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 Introduction 

 Population-based association studies (PBAS) are a 
powerful strategy for susceptible gene mapping of human 
complex diseases  [1–3] . With the rapid development of 
high-throughput genotyping technologies, genome-wide 
PBAS are widely used to identify causal alleles of human 
complex diseases, such as osteoporosis, diabetes and obe-
sity  [4–7] . Nonetheless, an outstanding issue complicat-
ing PBAS is population structure, which can cause spuri-
ous association results and limit the robustness and ef-
ficiencies of PBAS  [8–10] .

  Population structure mainly refers to population strat-
ification and cryptic relatedness. In contrast to popula-
tion stratification, which has been extensively studied 
and was well addressed by Pritchard et al.  [11, 12] , Zhu et 
al.  [13, 14] , Zhang et al.  [15] , Chen et al.  [16] , Price et al.  
 [17]  and Devlin and Roeder  [18] , information about the 
impact of cryptic relatedness on PBAS is limited. Cryptic 
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 Abstract 

 Cryptic relatedness was suggested to be an important source 
of confounding in population-based association studies 
(PBAS). The magnitude and manner of cryptic relatedness 
affecting the performance of PBAS of continuous traits re-
main to be investigated. We simulated a set of related sam-
ples through biased sampling and inbreeding, and evaluat-
ed the power and type I error rates of simple association 
tests (SAT) without correcting for cryptic relatedness. We 
also used extended likelihood ratio tests (ELRT) to conduct 
PBAS accounting for cryptic relatedness, and compared it 
with genomic control (GC). Cryptic relatedness decreased 
the power as well as increased the type I error rates of SAT in 
both biased sampling and inbreeding models. The impact of 
cryptic relatedness on the performance of SAT appeared to 
be limited in the  biased sampling model. However, cryptic 
relatedness in inbred populations may result in excessive 
false positive results of SAT. Compared with SAT and GC, ELRT 
obtained improved power and type I error rates under vari-
ous scenarios. Ignoring cryptic relatedness may increase 
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relatedness, which means some or all subjects of study 
samples are related, was suggested to be an important 
source of confounding in PBAS  [18, 19] . Because PBAS 
assume individual independence of study samples, cryp-
tic relatedness may make these statistical tests invalid 
and reduce the robustness and efficiencies of PBAS. Bi-
ased sampling and inbreeding are two major reasons of 
cryptic relatedness.

  By now, few studies have been conducted to assess the 
impact of cryptic relatedness on case-control studies  [19] , 
but none for quantitative traits. The magnitude and way 
of cryptic relatedness affecting the performance of PBAS 
of human continuous traits remain to be investigated. 
There are several PBAS methods that can take individual 
relationships into account  [18, 20–22] . However, most of 
these methods require known individual relationships, 
which are usually not certain or available in practice. 
When individual relationships are not known in advance, 
genomic control (GC) was suggested to control cryptic 
relatedness in PBAS  [18, 19] . GC was originally developed 
to correct for population stratification and had been 
found to be conservative in stratified populations  [23–
25] . Information about the performance of GC correcting 
for cryptic relatedness in PBAS is limited.

  Variance component models were first introduced to 
genetic studies in the 20th century  [26, 27] . Fisher divid-
ed the total phenotypic variance of a quantitative trait 
into environment variance and genetic variance due to 
additive, dominance, and epistasis genetic effects  [26] . 
Through including the variance components of genes 
linked to particular loci, variance component models 
have been widely used for genetic linkage and association 
mapping of human complex diseases  [28–31] .

  PLINK is a popular genome-wide PBAS software 
package, which can estimate individual genome-wide 
identity by descent (IBD) sharing coefficients using geno-
typic data in seeming unrelated individuals  [32] . The es-
timated genome-wide IBD sharing coefficients can be 
used to infer individual relationships, which can then be 
included into a variance component model to control the 
impact of cryptic relatedness on PBAS. By now, to the 
best of our knowledge, no work about the performance of 
PLINK in IBD estimation has been reported.

  In this study, we simulated a set of related samples 
through biased sampling and inbreeding, and evaluated 
the power and type I error rates of simple association tests 
(SAT) without correcting for cryptic relatedness. Based 
on a variance component model, we also used extended 
likelihood ratio tests (ELRT) to conduct PBAS account-
ing for cryptic relatedness, and compared it with GC in 

both biased sampling and inbreeding models.   Our study 
aims to assess how serious confounding from cryptic re-
latedness is in PBAS of continuous traits, and to develop 
an efficient PBAS approach to control cryptic related-
ness.

  Materials and Methods 

 Likelihood Ratio Tests 
 PLINK is first applied to genotypic data to estimate genome- 

wide IBD sharing coefficients for each pair of individuals  [32] . 
The estimated IBD sharing coefficients can then be converted to 
kinship coefficients: K ij  = 0.5P ij1  + P ij2 , where K ij  represents the 
kinship coefficient between individuals i and j; P ij1  and P ij2  are 
estimated by PLINK, and denote the general possibilities of shar-
ing one and two IBD allele(s) between individuals i and j on a ge-
nome-wide scale, respectively. Based on the inferred kinship coef-
ficients, classical likelihood ratio tests are extended to conduct 
PBAS accounting for individual relationships. Supposed genotyp-
ic and phenotypic data of n individuals were collected. The log-
likelihood functions under null hypothesis (H 0 ) and alternate hy-
pothesis (H 1 ) can be expressed as
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 where a is phenotypic effect of candidate locus;  �  is a n  !  1 vec-
tor of fixed effect;  �  poly  and  �  e  are two n  !  1 vectors representing 
polygenic and environmental effects, respectively; y is a n  !  1 
vector of observed phenotypic values;  �  is a n  !  n kinship coef-
ficient matrix with element K ij  (i, j = 1, 2, 3, ..., n); Z is a n  !  1 
vector of individual genotype at candidate locus; I is a n  !  n iden-
tity matrix. Log-likelihood ratio test statistic U can be written as
  

1

0
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  where L 0  and L 1  are the maximized log-likelihood values esti-
mated under H 0  and H 1,  respectively. 

 Simulations 
 We considered two common cryptic relatedness models: bi-

ased sampling and inbreeding. Genotype data of 1,000 bi-allelic 
loci were simulated for each individual. Allele frequencies of the 
1,000 loci were randomly generated from beta distribution in the 
first generation. Recombination rates were assigned 1.0  !  10 –8  
for all pairs of adjacent loci.   Mutation rates were set to be 1.0  !  
10 –5  for each locus. All loci were assumed to be under Hardy-
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Weinberg equilibrium and randomly recombined and mutated 
during genotype simulations.

  For the biased sampling, we simulated 400 nuclear families 
with two parents and four children in each family. Two parents 
were first simulated based on the randomly generated allele fre-
quencies, and then randomly mated and recombined to generate 
four children in each family. We randomly selected one parent 
and two children from each of the families as related individuals 
in  the total sample (400 individuals). The remaining unrelated 
individuals in the total sample were obtained through randomly 
selecting one individual from each of the remaining families. For 
the inbreeding model, our simulation procedure includes two 
stages. In stage 1, based on the randomly generated allele frequen-
cies, a small unrelated population was first simulated as the 
founder population. The founder population was then randomly 
mated and recombined for some generations to generate a popula-
tion a of size of 3,200, with non-overlapping and random pairing 
of parents in each generation. Four children were simulated in 
each family and population size was assumed to increase two 
times per generation in stage 1. In stage 2, the simulated popula-
tion was forward-randomly mated and recombined for five gen-
erations to obtain an inbred population with non-overlapping 
and random pairing of parents in each generation. Population 
size was kept constant in stage 2. 400 subjects were finally ran-
domly selected from the simulated inbred population (3,200 in-
dividuals) as study sample.

  A bi-allelic quantitative trait locus (QTL) was assumed to be 
associated with an individual quantitative phenotype. The QTL 
was randomly selected from the simulated 1,000 loci with 0.18  ̂   
minor allele frequency  ̂   0.22. An additive genetic model was 
implemented here for quantitative phenotype simulation. Let y j  
be the phenotypic value of individual j, the linear model is ex-
pressed as

   y  i  =  �  +  z  j  a  +  p  j  +  e  j  ,

  where  �    is a fixed effect; z j  is the genotype of individual j at QTL 
(z j  = 0, 1 or 2); a is the additive genetic effect of QTL; and p j  is the 
residual polygenic effect of individual j attributed to other poten-
tial susceptive loci. During the simulation, p j  was randomly gen-
erated from a normal distribution with mean 0 and variance  �  poly  
in the first generation. In the second or more generation (for the 
inbreeding model), p j  equaled the average value of two parents’ p j , 
which ensured the phenotypic relatedness among family mem-
bers due to polygenic effect. e j  is the residual environmental effect 
of individual j, following zero-mean normal distribution with 
variance  �  e . 

 Proportions of sib pairs and polygenic variance in the biased 
sampling model and the founder population sizes in the inbreed-
ing model were controlled to model various relatedness levels. 
The simulated QTL was assumed to explain 2% of phenotypic 
variation in both biased sampling and inbreeding models. De-
tailed parameter designs are presented in  table 1 .

  Data Analyses 
 Individual kinship coefficients of the study sample (400 indi-

viduals) were first inferred by PLINK. To assess the possible bias 
caused by kinship coefficient inference, we also recorded the real 
kinship coefficients for each pair of individuals in a simulation 
for the biased sampling model. The simulated genotypic and phe-

notypic data were simultaneously analyzed by SAT, GC and ELRT 
using PLINK inferred kinship coefficients (ELRTP) and real kin-
ship coefficients (ELRTR, only for the biased sampling model), 
respectively. 1,000 simulations were conducted for each parame-
ter setting. Power and type I error rates were calculated, respec-
tively, as the proportions of positive results (P values  ̂   0.05) ob-
tained at the simulated QTL with and without phenotypic effect 
in 1,000 simulations. All the simulations and ELRT analyses were 
implemented in R  [33] .

  Results 

 The mean inflation factors estimated by GC under 
various scenarios are presented in  table 1 . The perfor-
mances of SAT, ELRTP, ELRTR and GC in the biased 
sampling and inbreeding models are detailed in the fol-
lowing:

  Biased Sampling 
 Proportions of related subjects and polygenic varianc-

es were varied to investigate the potential effect of biased 
sampling on PBAS. As shown in  table 2 , with propor-
tions of related subjects increasing from 0.0 to 0.3, we 
observed consistent decreasing trends in power (from 
88.8 to 83.6%) as well as increasing type I error rates 

Table 1. Parameter configurations and corresponding inflation 
factors estimated by GC in the studies

Modelsa Mean inflation factorsb

power type I error rates

Biased sampling
PRS PV
0.0 0.4 1.10 1.10
0.1 0.4 1.13 1.11
0.2 0.4 1.14 1.14
0.3 0.4 1.16 1.16
0.3 0.2 1.12 1.12
0.3 0.3 1.14 1.13

Inbreeding
FPS PV
100 0.4 1.20 1.21
200 0.4 1.12 1.11
400 0.4 1.12 1.10

a PRS = Proportions of related subjects; PV = polygenic vari-
ances; FPS = founder population sizes.

b Average inflation factors were calculated by genomic control 
based on 1,000 replicates for each parameter setting.
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(from 5.0 to 7.0%) for SAT. Compared with GC, both 
ELRTP and ELRTR obtained higher power and lower 
type I error rates under the same proportions of relat-
ed subjects that we investigated. The performance of 
ELRTR was slightly better than that of ELRTP. In addi-
tion, the performance of GC showed similar varying 
trends with SAT and obtained the lowest power (from 
88.0 to 81.8%) under various studied proportions of re-
lated subjects.

   Table 3  provides an overview of comparison results 
with respect to polygenic variances. With polygenic vari-
ances increasing from 0.2 to 0.4, SAT presented consis-
tently decreasing power (from 85.6 to 83.6%) as well as 
increasing type I error rates (from 4.8 to 7.0%). ELRTP 
and ELRTR had similar performances and performed 
better in power and type I error rates than GC under the 
same polygenic variances investigated.

  Inbred Populations 
  Table 4  summarized the association test results of the 

4 methods in inbred populations. We observed a high 
type I error rate of 7.3% for SAT at the founder population 
size = 100. When founder population sizes increased to 
200 or 400, SAT obtained normal type I error rates ( ̂  5%). 
Compared with GC, ELRTP generally showed higher 
power (from 95.0 to 96.0%) and lower type I error rates 
(from 4.2 to 4.9%) within the range of founder population 
size we investigated.

  Discussion 

 To answer how important it is to consider cryptic re-
latedness in PBAS of human continuous traits, we simu-
lated a set of related samples through biased sampling 
and inbreeding, and investigated the power and type I 
error rates of SAT. We found that biased sampling de-
creased the power as well as increased the type I error 

Table 2. Performance of the 4 analytical methods in related sam-
ples with various proportions of related individuals

Proportions of related individuals

0.0 0.1 0.2 0.3

Power, %
SAT 88.8 88.4 86.0 83.6
ELRTP 88.6 88.6 85.0 83.8
ELRTR 88.6 88.8 85.8 84.6
GC 88.0 86.2 82.4 81.8

Type I error rates, %
SAT 5.0 6.2 6.4 7.0
ELRTP 3.6 3.4 4.0 3.5
ELRTR 3.4 3.2 3.2 3.0
GC 4.4 5.1 5.4 5.5

SAT = Simple association test without correcting for cryptic 
relatedness; ELRTP = extended likelihood ratio test using PLINK 
inferred kinship coefficients; ELRTR = extended likelihood ratio 
test using real kinship coefficients; GC = genomic control.

Table 3. Performance of the 4 analytical methods in related sam-
ples with various polygenic variances

Polygenic variances

0.2 0.3 0.4

Power, %
SAT 85.6 85.2 83.6
ELRTP 84.9 85.1 83.8
ELRTR 84.7 84.5 84.6
GC 82.7 81.9 81.8

Type I error rates, %
SAT 4.8 5.5 7.0
ELRTP 3.0 3.4 3.5
ELRTR 3.0 3.0 3.0
GC 4.1 5.0 5.5

SAT = Simple association test without correcting for cryptic 
relatedness; ELRTP = extended likelihood ratio test using PLINK 
inferred kinship coefficients; ELRTR = extended likelihood ratio 
test using real kinship coefficients; GC = genomic control.

Table 4. Performance of the 3 analytical methods in inbred sam-
ples with various founder population sizes

Founder population sizes

100 200 400

Power, %
SAT 96.0 96.2 94.6
ELRTP 96.0 95.8 95.0
GC 93.4 93.8 94.6

Type I error rates, %
SAT 7.3 4.4 4.9
ELRTP 4.9 4.2 4.7
GC 5.8 5.2 4.8

SAT = Simple association test without correcting for cryptic 
relatedness; ELRTP = extended likelihood ratio test using PLINK 
inferred kinship coefficients; GC = genomic control.
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rates of SAT. However, the confounding from biased sam-
pling was limited in our study. For instance, even if 30% 
of the samples were closely related sib pairs, the type I er-
ror rates of SAT just increased to 7.0%. The effects of bi-
ased sampling on the power of SAT also appeared to be 
limited in our study. To investigate the impact of biased 
sampling on the performance of SAT, we simulated ex-
tremely related samples, which are usually not available 
in practice. Our simulation results are consistent with 
Voight and Pritchard’s study, which assessed the effect of 
cryptic relatedness on case-control studies through theo-
retical derivation  [19] . Based on our simulation results 
and on the aforementioned study  [19] , we suggest that the 
impact of biased sampling on PBAS might be limited and 
could generally be ignored in practice.

  Due to inherent advantages, some inbred populations, 
such as founder and island populations, were recom-
mended for PBAS  [9, 34–36] . Some or all individuals from 
these inbred populations are usually related because of 
their common ancestries  [9] . Information about the po-
tential impact of inbreeding on PBAS of continuous traits 
is limited. In our study, we observed a high type I error 
rate of 7.3% for SAT, when founder population size was 
100. With founder population sizes increasing to 200 or 
400, type I error rates of SAT decreased to normal levels 
( ̂  5%). Our simulation results suggest that cryptic relat-
edness in inbred populations might increase spurious re-
sults in PBAS of continuous traits. For PBAS conducted 
in small and closely related inbred populations, it may be 
better to carefully address cryptic relatedness.

  Because cryptic relatedness may be a serious problem 
in some situations  [18, 19] , we extended classical likeli-
hood ratio tests to conduct PBAS accounting for cryptic 
relatedness (ELRT), and compared it with GC under var-
ious scenarios. ELRT presented improved power and type 
I error rates compared to GC in both biased sampling and 
inbreeding models. It should be emphasized that ELRT 
uses genome-wide IBD sharing coefficients estimated by 
PLINK to infer individual kinship coefficients, and does 
not require known individual relationships  [32] . On the 
other hand, the performance of ELRT may be affected by 
the accuracy of genome-wide IBD sharing coefficients es-
timation. To assess the possible effect of genome-wide 
IBD sharing coefficients estimation on the performance 
of ELRT, in the biased sampling model, we compared the 
performance of ELRT using the kinship coefficients in-
ferred by PLINK (ELRTP) and the real kinship coeffi-
cients obtained from simulations (ELRTR), respectively. 
The performance of ELRTP was close to that of ELRTR 
under various scenarios, which may demonstrate the 

good performance of PLINK in genome-wide IBD shar-
ing coefficients estimation, and suggests no significant 
effect of kinship coefficients inference on the perfor-
mance of ELRT in our study. Additionally, we observed 
that the computational cost of ELRT significantly in-
creased with increasing sample sizes, due to the large kin-
ship coefficient matrix used by ELRT. For example, ex-
ecution of ELRT on a data set with 2,000 samples and 
1,000 markers requires about 26 hours of computation 
time (Intel Xeon dual quad-core CPUs with 4 GB memo-
ries), which is usually acceptable for real studies.

  It should be noted that using PLINK to identify related 
individuals and excluding them in following studies may 
also help to decrease the impact of cryptic relatedness on 
PBAS. However, it may be difficult to define a suitable 
excluding criterion in practice. A too strict excluding cri-
terion may significantly decrease sample sizes and power 
of PBAS, while a too loose one may not eliminate the spu-
rious associations caused by cryptic relatedness. GC is a 
popular PBAS method correcting for population stratifi-
cation and cryptic relatedness  [18] . In our studies, GC 
generally showed moderate decreasing trends in power 
and moderate increasing trends in type I error rates with 
increasing relatedness levels in both biased sampling and 
inbreeding models. The performance of GC appeared to 
be slighted affected by relatedness levels.

  In summary, our study results show that cryptic relat-
edness may decrease the power as well as increase the 
type I error rates of PBAS of continuous traits. The im-
pact of cryptic relatedness caused by biased sampling on 
PBAS is limited. In contrast, cryptic relatedness in inbred 
populations may be serious and should be carefully ad-
dressed. Our ELRT provides a novel approach to control 
spurious results caused by cryptic relatedness in PBAS of 
human continuous traits.
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