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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common 
clinical condition which is associated with metabolic 
syndrome in 70% of cases. Inappropriate dietary fat 
intake, excessive intake of soft drinks, insulin resistance 
and increased oxidative stress combine to increase 
free fatty acid delivery to the liver, and increased he-
patic triglyceride accumulation contributes to fatty liver. 
Regular soft drinks have high fructose corn syrup which 
contains basic sugar building blocks, fructose 55% and 
glucose 45%. Soft drinks are the leading source of add-
ed sugar worldwide, and have been linked to obesity, 
diabetes, and metabolic syndrome. The consumption of 
soft drinks can increase the prevalence of NAFLD inde-
pendently of metabolic syndrome. During regular soft 
drinks consumption, fat accumulates in the liver by the 
primary effect of fructose which increases lipogenesis, 
and in the case of diet soft drinks, by the additional 
contribution of aspartame sweetener and caramel colo-
rant which are rich in advanced glycation end products 
that potentially increase insulin resistance and inflam-
mation. This review emphasizes some hard facts about 

soft drinks, reviews fructose metabolism, and explains 
how fructose contributes to the development of obesity, 
diabetes, metabolic syndrome, and NAFLD. 
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a significant 
health problem affecting 20%-30% of  the adult popula-
tion[1]. NAFLD can progress to nonalcoholic steatohepa-
titis (NASH), a fatty liver with hepatitis. This form of  liver 
injury carries a 20%-50% risk for progressive fibrosis, 
30% risk for cirrhosis, and 5% risk for hepato- cellular 
carcinoma[2-4]. Although the mechanisms underlying dis-
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ease progression remain unclear, insulin resistance and 
obesity-related inflammation are thought to play a key 
role, along with possible genetic, dietary and lifestyle fac-
tors. The rising incidence of  obesity in today’s generation 
is associated with many health complications in addition 
to NAFLD[5,6]. These include cardiovascular diseases, dia-
betes, hyperlipidemia, and hypertension. This constellation 
is recognized as metabolic syndrome. 70% of  patients 
with fatty liver have metabolic syndrome and 30% of  pa-
tients with metabolic syndrome have fatty liver[7] (Figure 1). 

A global change in dietary habits has occurred over 
the last few decades resulting from the introduction of  
sweeteners such as fructose and sucrose by the food in-
dustries. For example, regular soft drinks (SD) and fruit 
drinks, major sources of  high fructose corn syrup (HFCS) 
or sugar, have increased from 3.9% of  the total energy in-
take in 1977 to 9.2% of  the total energy intake in 2001[8].

Worldwide, SD are the leading cause of  added sugar. 
Recent evidence suggests an association between the in-
take of  sugar sweetened SD and the risk of  obesity and 
diabetes resulting from large amounts of  HFCS used in 
their manufacture, which raises blood glucose similar to 
sucrose[9]. In addition, diet SD contain aspartame sweet-
ener and caramel coloring, which are rich in advanced 
glycation end products that potentially increase insulin 
resistance and inflammation[10,11]. 

Human studies and animal models suggest that dietary 
factors can affect fatty infiltration and lipid peroxidation 
in various types of  liver disease including NAFLD[12,13]. 
More recently, increased ingestion of  SD was found to be 
linked to NAFLD[14] independent of  metabolic syndrome, 
with NAFLD patients consuming 5 times the amount of  
carbohydrates from SD as compared to healthy persons[15] 

(Figure 2 and Table 1). Individuals consuming > 1 soft 
drink daily showed a higher prevalence of  metabolic syn-
drome than those consuming < 1 soft drink per day[16].

This review emphasizes some hard facts about SD, 
reviews fructose metabolism, and explains how fructose 
contributes to the development of  obesity, diabetes, meta-
bolic syndrome, and NAFLD.

SOFT DRINKS 
The term SD more commonly known as soda, soda pop, 
pop, Coke™, Pepsi™ or tonic, refers to a nonalcoholic 
beverage that is usually carbonated. Two types of  SD are 
used; regular SD which are sweetened with sugar (fruc-
tose) and diet SD which are sweetened with non-caloric 
sweeteners (aspartame). Up to the 1980s, SD contained 
most of  their food energy in the form of  refined cane 
sugar or corn syrup. Today, HFCS is used almost exclu-
sively as a sweetener in the United States and in other 
countries because of  its lower cost. The calories and 
sugar content in various soft drinks are shown in Table 2.

Added sweeteners in regular SD are an important 
component of  our diet, representing 318 kcal of  dietary 
intake, or 16% of  all calorie intake[17]. HFCS made by 
enzymatic isomerization of  glucose to fructose was in-

troduced as HFCS-42 (42% fructose) and HFCS-55 (55% 
fructose) in 1967 and 1977, respectively, and opened a 
new frontier for the sweetener and SD industries.

Aspartame and caramel (colorant) are also used as 
sweeteners in the beverage industry mainly in diet SD[18]. 
Aspartame is an amino-acid compound that is about 160 
times sweeter than sugar. Aspartame is absorbed from the 
intestine and metabolized by the liver to form phenylala-
nine, aspartic acid and methanol. Aspartame can contrib-
ute to weight gain, obesity, insulin resistance, and type 2 
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Figure 1  Prevalence of fatty liver among metabolic syndrome and 
prevalence of metabolic syndrome among fatty liver. MS: Metabolic 
syndrome; FL: Fatty liver. Alberti, Circulation (2009). P < 0.001.
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Figure 2  Daily amount of soft drinks consumption in nonalcoholic 
fatty liver disease (NAFLD) patients with (n = 31) or without metabolic 
syndrome (n = 29) and in controls (n = 30). aP < 0.07; fatty liver without 
metabolic syndrome vs fatty liver with metabolic syndrome, bP < 0.001 between 
fatty liver subgroups and controls[14,15]. 
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Table 1  Soft drink consumption linked with NAFLD

Dietary constituents Controls 
(n  = 30)

NAFLD 
(n  = 31)

P  value

Total energy intake (kcal) 2200 ± 600 2300 ± 500 0.300
Added sugar (g/d)   33.6 ± 12.6 75.6 ± 8.4 0.001
Percent of added sugar from 
soft drinks

8% 43% 0.001

NAFLD: Nonalcoholic fatty liver disease.

a

a

b
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diabetes mellitus[18]. Recently, Brown et al[19] showed that 
artificial sweeteners may trigger the secretion of  glucagon-
like peptide (GLP)-1 by the digestive tract, and thereby 
curb appetite and calorie intake. 

Caramel is made by the carefully controlled heat treat-
ment of  carbohydrates, generally in the presence of  acids 
and alkalis, in a process called caramelization. Soft drinks 
contain caramel coloring, which is rich in advanced glyca-
tion end products which increase insulin resistance and 
inflammation[9,10]. The FDA has established 200 mg of  
caramel per kg body weight as an acceptable daily intake.

High fructose diets have induced fatty liver in rats 
and ducks[20]. Such diets have also caused increases in he-
patic lipid peroxidation and activation of  inflammatory 
pathways in the liver of  rats[21]. The inborn error of  me-
tabolism known as hereditary fructose intolerance, a rare 
disease which results from a deficiency in the fructose 
metabolizing enzyme, aldolase B, has demonstrated that 
fructose consumption can cause progressive liver disease 
in humans[22]. 

The extent to which excessive fructose might con-
tribute to the high prevalence of  NAFLD in Western 
societies has not been systematically investigated. It has 
been shown that consumption of  SD is linked to obesity 
and results in an increased risk of  metabolic syndrome. 
Individuals consuming > 1 soft drink per day had a higher 
prevalence of  metabolic syndrome than those consuming 
< 1 drink per day[16].

METABOLISM OF FRUCTOSE 
Fructose is a simple sugar with a chemical formula (C6H12O6) 
similar to that of  glucose. Fructose differs from glucose by 
the presence of  a keto group attached to carbon 2 of  the 
molecule, while glucose has an aldehyde group at carbon 1. 
In the diet, fructose is consumed in various amounts with 
fruits, honey, beverages sweetened with HFCS/sucrose 
and as a constituent of  sucrose, the most common sugar (a 
disaccharide composed of  fructose through a 1-4 glycoside 
bond) (Table 2).

Absorption of  fructose from the intestine into the 
portal blood is aided by glucose transporter-5 at the 

brush border and basolateral membranes of  the jeju-
num. This route of  absorption results in massive fruc-
tose uptake by the liver. Fructose is phosphorylated by 
fructokinase, forming fructose-1-phosphate, which can 
then be converted to several three-carbon molecules, 
including glyceraldehydes, dihydroxyacetone phosphate 
and glyceraldehyde-3-phosphate (Figure 3). Some of  
these 3 carbon molecules can be converted to glucose 
through gluconeogenesis, or they can be used to gener-
ate other products such as triglyceride (TG).

The second metabolism of  fructose, i.e. the extrahe-
patic metabolism that bypasses fructokinase, allows the 
carbons from fructose to enter glycolysis downstream of  
this enzyme. The 3 carbon molecules can eventually be 
used for the synthesis of  glycerol and fatty acids, which 
through esterification can form TGs.

The concentration of  fructose in fasting blood of  
healthy humans is typically 1 mg/dL or less. After oral 
administration of  fructose load in doses ranging from 
approximately 18 g (0.25 g/kg of  body weight) to 100 g,  
the mean plasma or serum fructose concentration increased 
in a dose-dependant manner, to values ranging from 4.5- 
13.0 mg/dL and peak fructose concentrations were seen 
30-60 min after fructose ingestion. A 20-ounce soft drink 
containing 32.6 g of  fructose would therefore be expected 
to increase the fasting serum fructose concentration by ap-
proximately four-fold[23,24]. Fructose is 7 times more likely 
than glucose to form advanced glycation end products 
(AGEs). Fructose does not suppress ghrelin and does not 
stimulate insulin or leptin[23,24]. Some key molecular features 
involved in the metabolism of  fructose include the roles 
of  cellular signaling molecules including nuclear factor-κB 
(NF-κB), tumor necrosis factor-α (TNF-α), c-Jun amino 
terminal kinase 1 (JNK-1), protein tyrosine phosphatase-
1B (PTP-1B), phosphatase and tensin homolog deleted on 
chromosome ten (PTEN), liver X receptor (LXR), farne-
soid X receptor (FXR), and sterol regulatory element-bind-
ing protein-1c (SREBP-1c)[25]. Fructose activates JNK-1, 
which causes hepatic inflammation and increased insulin 
receptor substrate-1 (IRS-1). Fructose induces lipogenesis 
via upregulation of  SREBP-1c and CHREBP, thereby in-
creasing the hepatic pool of  free fatty acids[25]. 
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Table 2  Calories and sugar content in different soft drinks 

Soft drinks: calorie content (number of calories) Soft drinks: sugar content (numbers of teaspoons of sugar)

12- oz. Can 20 oz. Bottle 64 oz. Big cup 12- oz. Can 20 oz. Bottle 64 oz. Big cup

Sunkist 190 325 1040 Orange slice 11.9 19.8 63.5
Mountain dew 165 275   880 Mint maid orange soda 11.2 18.7 59.7
Dr. Pepper 160 250   800 Mountain dew 11.0 18.3 58.7
Pepsi 150 250   800 Barq's root beer 10.7 17.8 57.1
Coke classic 140 250   800 Pepsi   9.8 16.3 52.3
Sprite 140 250   800 Squirt   9.5 15.8 50.7
7-Up 140 250   800 Dr. Pepper   9.5 15.8 50.7

7-Up   9.3 15.5 49.6
Coke classic   9.3 15.5 49.6
Sprite   9.0 15.0 48.0
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PATHOPHYSIOLOGY OF NAFLD 
The “two hits” hypothesis proposed by Day et al[26] 
remains the prevailing pathophysiological theory. Ac-
cording to the authors, the first “hit” describes a net re-
tention of  lipids within hepatocytes, mostly in the form 
of  TGs, and is a prerequisite for the development of  
NAFLD. A continuous delivery of  free fatty acids to the 
liver from splanchnic lipolysis of  visceral fat (60%) or 
from increased ingestion of  fatty food (10%), combined 
with peripheral insulin resistance, and de novo lipogenesis 
(30%) results in excessive fat accumulation and an in-
creased liver concentration of  TG and cholesterol esters. 
High blood TG concentration in the form of  very low 
density lipoprotein (VLDL) tends to accompany this 
condition and induces cholesterol ester transfer protein 
activity, resulting in an increased transfer of  TG from 
VLDL to high density lipoprotein (HDL) and a subse-
quent increase in HDL clearance and decreased HDL 
concentration which leads in the end to liver steatosis[27].

The progression of  steatosis to steatohepatitis (NASH) 
is associated with other factors (“second hit”), such as 
lipotoxicity, inflammation, oxidative stress and insulin 
resistance[26]. Consumption of  SD may act as a first or as 
a second hit in the pathogenesis of  NAFLD. Recently, it 
has been suggested that cholesterol metabolism may have 
a role in the accumulation of  liver fat and that inflamma-
tion may be the first hit followed by TG accumulation as a 
second hit (www.easl.eu/bologna 2009). 

FRUCTOSE AND INSULIN RESISTANCE 
Fructose consumption increases postprandial TG concen-
trations within 24 h[28,29], which suggests that postprandial 
hypertriglyceridemia is the earliest metabolic perturbation 
associated with fructose consumption. The most likely 
mechanism for postprandial hypertriglyceridemia is in-
creased hepatic de-novo lipogenesis (DNL), which in turn 
upregulates VLDL production and secretion[30].

Fructose consumption can promote hepatic lipogen-
esis primarily because the liver is the main site of  fructose 
metabolism; secondly, entry of  fructose into glycolysis via 
fructose-1-phosphate bypasses the main rate controlling 
step of  glycolysis catalyzed by phosphofructokinase, thus 
providing unregulated amounts of  the lipogenic substrates 
acetyl-CoA and glycerol-3-phosphate[30]; thirdly, fructose 
can activate sterol receptor element binding protein-1c 
(SREBP-1c) independently of  insulin, which then acti-
vates fat genes involved in DNL[31,32].

Recently, Stanphone demonstrated that consuming 
fructose-sweetened beverages, not glucose-sweetened bev-
erages increases DNL, promotes dyslipidemia, decreases 
insulin sensitivity and increases visceral adiposity in over-
weight and obese adults[33,34] (Figure 4).

One study of  lean women found that 4 d of  over 
feeding with a sucrose-sweetened (glucose + fructose) 
drink increased DNL by 200%-300%[35]. Another feeding 
study showed that 2 d of  high fructose intake (30% of  
kcal/d, consumed as sweetened beverage at every meal) 
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resulted in decreased postprandial glucose concentration 
and insulin response and prolonged alimentary lipemia in 
women[29]. A recent clinical study indicates that NAFLD 
patients have a higher intake of  SD and meat and a ten-
dency towards a lower intake of  fish rich in omega-3[36].

FRUCTOSE AND DIABETES MELLITUS 
Lipotoxicity can promote insulin resistance in type 3 dia-
betes mellitus by accelerating pancreatic β-cell failure. El-
evated plasma free fatty acids are associated with the pro-
gression from pre diabetes (impaired fasting glucose IFG, 
impaired glucose tolerance IGT) to type 2 diabetes mel-
litus[37]. The presence of  diabetes mellitus in patients with 
NASH have significant clinical implications, as NASH ap-
pears to follow a more aggressive course in the presence 
of  hyperglycemia, placing a growing number of  diabetic 
patients at risk of  progressive liver disease[37]. In short-
term studies in humans, fructose ingestion had no delete-
rious effect on glucose metabolism. In studies lasting 3-8 d, 
substitution of  sucrose or starch with fructose improved 
glycemic control in patients with type 1 or type 2 diabetes 
mellitus. Similarly, no adverse effects of  fructose feeding 
on glycemic control were seen in studies lasting 1-3 mo. 
In a series of  patients with diet controlled type 2 diabetes, 
substitution of  sucrose by fructose (13% of  calories) for 
three months had no significant effect on fasting plasma 
glucose levels or postprandial plasma glucose and insulin 
responses[37].

Long-term fructose consumption may promote the 
development of  diabetes, even though fructose usually has 
no adverse effects on glucose tolerance in the short- and 
intermediate term. In rats, long-term feeding of  moderate 
amounts of  fructose (15% of  the diet by weight) resulted 
in impaired glucose tolerance[38], and high-fructose diets 
(72% by weight) resulted in the development of  diabetes 
mellitus and diffuse glomerulosclerosis[39,40]. 

The association between consumption of  sugar-sweet-

ened beverages and risk of  type 2 diabetes was assessed 
in an eight-year prospective study of  51 603 women par-
ticipating in the Nurses’ Health Study Ⅱ[41]. After adjust-
ment for potential confounders, women consuming one 
or more sugar-sweetened soft drink daily had a relative 
risk (RR) of  type 2 diabetes of  1.83 (P < 0.001) com-
pared with those who consumed > 1 of  these beverages 
per month. The results were attenuated after further 
adjustment for body mass index and caloric intake, but 
remained statistically significant (RR = 1.32, P < 0.04). 
Consumption of  fruit punch was associated with a simi-
lar increase in diabetes risk.

FRUCTOSE AND OBESITY 
The association between HFCS consumption and obesity 
is due in part to metabolic changes induced by fructose 
or HFCS, rather than merely to an increase in total energy 
intake[41]. In baboon studies, consumption of  sucrose 
compared with glucose promoted the development of  
abdominal obesity, suggesting that the fructose moiety 
of  sucrose was responsible for the increase in abdominal 
fat[42,43]. In addition, some strains of  mice showed an in-
crease in visceral fat accumulation when fed a high-fruc-
tose diet[44]. Although it has long been suspected that SD 
contribute at least in part to the obesity epidemic, only in 
recent years have large epidemiologic studies begun to in-
vestigate the relation between SD consumption and long-
term weight gain. Obesity among children has increased 
dramatically during the past two decades and is approach-
ing epidemic proportions[45,46]. Various environmental, 
genetic and social factors relating to diet have been associ-
ated with obesity in children[47-50].

The results of  the study by Dubois et al[51] indicated 
that regular sugar-sweetened beverage consumption, espe-
cially between meals, may put children at greater risk for 
obesity in childhood. Because there is a positive association 
between the consumption of  sugar-sweetened beverages 
and body weight among preschool-aged children, they ad-
vise that parents should limit the quantity of  such sweet-
ened beverages consumed during preschool years[51]. In the 
FIELD trial, 644 British schoolchildren (ages 7-11 years)  
were randomly assigned to a control group or to an edu-
cation program designed to reduce their consumption of  
carbonated drinks (both sweetened and unsweetened). 
The mean consumption of  carbonated drinks decreased 
by 50 mL/d in the intervention group and increased by 
16.7 mL/d in the control group (mean difference 0.7, 
95% confidence interval 0.1 to 1.3). After 12 mo, the ap-
proximate percentage of  overweight and obese children 
had increased in the control group from 20% to 27.5%, 
compared with a decrease in the intervention group from 
20% to 19.8% (mean difference 7.7%, 2.2% to 13.1%)[52].

FRUCTOSE AND NAFLD
Risk factors for NAFLD include obesity, type 2 diabetes, 
insulin resistance and hypertriglyceridemia. Of  note, 
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Figure 4  Changes in total abdominal adipose tissue, superficial adipose 
tissues (SAT), and visceral adipose tissue (VAT) volume after consuming 
glucose- or fructose-sweetened beverages for 10 wk. aP < 0.05, bP < 0.01, 
10 wk vs 0 wk; paired Student’s t test. Glucose, n = 14; Fructose, n = 17. Data 
represent mean ± SE (Stanhope, J Clin Invest, 2009).
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each of  these risk factors can occur as a result of  exces-
sive fructose consumption. Recently we have shown 
that[14,15] SD consumption is linked with fatty liver inde-
pendently by metabolic syndrome diagnosis. 

High-fructose diets have induced fatty liver in rats[53] 
and ducks[54], such diets have also caused increases in he-
patic lipid peroxidation[55] and activation of  inflammatory 
pathways in the liver of  rats[21].

Fructose is lipogenic and stimulates TG synthesis[31]. 
Splanchnic perfusion studies demonstrate that fructose 
produces higher rates of  TG secretion from the liver than 
equimolar amounts of  glucose[56]. The long-term admin-
istration of  fructose to rats results in hepatic macro- and 
micro vesicular steatosis with a 198% increase in hepatic 
TGs and an 89% increase in hepatic cholesterol concen-
tration[57]. Furthermore, the administration of  a diet with 
25% of  the total energy as sucrose (which contains 50% 
fructose) resulted in a rise in hepatic aminotransferases 
(ALT and AST) levels within 18 d[58,59]. Indeed, total fruc-
tose intake averages approximately 12% of  the total en-
ergy intake and may increase to 15% in some subgroups 
in the US population[22].

Animals maintained on a chronic high fructose diet 
develop elevated non-esterified fatty acids (NEFAs) and 
hyperinsulinemia at the expense of  glycemic control[39]. 
This is not surprising, as fructose-induced metabolic 
dyslipidemia is usually accompanied by whole body insu-
lin resistance[60] and reduced hepatic insulin sensitivity[61].

A potential mechanism by which fructose may cause 
liver injury is shown in Figure 5. The metabolism of  fruc-
tose is distinct from glucose. Before converging with the 
glycolytic pathway, initial fructose metabolism involves 
phosphorylation of  fructose to fructose-1-phosphate by 
fructokinase (ketohexokinase, KHK) using the substrate 
ATP. Unlike glucokinase, the phosphorylation of  fructose 
by fructokinase is specific for fructose and not rate lim-
ited. The high activity of  fructokinase in phosphorylating 
fructose to fructose-1-phosphate in the liver, can result 
in hepatic ATP depletion[22]. Indeed, fructose has been 
shown to cause ATP depletion in humans[62,63], and recov-
ery from fructose-induced ATP depletion was found to 
be delayed in subjects with NALFD in studies that used 
phosphorus-1 magnetic resonance spectroscopy to as-
sess hepatic metabolism[63,64]. In some respects, fructose-
induced ATP depletion resembles hepatic ischemia[65]. In 
rats, fructose administration increases hepatic lipid per-
oxidation and activation of  inflammatory pathways[21,55]. 
Cirillo et al[66] found that incubation of  endothelial cells 
or renal tubular cells with postprandial concentrations 
of  fructose reduces intracellular ATP and activates pro-
inflammatory and prooxidative responses. Therefore, 
high fructose consumption may contribute to NAFLD 
pathogenesis because fructose-induced ATP depletion 
promotes hepatic necroinflammation. Moreover, fructose 
promotes insulin resistance, lipid peroxidation, dyslipid-
emia, increased arterial blood pressure, increased AGEs, 
and increased hepatic inflammation[66]. 

Ouyang et al[67] found that subjects with NAFLD have 
a significantly greater intake of  sweetened beverages by 
history, representing a 2-fold greater intake than the mean 
intake in both controls and in population-based studies. 
Their second finding was that the key initiating enzyme 
in fructose metabolism, KHK (ketohexokinase), was also 
increased 2-fold in the liver biopsies of  these patients 
compared to controls[67]. The increase in KHK levels is 
consistent with the known effect of  fructose to upregulate 
KHK in the liver of  rats[68,69]. 

Patients on a high fructose or sucrose diet show a 
greater uric acid response to a bolus of  fructose[70,71] con-
sistent with the upregulation of  KHK activity. Finally, uric 
acid levels can predict the development of  NAFLD[72]. 
There is also increasing evidence that the rise in uric acid 
may also have a potential role in causing features of  the 
metabolic syndrome[73], in part by the ability of  uric acid 
to deplete endothelial nitric oxide levels[74] and by activat-
ing adipocytes[68]. What does fructose become in our liver? 
Fructose becomes free fatty acids (the building blocks 
of  all lipids), becomes VLDL lipoproteins and TGs (the 
nasty lipids most associated with cardio- vascular disease), 
and becomes uric acid (oxidative stress, vascular inflam-
mation, Figure 5).

FRUCTOSE AND METABOLIC 
SYNDROME 
Reaven noted that several risk factors (e.g. dyslipidemia, 
hypertension and hyperglycemia) are commonly clustered 

together[75]. This clustering he called Syndrome X, and he 
recognized it as a multiplex risk factor for cardiovascular 
disease (CVD). Other researchers use the term metabolic 
syndrome for this clustering of  metabolic risk factors. 
ATP Ⅲ used this alternative term[76]. Beyond CVD and 

type 2 diabetes, individuals with metabolic syndrome are 
susceptible to other conditions, notably polycystic ovary 

syndrome, fatty liver, cholesterol gallstones, asthma, sleep 

disturbances, some forms of  cancer, and is associated 
with a proinflammatory/prothrombotic state that include 
elevated levels of  C-reactive protein, endothelial dysfunc-
tion, hyperfibrinogenemia, increased platelet aggregation, 
increased levels of  plasminogen activator, elevated uric 
acid levels, microalbuminuria, and a shift toward small, 
dense particles of  low-density lipoprotein[77]. 

The major characteristics of  metabolic syndrome in-
clude insulin resistance, abdominal obesity, elevated blood 
pressure, and lipid abnormalities (i.e. elevated levels of  
TGs and low levels of  HDL cholesterol).

The role of  fructose in insulin resistance, hypergly-
cemia, and obesity that constitute important elements of  
the metabolic syndrome were discussed above[77]. 

Visceral adipose tissue and dyslipidemia induced by 
fructose/sucrose consumption play a major role in the 
development and progression of  metabolic syndrome. 
The main role of  adipose tissue is to take up excess fatty 
acids provided by the diet and to store them in the form 
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of  TGs to be used as an energy supply for the body in 
times of  starvation, however, adipose tissue has a limited 
capacity to store fat. This maximum capacity may be 
reached in states of  obesity, resulting in an impaired abil-
ity of  adipose tissue to acquire dietary fatty acids and, 
therefore, increased levels of  fatty acids are found in the 
circulation[77]. 

Signaling abnormalities in adipocytes can also trigger 
lipolysis of  TG stores and the efflux of  fatty acids into 
the bloodstream, augmenting the problem. The presence 
of  high levels of  NEFAs in the bloodstream is proposed 
to function as a key mechanistic link between obesity and 
insulin resistance, type 2 diabetes, and metabolic dyslipid-
emia. Eventually, these NEFAs may be taken up ectopi-
cally by non-adipose tissues such as the liver and skeletal 
muscle, where they may be stored as TG or diacylglycerol 
and interfere with metabolic pathways such as the re-
sponse to insulin, contributing to insulin resistance and 
the metabolic syndrome[78].

Differences exist in the metabolic properties of  the 
various sites of  adipose tissue. Visceral or abdominal fat 
stores are believed to pose a greater risk for the develop-
ment of  insulin resistance and the metabolic syndrome 
than subcutaneous fat stores. Reasons for this include 
reduced responsiveness of  visceral fat to the anti-lipolytic 
effects of  insulin (due to lower expression and activity of  
hormone sensitive lipase, reduced tyrosine phosphoryla-

tion of  the insulin receptor, decreased IRS-1 expression, 
and increased PTP-1B activity); greater responsiveness of  
visceral fat to the lipolysis-inducing effects of  catechol-
amines; and decreased uptake and acylation of  fatty acids 
compared with subcutaneous fat, all of  which result in 
amplification of  NEFA levels in the blood[79]. Visceral fat 
is also located conveniently for these NEFAs to enter the 
portal circulation for direct delivery to the liver, where 
they pose a risk to hepatic insulin responsiveness.

Fructose consumption can induce perturbations in cell 
signaling and inflammatory cascades in insulin-sensitive 
tissues[25]. The contribution of  fructose/sucrose in dys-
lipidemia was discussed above. Consuming such large 
amounts of  fructose/sucrose can lead to the development 
of  a complete metabolic syndrome by increasing plasma 
TGs and altering hepatic glucose homeostasis, gaining 
weight, and decreasing insulin sensitivity. 

CONCLUSION 
The use of  sweeteners has increased considerably world-
wide and soft drink beverages seem to be a major contrib-
utor for obesity, diabetes mellitus, hyperlipidemia, insulin 
resistance, hypertension, metabolic syndrome, and cardio-
vascular disease. In this review we sought to focus atten-
tion on the impact of  soft drinks on the accumulation of  
fat in the liver. This has significant clinical implications, as 
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Figure 5  Mechanisms of detrimental effects of fructose.
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the presence of  NAFLD correlates strongly with diabetes, 
cardiovascular disease and diffuse atherosclerosis.
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