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INTRODUCTION

A fundamental mechanism for the maintenance of

glucose homeostasis is the rapid action of insulin to

stimulate glucose uptake and metabolism in peripheral

tissues. Skeletal muscle is the primary site of glucose

disposal in the insulin-stimulated state [1]. Resistance to

the actions of insulin in skeletal muscle is a major pathogenic

factor in type 2 or type 1 diabetes mellitus [2,3]; it also

contributes to the morbidity of obesity, and complicates

poorly controlled type 1 (autoimmune) diabetes [2]. The

ability of insulin to increase glucose transport in skeletal

muscle is elicited by the translocation of glucose transporter

4 (Glut4), the major insulin regulated glucose transporter,

from intracellular vesicles to the plasma membrane and

transverse tubules [4]. In muscle of type 2 diabetic subjects,

the expression of the Glut4 gene is normal, and impaired

glucose uptake by insulin action most likely results from

altered trafficking or impaired function of Glut4 [5-7].

Because glucose transport in response to other stimuli

that use different signaling pathways is normal in

muscle of type 2 diabetic subjects [4], the resistance to

insulin stimulation may be due to impaired insulin signal

transduction [8]. In this review, we mainly summarize

the updated information on insulin signaling over the

past decade, with particular emphasis on the molecular

mechanism of human insulin resistance, and also address

the physiological role of the newly identified player of

insulin action. 

Insulin receptor signaling
Insulin signaling involves a cascade of events initiated

by insulin binding to its cell surface receptor, followed by

receptor autophosphorylation, and activation of receptor

tyrosine kinases, which result in tyrosine phosphorylation

of insulin receptor substrates (IRSs) including IRS1, IRS2,
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IRS3, IRS4, Gab1, and Shc [9,10]. Binding of IRSs to the

regulatory subunit of phosphoinositide 3-kinase (PI3K)

via Src homology 2 (SH2) domains results in activation of

PI3K, which phosphorylates membrane phospholipids

and phosphatidylinositol 4,5-bisphosphate (PIP2) on the

3’ position. This complex activates the 3-phosphoinositide-

dependent protein kinases (PDK-1 and PDK-2) resulting

in activation of Akt/protein kinase B (PKB) and atypical

protein kinase C λ and ζ, (PKCλ/ζ), each of which are

serine/threonine kinases [11,12]. Activated Akt phos-

phorylates its 160 kDa substrate (AS160), which

stimulates the translocation of insulin-mediated Glut4

from intracellular vesicles to the plasma membrane [13].

Moreover, activation of PKCλ/ζ is also involved in the

regulation of Glut4 translocation in response to insulin

[14,15]. However, the insulin receptor (IR) is also

dephosphorylated and inactivated by protein tyrosine

phosphatases (PTPs), which comprise an extensive family

of proteins that exert negative effects on insulin action

and glucose metabolism [16,17]. In addition, phosphatase

and tension homologue deleted on chromosome 10

(PTEN), a lipid phosphatase, serves as an important

negative modulator for the insulin signaling pathway

by hydrolyzing phosphatidylinositol 3,4,5-triphosphate

to PIP2, antagonizing the PI3K pathway [18,19]. Thus,

the physiological regulation of insulin action is controlled

by the balance between phosphorylation and dephos-

phorylation (Fig. 1). Most importantly, the PI3K pathway

is thought to be a key component of  the insulin signaling

cascade, which is necessary for the metabolic effects of

insulin on glucose transport and Glu4 translocation

[20,21]. Indeed, insulin-stimulated PI3K activity

decreases in skeletal muscle of type 2 diabetic subjects

[8,22], providing evidence for a defect in insulin signaling

that could contribute to impaired Glut4 translocation and

insulin resistance. 

Role of Akt in insulin signaling
The serine/threonine kinase Akt is a downstream

mediator of PI3K [12]. Three Akt isoforms have been

cloned [23,24]; Akt1, Akt2, and Akt3, all of which are

ubiquitously expressed in the tissues. Insulin has

differential effects on Akt isoforms in a tissue-, isoform-,

and species-specific manner [25,26]. In obese rats,
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Figure 1. The insulin signaling pathway. PTP1B, protein-tyrosine phosphatase 1B; IRS, insulin receptor substrate; ROCK, Rho-kinase;
PIP, phosphatidylinositol phosphate; PTEN, phosphatase and tension homologue deleted on chromosome 10; PH domain, pleckstrin
homology domain; PDK, phosphoinositide-dependent protein kinase; GβL, G-protein beta subunit like; mTOR, mammalian target of
rapamycin; AS160, 160 kDa Akt substrate; PKCλ/ζ , protein kinase C λ and ζ; Glut4, glucose transporter 4.
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insulin-stimulated Akt1 activity decreases in muscle and

adipose tissue but increases in liver, while insulin-

stimulated Akt2 activity decreases in muscle and liver but

increases in adipose tissue [25]. Some studies have shown

that inhibition of Akt activation by DN-Akt expression has

no significant effect on insulin-stimulated glucose

transport, whereas Akt siRNA inhibits insulin-stimulated

glucose transport in 3T3-L1 adipocytes [27]. Furthermore,

in skeletal muscles from insulin-resistant models, including

PTP-1B transgenic mice [28], leukocyte antigen-related

phosphatase (LAR) transgenic mice [29], and glucosamine-

infused rats [30], insulin-induced Akt activation is normal

but insulin-stimulated glucose uptake is impaired. In

skeletal muscle of obese insulin resistant humans with or

without type 2 diabetes, the effect of insulin on the activity

of all Akt isoforms in muscle in vivo is normal [8]. However,

at very high insulin levels in vitro, Akt activity is diminished

in muscle from non-obese type 2 diabetics [31]. Moreover,

Akt2 phosphorylation is impaired in adipocytes from

obese type 2 diabetics [32]. Whether these impairments in

Akt1 or Akt2 activity are sufficient to play a role in insulin

resistant states is unclear. Akt1 knockout mice do not have

insulin resistance, although their growth retardation or

developmental effects could mask this [33]. Akt2 knockout

mice have impaired insulin action on liver and modest

effects in muscle and adipocytes that could possibly be

secondary to the liver defect [34]. In this regard, our

studies have also demonstrated that insulin-stimulated

Akt activity in skeletal muscle of these obese rats is very

mildly reduced while PI3K activity is markedly reduced, as

compared to lean rats [25]. These data lead us to propose

the hypothesis that full activation of PI3K is not necessary

to maximally activate Akt, and that other pathways that

are independent of PI3K are also involved in activation of

Akt by insulin, at least in insulin resistant states. Data in

support of the hypothesis come from studies showing that

insulin-stimulated PI3K activation is reduced by 50% to

60% while Akt activation is normal in hepatoma cells

transduced with a dominant-interfering mutant of dynamin

[35]. Conceivably, such pathways could be induced in

altered metabolic states such as obesity or type 2 diabetes.

Thus, the potential impact of altered Akt activity in

insulin-dependent glucose metabolism remains uncertain.

This important issue can be resolved by studying an

animal model that has Akt selectively deleted in peripheral

tissues. Until now, there are no data regarding the effects

of tissue-specific deletion of Akt on glucose metabolism

and insulin signaling. 

AS160 is an Akt substrate involved in Glut4
translocation

Investigation of steps down-stream of Akt could shed

light on the role of Akt in insulin resistance. Akt directly

phosphorylates cytosol proteins that have the RXRXXS/T

motif. Using a phosphospecific antibody that only recognizes

serine or threonine residues, which are phosphorylated by

Akt [36], the Lienhard group has discovered the AS160

from 3T3-L1 adipocytes. This molecule was originally

named TBC1 domain family member 4 (TBC1D4) and

contains two phosphotyrosine binding (PTB) domains at

the NH2 terminus and a Rab GTPase activating protein

(GAP) domain at the COOH terminus [37]. In the basal

state of 3T3-L1 adipocytes, AS160 was mainly localized in

the low density microsomes (LDM) fraction. However,

upon insulin stimulation, it was redistributed from the

LDM compartment to the cytosol, but these effects were

significantly blocked by treatment with a PI3K inhibitor

[36]. Given that one of the LDM components are vesicles

containing the glucose transporter Glut4 [38], and they

move to and fuse with the plasma membrane in response

to insulin [39], it is conceivable that AS160 may be involved

in the process of GLUT4 trafficking that is dependent on

PI3K signaling. The Lienhard group further demonstrated

the important role of AS160 in the regulation of Glut4

translocation by showing that insulin causes a marked

increase in AS160 phosphorylation at Ser318, Ser570,

Ser588, Thr642, and Thr751 residues, and that mutation of

these sites inhibits Glut4 translocation in response to

insulin [13]. Support for this finding comes from skeletal

muscle studies showing that insulin stimulates AS160

phosphorylation in skeletal muscle in a PI3K-dependent

fashion, and that contraction and the AMP-activated

protein kinase (AMPK) activator aminoimidazole

carboxamide ribonucleotide (AICAR) also increases AS160

phosphorylation in isolated rat epitrochlearis muscle and

other muscle systems [40-44]. Moreover, in skeletal

muscle of human insulin-resistant subjects, including

those with polycystic ovary syndrome and type 2 diabetes,

the ability of insulin to increase AS160 phosphorylation is

significantly impaired [45,46]. Collectively, the current

available data provide important evidence that insulin-

stimulated phosphorylation of AS160 is required to

regulate Glut4 translocation, which is a critical step in

controlling glucose homeostasis, and that decreased

insulin-induced AS160 phosphorylation in skeletal muscle

may play an important role in insulin resistance in vivo.  



Role of PKCλλ/ζζ in the regulation of insulin-mediated
glucose transport

The atypical PKC isoforms λ and ζ, are downstream

PI3K mediators, and their activation is required for insulin

stimulation of glucose uptake [47-49]. Overexpression of

a dominant negative mutant of PKCλ or PKCζ abrogates

insulin-stimulated glucose transport and Glut4

translocation in adipose [47,50] and muscle cells [48,49].

Overexpression of constitutively active PKCλ in adipocytes

[47] or wildtype PKCζ in muscle in vivo [51] enhances

both basal and insulin-stimulated glucose transport. In

addition, PKCλ and ζ appear to function interchangeably,

as overexpression of wild type PKCλ restores the inhibitory

effects of a dominant negative mutant of PKCζ on insulin-

stimulated Glut4 translocation, and vice versa [52]. The

possibility that PKCλ/ζ could play an important role in

insulin resistance in vivo is supported by studies showing

impaired insulin-stimulated PKCλ/ζ activity in skeletal

muscle and adipose tissue of non-obese type 2 diabetic GK

rats [53,54]. Moreover, insulin-stimulated PKCλ/ζ activity

decreases in cultured myotubes of obese humans with

impaired glucose tolerance [55] and in muscle of obese

diabetic monkeys [56]. Along with these findings, the

Farese group have demonstrated that muscle-specific

deletion of PKCλ/ζ causes insulin resistance by reducing

insulin-mediated glucose transport in skeletal muscle [15].

Importantly, insulin-stimulated PKCλ/ζ activity is

reduced in the muscle of obese nondiabetic and obese type

2 diabetic subjects. This contrasts with our findings that

Akt activation is normal in obese and diabetic subjects

with similar metabolic characteristics [8]. Thus, although

insulin-induced PI3K activity is reduced in type 2 diabetic

subjects, not all downstream pathways are similarly

affected. These data imply that reduced insulin-stimulated

atypical PKC activity may play an important role in insulin

resistance in vivo. 

Insulin-sensitizer agents and insulin signaling
Thiazolidinediones (TZDs) are a new class of insulin-

sensitizing agents being used for the treatment of type 2

diabetes [57]. The molecular targets of these compounds

are thought to include the nuclear receptor, peroxisome

proliferator activator receptor-γ (PPARγ), which regulates

the expression of numerous genes that affect glucose and

lipid metabolism [58]. Evidence suggests that TZDs

ameliorate insulin resistance in humans primarily by

increasing insulin-stimulated glucose disposal in skeletal

muscle [59]. Our previous studies revealed that treatment

with troglitazone, a member of the TZD family, increases

insulin-stimulated IRS-1-associated PI3K activity and Akt

activity in skeletal muscle of type 2 diabetic patients [60].

The troglitazone effect on PI3K activity was associated

with an increase in the amount of the p110β catalytic

subunit of PI3K [60]. Consistently, enhanced Akt

phosphorylation was also detected in skeletal muscle in

normal, glucose-tolerant, insulin-resistant, first-degree

relatives of type 2 diabetic patients [61]. These findings

suggest that the mechanism for the insulin-sensitizing

effect of TZDs could involve enhanced PI3K activation in

skeletal muscle of obese type 2 diabetic subjects. However,

Karsson et al. [62] demonstrated that insulin action on

Akt phosphorylation and PI3K activity is unaltered in

skeletal muscle of human subjects with newly diagnosed

type 2 diabetes after treatment of rosiglitazone, another

member of the TZD family. This discrepancy could be due

to either the nature of the human subjects (obese type 2

diabetic vs. lean type 2 diabetic) or the different kinds of

TZDs. From the view of the current human data, it is

somewhat unlikely that changes in insulin signaling can

fully account for the improvement of insulin sensitivity

and glucose disposal in skeletal muscle in response to TZD

treatment. 

Given that correlative changes in fatty acid metabolism

and improvements in glucose homeostasis and insulin

sensitivity may imply an indirect effect on skeletal muscle

via adipose tissue [63,64], it is possible that some of the

effects of TZDs on insulin signaling work through

secondary mechanisms. One potential factor is fatty acids,

as elevations of fatty acids in plasma and the lipid content

of muscle are associated with insulin resistance [65]. As

previously reported [66,67], troglitazone treatment tends

to lower triglyceride and free fatty acid concentrations.

TZDs also reduce accumulation of muscle triglycerides

and diacylglycerol [68]. Activation of PKC by elevated

diacylglycerol levels in muscle impairs insulin signaling

[69,70]. This raises the possibility that decreases in

plasma lipid concentrations with TZD treatment could

lead to a reduction of diacylglycerol in muscle, reducing

PKC activation, resulting in an improvement of the insulin

signaling cascade. It is also possible that TZDs reduce

intramyocellular lipid content by promoting storage of

free fatty acids in adipocyte triglycerides via PPARγ,

redirecting free fatty acids from skeletal muscle to adipose

tissue. Thus, the ability of troglitazone to improve insulin

action in skeletal muscle could involve actions on both

adipose tissue and muscle.
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Metformin is a member of another class of drugs that

are effective in lowering glucose concentrations in patients

with type 2 diabetes [71]. A number of studies have

demonstrated that metformin inhibits gluconeogenesis,

reduces hepatic glucose output, and lowers fasting blood

glucose concentration [59,72]. In addition to its effect on

the liver, metformin also appears to decrease glucose

concentrations by increasing peripheral insulin sensitivity

and augmenting insulin-mediated glucose uptake in

skeletal muscle of type 2 diabetic subjects [73]. The precise

mechanism for this action of metformin is incompletely

understood, but in vitro studies indicate it could involve

multiple effects, including increased translocation of Glut1

and Glut4 glucose transporters from intracellular vesicles

to the cell surface [74] and increased binding of insulin to

cell surface insulin receptors [75]. Evidence shows that

metformin normalizes insulin receptor tyrosine

phosphorylation and PI3K and Akt activity in adipocytes

exposed to high insulin levels in vitro for long periods

[76]. However, our studies have demonstrated that the

effects of metformin on PI3K and Akt activity in skeletal

muscle of human insulin resistant subjects with obesity

and type 2 diabetes in vivo are unchanged [60]. These

data are further confirmed in skeletal muscle of patients

with newly diagnosed type 2 diabetes [62]. Overall, it is

clear that enhanced insulin-mediated glucose disposal

by metformin therapy in type 2 diabetic patients is

independent of improved insulin signaling in skeletal

muscle of type 2 diabetic subjects.

Effects of weight loss therapy on skeletal muscle
insulin signaling

Given that obesity is the major risk factor for developing

insulin resistance, it is no doubt that lifestyle intervention

that produces weight loss, improves insulin sensitivity. A

reduction of fat mass by weight loss results in a significant

decrease in lipid oxidation and an enhanced glucose

homeostasis [77]. In addition, insulin secretion and

plasma insulin concentrations decrease significantly

after weight loss. Our work has investigated whether

weight loss therapy can alter the ability of insulin to

activate PI3K and downstream signaling in skeletal

muscle of obese nondiabetic patients. For these studies,

ten obese nondiabetic subjects (body mass index [BMI],

30 to 45 kg/m2) were challenged on a very low calorie diet

(VLCD) of 600 to 800 calories per day for up to 24 weeks

or until 10 to 15% of initial body weight was lost [78]. Once

the weight loss goal was met, the subjects were introduced

to a weight-maintenance diet. Glucose disposal rate

measured by euglycemic hyperinsulinemic clamp was

increased by 30% after VLCD treatment, indicating

enhanced systemic insulin sensitivity. VLCD treatment

significantly increased IRS-1 tyrosine phosphorylation,

compared with the pretreatment level [78]. In parallel,

insulin-stimulated IRS-1-associated PI3K activity was

increased 2-fold post-treatment with VLCD, compared

with pretreatment [78]. These changes were independent

of the total amount of IRS-1 protein. Importantly, the

impaired PKCλ/ζ activation in obese nondiabetic humans

was reversed with weight reduction. This could be due to

increased signaling upstream of PKCλ/ζ. This, combined

with the observation that treating diabetic subjects with

TZDs reverses the defect in PKCλ/ζ activity [79], suggests

that reversal of the PKCλ/ζ defect might enhance insulin

sensitivity in obese insulin-resistant humans. In line with

these findings, recent studies of severely obese individuals

also demonstrated that weight loss with a very low energy

diet (1,883 kJ/day) markedly enhances insulin sensitivity

by improving insulin-stimulated glucose disposal [77].

This enhanced sensitivity was accompanied by increased

insulin signaling at the level of AS160 and proline-rich Akt

substrate 40, which is a component of the mammalian

target of the rapamycin nutrient-sensing pathway. Taken

together, weight reduction in obese individuals improves

insulin sensitivity, which may result from an improvement

in PI3K and its downstream signaling in skeletal muscle.

Although our studies have not investigated Glut4

translocation in response to insulin in skeletal muscle of

obese subjects that have undergone weight loss, a number

of studies have demonstrated that enhancement in the

insulin signaling pathway was not accompanied by a

significant improvement in Glut4 translocation to the

plasma membrane in skeletal muscle from type 2 diabetic

patients, TZD-treated type 2 diabetic patients, and obese

subjects who underwent gastric bypass surgery

[62,80,81]. This could be explained by the fact that

intrinsic activity of Glut4 at the plasma membrane is

increased or that an unidentified glucose transporter,

which may contribute to increased glucose disposal in

skeletal muscle, is involved in this event. 

Protein tyrosine phosphatase 1B and insulin
signaling

Tyrosine phosphorylation of the IR is reversible, and IR

dephosphorylation takes place rapidly in intact cells even

with the continued presence of insulin [82]. Because a



critical regulatory step in insulin signal transduction is the

dephosphorylation of signaling molecules by PTPs, it is

plausible that enhanced activity of one or more PTPs

could lead to insulin resistance. Several studies of obese

humans and rodents have reported that the expression

and/or activity of specific PTPs, including the trans-

membrane LAR and the intracellular enzymes protein-

tyrosine phosphatase 1B (PTP1B) and Src-homology 2

domain-containing phosphatase-2 (SHP2, SHPTP2, or

syp), increase in muscle and adipose tissue [83-87]. LAR

and PTP1B show the greatest increases (3-fold in muscle,

2-fold in fat) [83,88]. There is a strong correlation

between BMI and total PTP activity toward the IR in both

skeletal muscle and adipose tissue from lean and obese

subjects [83,88]. Recent studies have also observed

increased levels of LAR and PTP1B expression in liver and

muscle from obese rodents [89]. 

Support for the role of PTPs in the regulation of insulin

action comes from transgenic and gene knockout studies.

The Kahn group generated PTP1B null mice by targeted

disruption of the ATG-coding exon [90]. Elchebly et al.

[91] targeted exons 5 and 6 (Ex5/6 -/-) and also obtained

PTP1B-null mice. Both lines of mice have increased insulin

sensitivity, manifested by enhanced insulin-stimulated

phosphorylation of IR and IRS-1 in muscle and liver.

PTP1B-deficient mice have reduced body fat and are

protected from diet-induced obesity due, at least in

part, to increased basal metabolic rate and total energy

expenditure [90]. In addition, insulin-stimulated whole-

body glucose disposal is enhanced in PTP1B-deficient

mice [90]. Surprisingly, this effect is tissue-specific;

insulin-stimulated glucose uptake is elevated in skeletal

muscle but not in adipose tissue. These data suggest that

overexpression of PTP1B in insulin-target tissues in vivo

could contribute to insulin resistance. Consistent with

this hypothesis, Zabolotny et al. [28] demonstrated that

selective overexpression of PTP1B in skeletal muscle

impairs insulin-stimulated PI3K activity and causes mild

insulin resistance in vivo. Moreover, recent studies have

indicated that liver-specific deletion of PTP1B improves

insulin resistance and attenuates diet-induced endoplasmic

reticulum stress [92]. Similar to these findings, Haj et al.

[93] showed that liver-specific re-expression of PTP1B

in PTP1B deficient mice leads to marked attenuation of

their enhanced insulin sensitivity. In obese diabetic

insulin resistant ob/ob and db/db mice, PTP1B antisense

oligonucleotide (ASO) treatment reduces PTP1B protein

and mRNA level in liver and fat, and normalizes plasma

glucose levels along with improved glucose tolerance and

insulin sensitivity [94,95]. Taken together, the current

data indicate that inhibition of PTP1B in peripheral tissues

may be useful for treating metabolic-related disorders

such as obesity and type 2 diabetes. In fact, the development

of PTP1B inhibitors has received much attention by the

pharmaceutical industry. However, it has been difficult to

identify a selective, safe, and effective PTP1B inhibitor,

although a novel PTP1B inhibitor (JTT-551) has been

suggested as a potential therapeutic agent [96].

Rho-kinase and IRS-1 serine phosphorylation
Rho-kinase (ROCK) is a serine/threonine protein kinase

identified as a GTP-Rho-binding protein [97]. There are

two isoforms, ROCK1 (also known as ROKβ) [98,99] and

ROCK2 (also known as ROKα) [98,100]. ROCK par-

ticipates in the insulin signaling network by interacting

with IRS-1 [101,102]. Our work has demonstrated that

inhibiting ROCK decreases insulin-stimulated IRS-1-

associated PI3K activity in adipocytes and myotubes. This

effect is mainly due to decreased tyrosine phosphorylation

of the YXXM motif in IRS-1, which can lead to reduced

interaction of IRS-1 with the p85 subunit of PI3K. Indeed,

insulin-stimulated IRS-1 binding to the p85 regulatory

subunit of PI3K is impaired in adipocytes expressing

dominant negative ROCK [103]. By mass spectrometry

analysis, we identified the serine residues of IRS-1 at

serine 632/635, serine 936, and serine 972, all of which

are phosphorylated by ROCK. Interestingly, these sites are

close to the YMXM motif domain in IRS-1, which is the

binding site of the p85 regulatory subunit of PI3K.

Evidence indicates that serine phosphorylation of IRS-1 is

a key regulator of insulin signaling [104]. However, the

effects of phosphorylation of individual IRS-1 serine

residues on insulin signaling appear to be complex and

may be context dependent; they are still being defined.

Studies of the effects of IRS-1 serine 632/635

phosphorylation on insulin action have yielded conflicting

results. Our studies have demonstrated that replacing IRS

serines 632 and 635 with alanine causes a significant

inhibition of insulin-stimulated IRS-1 tyrosine

phosphorylation and PI3K activity [103], suggesting a

positive role for IRS-1 serine 632/635 in insulin action. 

Our recent studies have demonstrated that global

deletion of ROCK1 in mice results in whole-body insulin

resistance and impaired skeletal muscle insulin signaling.

These effects are independent of changes in body adiposity.

Insulin-stimulated IRS-1 serine 632/635 phosphorylation

124 The Korean Journal of Internal Medicine Vol. 25, No. 2, June 2010
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and PI3K activity associated with IRS-1 or phosphotyrosine

are impaired in skeletal muscle of ROCK1 deficient mice

[105]. Impaired insulin-induced IRS-1 serine 632/635

phosphorylation also accompanies decreased PI3K and

ROCK activation in skeletal muscle of obese, insulin-

resistant or diabetic mice and rats (unpublished data),

suggesting that impaired IRS-1 serine 632/635 phos-

phorylation may be an important mechanism contributing

to the pathogenesis of insulin resistance in obesity. In

addition, insulin-stimulated ROCK activity is impaired in

skeletal muscle of obese diabetic mice and insulin-

resistant humans with obesity and type 2 diabetes

(unpublished data). Importantly, insulin-stimulated

ROCK1 activity was positively correlated with glucose

disposal rate, suggesting that defective ROCK1 activation

may contribute to the pathogenesis of human insulin

resistance. Thus, our studies identify ROCK1 as a novel

player regulating insulin-mediated glucose metabolism

in vivo. Further studies of ROCK1 and ROCK2 functions

in different metabolic tissues will be needed to precisely

delineate ROCK isoform functions that regulate tissue and

whole-body insulin sensitivity and glucose homeostasis.

The emergence of ROCK1 as an important regulator of

insulin action could lead to new treatment approaches for

obesity and type 2 diabetes.

CONCLUSION

The earliest defect in the development of type 2 diabetes

is insulin resistance characterized by decreased glucose

transport and metabolism in skeletal muscle. Studies with

the skeletal muscle of type 2 diabetic humans demonstrate

impaired insulin activation of the IRS-1/PI3K/Akt

signaling pathway, which is a critical step in the regulation

of glucose transport in response to insulin. These defects

are selectively restored by treatment with an insulin-

sensitizing agent and lifestyle changes, representing

the core of insulin signaling components. Recent advances

have also revealed that insulin action on AS160 phos-

phorylation is diminished in skeletal muscle of type 2

diabetic patients, and that inhibiting AS160 causes a

significant decrease in insulin-dependent translocation of

Glut4, suggesting an important role for AS160 in glucose

metabolism. Furthermore, defective ROCK activity in

skeletal muscle may also contribute to impaired glucose

homeostasis in type 2 diabetic patients. A better

understanding of the disease pathogenesis and the

potential alternative pathways for regulating glucose

metabolism could lead to new therapeutic targets for

obesity and type 2 diabetes by clarifying intracellular

defects in the insulin signaling cascade.
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