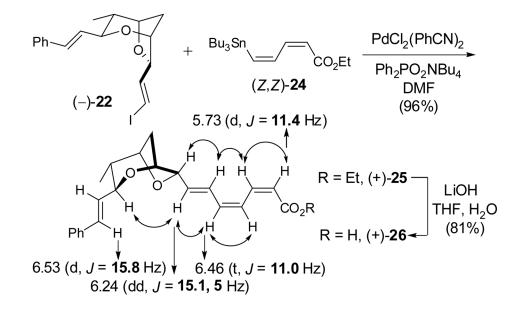
26. Srogl J, Allred GD, Liebeskind LS. J Am Chem Soc 1997;119:12376.



Scheme 1.



Scheme 2.



Scheme 3.

Scheme 4.

Scheme 5.