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Abstract

Background: Recently, it was realized that the functional connectivity networks estimated from actual brain-
imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical
representation of a network, which is essentially reduced to nodes and connections between them.

Methods: We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on
the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed
Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences
between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to
model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity
during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the
movement execution in a group (N=5) of healthy subjects.

Results: Analysis performed on the cortical networks estimated from the group of normal and SCI patients
revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is
valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs)
ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal
cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly
in its local feature property.
In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6
Hz), alpha (7-12 Hz) and beta (13-29 Hz).
By taking into account all the possible pathways between different ROI couples, we were able to separate clearly
the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory
mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω
within the cortical network during the motor task. The activation index is directly related to diffusion, a type of
dynamics that underlies several biological systems including possible spreading of neuronal activation across sev-
eral cortical regions.

Conclusions: The present study aims at demonstrating the possible applications of graph theoretical approaches
in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i)
cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are
emphasized in the present paper to show their impact in a real application.
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Background
Over the last decade, there has been a growing interest
in the detection of the functional connectivity in the
brain from different neuroelectromagnetic and hemo-
dynamic signals recorded by several neuro-imaging
devices such as the functional Magnetic Resonance
Imaging (fMRI) scanner, electroencephalography (EEG)
and magnetoencephalography (MEG) apparatus. Many
methods have been proposed and discussed in the lit-
erature with the aim of estimating the functional rela-
tionships among different cerebral structures [1-5].
However, the necessity of an objective comprehension
of the network composed by the functional links of
different brain regions is assuming an essential role in
the Neuroscience. The extraction of salient characteris-
tics from brain connectivity patterns is an open chal-
lenging topic, since often the estimated cerebral
networks have a relative complex structure. Recently, it
was realized that the functional connectivity networks
estimated from actual brain-imaging technologies
(MEG, fMRI and EEG) can be analyzed by means of
the graph theory [6,7]. In those studies, the authors
have evaluated two characteristic measures, the average
shortest path L and the clustering coefficient C, to
extract respectively the global and local properties of
the network structure. They have found that anatomi-
cal brain networks exhibit a high degree to which
nodes tend to cluster together (i.e. a high C) and a
relatively short distance between all the nodes (i.e. a
low L). These values identify a particular model that
interpolate between a regular lattice and a random
structure. Such a model has been designated as “small-
world” network in analogy with the concept of the
small-world phenomenon observed more than 30 years
ago in social systems [8]. In a similar way, many types
of functional brain networks have been analyzed
according to this mathematical approach. In the func-
tional brain connectivity context, these properties have
been demonstrated to reflect an optimal architecture
for the information processing and propagation among
the involved cerebral structures. However, the perfor-
mance of cognitive and motor tasks as well as the pre-
sence of neural diseases has been demonstrated to
affect such a small-world topology, as revealed by the
significant changes of L and C [9-11].
The small-world concept in a complex network is

strictly related to the length of the shortest paths
within the network, which is given by the smallest
number of edges needed to go from a starting vertex i
to a target node j [12]. However, shortest paths just
represent one possible way in which two nodes in the

network can communicate and other existing pathways
should be generally taken into account to characterize
the connectivity pattern. In particular, by neglecting
the longer pathways important information is lost
about the alternative trails that could connect any two
nodes in a network. This information appears strictly
related to the concepts of “redundancy” and “robust-
ness”, critical resources for the survival of many biolo-
gical systems as they provide reliable function despite
the death of individual elements. Indeed, the presence
of more than one path between two nodes in the
graph tends to increase the interaction between them,
while enhancing the resilience to damages. In particu-
lar, the human brain is supposed to exhibit a high
level of alternative anatomical and functional pathways
between adjacent regions and sites. This type of orga-
nization would allow the brain to reshape its physiolo-
gic mechanisms in order to compensate the critical
consequences of possible diseases [13].
Recently, an interesting methodology – the superedges

approach - has been proposed [14] in physics to obtain
a detailed analysis of networks considering the concept
of generalized connectivity. This approach allows char-
acterizing the networks properties by taking into
account all the possible paths between pairs of nodes.
In order to illustrate the potential of the graph theore-

tical approach in the brain functional network analysis,
we report the results obtained with a set of high-resolu-
tion EEG signals from spinal cord injured patients and
control subjects during the preparation of an intended
motor act.

Methods
Cortical activity estimation
High-resolution EEG technology involves the use of a
larger number of scalp electrodes (64-256). In addition,
high-resolution EEG uses realistic MRI-constructed sub-
ject head models and spatial de-convolution estimations,
which are commonly computed by solving a linear
inverse problem based on boundary-element mathe-
matics [15,16]. In the present applications, the cortical
activity was estimated from EEG recordings by using a
realistic head model, whose cortical surface consisted of
about 5000 triangles disposed uniformly.
Each triangle represents the electrical dipole of a parti-

cular neuronal population and the estimation of its cur-
rent density was computed by solving the linear inverse
problem (see following paragraphs). In this way, the elec-
trical activity in different Regions Of Interest (ROIs) can
be obtained by averaging the current density of the var-
ious dipoles within the considered cortical area.
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Head models and regions of interest
In order to estimate cortical activity from conventional
EEG scalp recordings, realistic head models reconstructed
from T1-weighted MRIs are employed. Scalp, skull and
dura mater compartments are segmented from MRIs and
tessellated with about 5000 triangles. Then, the cortical
regions of interest (ROIs) are drawn by a neuroradiologist
on the computer-based cortical reconstruction of the indi-
vidual head model by following a Brodmann’s mapping
criterion.

Estimation of cortical source current density
The solution of the following linear system:

Ax = b + n (1)

provides an estimation of the dipole source configura-
tion x which generates the measured EEG potential dis-
tribution b. The system includes also the measurement
noise n, assumed to be normally distributed. A is the
lead field matrix, where each j-th column describes the
potential distribution generated on the scalp electrodes
by the j-th unitary dipole. The current density solution
vector ξ of Eq. 1 was obtained as:

 = − +( )arg min
x

Ax b x
M N
2 2 2

(2)

where M, N are matrices associated to the metrics of
data and source space, respectively; l is a regularization
parameter; || … ||M represent the M-norm of the data
space b and || … ||N the N-norm of the solutions space
x. The formula 2 represents a minimization problem
also known as linear inverse problem.
As a metric of the data space the identity matrix is

generally employed. However, the metric in the source
space can be opportunely modified when hemodynamic
information is available from recorded fMRI data. This
aspect can notably improve the localization of the
source activity. An estimate of the signed magnitude of
the dipolar moment for each one of the 5000 cortical
dipoles was then obtained for each time point. The
instantaneous average of all the dipoles’ magnitude
within a particular ROI was used to deal with the aver-
age activity in that ROI during the whole time interval
of the experimental task. Figure 1 illustrates the effect of
the linear inverse problem’s solution. From a scalp
potential distribution one can estimate accurately the
original cortical potential.

Functional connectivity estimation
Many EEG and/or MEG frequency-based methods that
have been proposed in recent years for assessment of the

directional influence of one signal on another are based
mainly on the Granger theory of causality. Granger the-
ory mathematically defines what a “causal” relation
between two signals is. According to this theory, an
observed time series x(n) is said to cause another series y
(n) if the knowledge of x(n)’s past significantly improves
prediction of y(n); this relation between time series is not
necessarily reciprocal, i.e., x(n) may cause y(n) without y
(n) causing x(n). This lack of reciprocity allows the eva-
luation of the direction of information flow between
structures. Kaminski and Blinowska [3] proposed a multi-
variate spectral measure, called the Directed Transfer
Function (DTF), which can be used to determine the
directional influences between any given pair of channels
in a multivariate dataset. DTF is an estimator that simul-
taneously characterizes the direction and spectral proper-
ties of the interaction between brain signals and requires
only one multivariate autoregressive (MVAR) model to
be estimated simultaneously from all the time series. The
advantages of MVAR modeling of multichannel EEG sig-
nals in order to compute efficient connectivity estimates
have recently been stressed [17-19].

MultiVariate AutoRegressive models
The approach based on multivariate autoregressive
models (MVAR) can simultaneously model a whole
set of signals. Let X be a set of estimated cortical time
series:

x x t x t x tN= [ ( ), ( ),... ( )]1 2 (2)

where t refers to time and N is the number of cortical
areas considered. Given an MVAR process which is an
adequate description of the data set X:

Λ( ) ( ) ( )k X t k E t
k

p

− =
=

∑
0

(3)

where X(t) is the data vector in time; E(t)=[e1(t), …,
eN] is a vector of multivariate zero-mean uncorrelated
white noise processes; Λ(1), Λ(2), … Λ(p) are the NxN
matrices of model coefficients (Λ(0)=I); and p is the
model order. The p order is chosen by means of the
Akaike Information Criteria (AIC) for MVAR processes.
In order to investigate the spectral properties of the
examined process, the Eq. (3) is transformed into the
frequency domain:

Λ( ) ( ) ( )f X f E f= (4)
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where:

Λ Λ Δ( ) ( )f k e j f tk

k

p

= −

=
∑ 2

0

 (5)

and Δt is the temporal interval between two samples.
Eq. (4) can then be rewritten as:

X f f E f H f E f( ) ( ) ( ) ( ) ( )= =−Λ 1 (6)

H(f) is the transfer matrix of the system, whose ele-
ment Hij represents the connection between the j-th
input and the i-th output of the system.
Directed Transfer Function
The Directed Transfer Function, representing the cau-

sal influence of the cortical waveform estimated in the j-
th ROI on that estimated in the i-th ROI is defined in
terms of elements of the transfer matrix H, is:

ij ijf H f2 2
( ) ( )= (7)

In order to compare the results obtained for cortical
waveforms with different power spectra, normalization
can be performed by dividing each estimated DTF by
the squared sums of all elements of the relevant row,
thus obtaining the so-called normalized DTF:

 ij
ij

im

m

Nf
H f

H f

2

2

2

1

( )
( )

( )

=

=
∑

(8)

where N indicates the number of ROIs, g2ij(f)
expresses the ratio of influence of the cortical waveform
estimated in the j-th ROI on the cortical waveform esti-
mated in the i-th ROI, with respect to the influence of
all the estimated cortical waveforms. Normalized DTF
values are in the interval [0 1], and the normalization
condition:

 in

n

N

f2

1

1( ) =
=

∑ (9)

is applied.
Figure 2 shows a schematic representation of the func-

tional connectivity estimation from a set of high-resolu-
tion EEG signals to the cortical network.

Graph theory
A graph is an abstract representation of a network. It
consists of a set of vertices (or nodes) and a set of
edges (or connections) indicating the presence of some
of interaction between the vertices. The adjacency
matrix W contains the information about the

Figure 1 Electrical activity estimation in the Brodmann area 7 from the scalp measurement in the parietal sensor P3.
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connectivity structure of the graph. When a weighted
and directed edge exists from the node i to j, the cor-
responding entry of the adjacency matrix is Wij ≠ 0;
otherwise Wij = 0.

Node strength
The simplest attribute of a node is its connectivity
degree, which is the total number of connections with
other vertices. In a weighted graph, the natural generali-
zation of the degree of a node i is the node strength or
node weight or weighted-degree. This quantity has to
be split into in-strength sin and out-strength sout, when
directed relationships are being considered. The
strength index integrates the information of the links’
number (degrees) with the connections’ weight, thus
representing the total amount of outgoing intensity
from a node or incident intensity into it. The formula-
tion of the in-strength index sin can be introduced as
follows:

s i win ij

j V

( ) =
∈
∑ (10)

It represents the whole functional flow incoming to
the vertex i. V is the set of the available nodes and wij is
the weight of the particular arc from the point j to the
point i. In a similar way, for the out-strength:

s i wout ji

j V

( ) =
∈
∑ (11)

It represents the whole functional flow outgoing from
the vertex i.

Strength distributions
For a weighted graph, the arithmetical average of all the
nodes’ strengths <s> only gives little information about
the distributions of the links intensity within the system.
Hence, it is useful to introduce R(s) as the fraction of

Figure 2 From a set of cortical time series the MVAR method estimates in the frequency domain a functional connectivity pattern that can be
modeled by means of a graph.
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vertices in the graph that have strength equal to s. In
the same way, R(s) is the probability that a vertex cho-
sen uniformly at random has weight = s. A plot of R(s)
for any network can be constructed by making a histo-
gram of the vertices’ strength. This histogram represents
the strength distribution of the graph and allows a bet-
ter understanding of the strength allocation in the sys-
tem. In particular, when dealing with directed graphs,
the strength distribution has to be split in order to con-
sider in a separated way the contribution of the incom-
ing and outgoing flows.

Network structure
Two measures are frequently used to characterize the
local and global structure of unweighted graphs: the
average shortest path L and the clustering index C. The
former measures the efficiency of the passage of infor-
mation among the nodes, the latter indicates the ten-
dency of the network to form highly connected clusters
of vertices. Recently, a more general setup has been
examined in order to investigate weighted networks. In
particular, Latora and Marchiori [20] considered
weighted networks and defined the efficiency coefficient
e of the path between two vertices as the inverse of the
shortest distance between the vertices (note that in
weighted graphs the shortest path is not necessarily the
path with the smallest number of edges). In the case
where a path does not exist, the distance is infinite and
e = 0. The average of all the pair-wise efficiencies eij is
the global-efficiency Eg of the graph. Thus, global-effi-
ciency can be defined as:

E W
N N dg

i ji j V

( )
( ) ,

=
−

≠ ∈
∑1

1
1

(12)

where N is the number of vertices composing the
graph. Since the efficiency e also applies to disconnected
graphs, the local properties of the graph can be charac-
terized by evaluating for every vertex i the efficiency
coefficients of Wi, which is the sub-graph composed by
the neighbors of the node i. The local-efficiency El is
the average of all the sub-graphs global-efficiencies:

E W
N

E Wl g

i V

i( ) ( )=
∈
∑1

(13)

Since the node i does not belong to the sub-graph Wi,
this measure reveals the level of fault-tolerance of the
system, showing how the communication is efficient
between the first neighbors of i when i is removed.
Global- (Eg) and local-efficiency (El) were demonstrated
to reflect the same properties of the inverse of the aver-
age shortest path 1/L and the clustering index C. In
addition, this new definition is attractive since it takes

into account the full information contained in the
weighted links of the graph and provides an elegant
solution to handle disconnected vertices.

Network dynamics
The dynamical properties are calculated by starting self-
avoiding random walks from one input node until a
given distance h. In our approach, all vertices in the net-
work are chosen as the input, one at each time. Since
we consider all possible h, no arbitrariness is implied.
The network dynamics can be quantified by consider-

ing the transition probability Ph( j, i ) between each pair
of vertices, which measures the probability of a self-
avoiding random walk starting from i to reach the ver-
tex j after h steps. Figure 3 illustrates a possible path of
length h=5, between the input and output node of a
directed graph. Note that such alternative paths are
completely overlooked by classical shortest paths length
characterization approaches.
The total transition probability of a node i over all

other nodes by self-avoiding walks of length h, is called
the activation, and it is given by:

Ωh h

j j

N

i P j i( ) ( , )
,

=
= ≠
∑
1 1

(14)

If a vertex i has high activation at distance h, it
implies that such vertex is connected to a small number
of dead-ends distant at once h from i. Dead-ends are
those vertices where the walk cannot propagate, which
reduces the activation. The Ω index reflects the power
of an element to influence other elements in the com-
plex connectivity system. Since it relies on non-preferen-
tial random walks, [21] the activation is directly related
to diffusion, a type of dynamics that underlies several
biological systems including possible spreading of neuro-
nal activation across several cortical regions.
The use of the superedeges approach to investigate

the brain connections is motivated because there is a
strictly potential relationship between such a methodol-
ogy and brain organization and function. In the case of
dynamics, the activation is related to the brain regions
of influence through the network. If a vertex presents a
high value of activation for a given distance h, it implies
that most self-avoiding random walks emerging from
such vertex tend to present lengths equal to h. There-
fore, such vertices tend to have the highest influence
along the network, since the signals starting at such ver-
tices tend to propagate through long distances.
The superedges approach implies the consideration of

several values of h in order to obtain a more complete
network characterization. In order to address the pro-
blem of having a large number of features to be
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evaluated (ten subjects and ten different path lengths),
we refer to an optimal multivariate statistical method
for feature space dimensionality reduction, described as
follows.
Principal Component Analysis (PCA)
When a large volume of data is available, techniques of
dimensionality reduction are necessary. In addition,
several modern experiments result in highly redundant
databases, which can lead to biases. A possible way to
overcome these limitations can be obtained by identify-
ing the principal component analysis methodology,
which is a dimensionality reduction transformation
that removes data redundancy in an optimal fashion
[22].
Let X = [x1 , x2 ,…, xh ] T be a random vector that

represents a set of h measured variables. Let Xi , i =1,
2, …, m , be a sample vector of m observations of X. In
our analysis, X would represent each individual and each
measured variable, the number of outward paths or out-
ward activation at distance h. Given Z = [ z1, z2, ... , zh]
the h x h orthogonal matrix constructed from the eigen-
vectors of the sample covariance matrix of X, then the
elements of zi give the contribution weight of each mea-
surement for the PCA component i. The new feature vec-
tors can be obtained from the original normalized feature
vector by the following transformation [38]:

U Z XT= (15).

This transformation allows one to project the m x h
dimensional feature into a new space with reduced
dimensionality while yielding completely decorrelated

new random variables, which correspond to linear com-
binations of the original features.
The power of the PCA methodology stems from the fact

that the principal components of X, {ui : i = 1, 2, ... , h} are
all uncorrelated and that the variance of ui is given by its
eigenvalue li. Because the eigenvalues are arranged in
decreasing order, it follows that the component of X with
largest variance explaining the most of the variation in the
data is the component u1 along the z1 direction. Similarly,
the next largest variance belongs to the component u2
along z2.
The investigations about the dynamics of the corti-

cal networks in spinal injured patients and healthy
individuals consider the optimal statistical methods
(PCA) for decorrelation of the heavily correlated
measurements and dimensionality reduction. In parti-
cular, the number of measurements was the number
of experimental subjects i.e. m=10 (five healthy and
five spinal cord injured) and the number of variables
was the number of considered path lengths i.e. h=10.
Eventually, we projected the m x h spaces of each
frequency band into the main three-dimensional
spaces.
Network thresholding
Only the connections that were statistically significant
(at p<0.001) after a contrast with a surrogate distribu-
tion of one thousand DTF values among the same ROIs
were considered for the network to be analyzed with
graph theory’s tools. The graph indexes were obtained
from the threshold networks, maintaining only the
information about the presence/absence (i.e. 1/0) of a
statistical significant link [9].

Figure 3 Up) Average cortical networks in the Beta band for the SCI group and CTRL group. Centre) Location of the ROIs on the realistic cortex
model of a representative subject. Bottom) The SCI group attempted the foot movement, while the CTRL group executed it.
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Experimental design
Five healthy (CTRL) subjects and five spinal cord
injured (SCI) patients participated to the present study
[9]. In particular, spinal cord injuries were of traumatic
etiology and located at the cervical level (C6 in three
cases, C5 and C7 in two cases, respectively); patients
had not suffered for a head or brain lesion associated
with the trauma leading to the injury. The informed
consent statement was signed by each patient after the
explanation of the study, which was approved by the
local institutional ethics committee. For the EEG data
acquisition, subjects were comfortably seated on a
reclining chair, in an electrically shielded and dimly lit
room. They were asked to perform a brisk protrusion of
their lips while they were performing (healthy subjects)
or attempting (SCI patients) a right foot movement. By
means of the lips protrusion, the SCI patients provided
an evident trigger in correspondence of their attempt to
move. For each subject, the cortical activity was esti-
mated according to the high-resolution EEG technique.
By using the passage through the Tailairach coordinates
system, twelve Regions Of Interest (ROIs) were then
obtained by segmentation of the Brodmann areas (B.A.)
on the accurate cortical model utilized for each subject.
Bilateral ROIs considered in this analysis are the pri-
mary motor areas for foot (MIF) and lip movement
(MIL), the proper supplementary motor area (SMAp),
the standard pre-motor area (BA6), the cingulated
motor area (CMA) and the associative area (BA7).
In order to study the preparation to an intended foot

movement, a time segment of 1.5 seconds before the
lips pursing was analyzed. The lips movement was
detected by means of an EMG electrode located over
the lip muscle. The frequency sampling was 200 Hz for
both EEG and EMG signals. EEG signals were refer-
enced to the mean activity from the pre-auricural points
A1 and A2. The task was repeated every 6-7 seconds, in
a self-paced manner, and the 100 single trials recorded
will be used for the estimate of functional connectivity
by means of the Directed Transfer Function in four fre-
quency bands (Theta 4-7 Hz, Alpha 8-12 Hz, Beta 13-29
Hz, Gamma 30-40 Hz). Figure 4 shows the original
average cortical network estimated in the Beta frequency
band for the SCI group and for the CTRL group, during
the motor attempt/execution of the task. The twelve
ROIs (the nodes of the cortical network) are indicated
on the cortex of one representative subject.

Results
The upper panels of Figure 5 show the average in- and
out-degree in the SCI population a) and in the CTRL
group b) for the significant Beta band. Direct compari-
sons of the data show that in the SCI patients the num-
ber of links outgoing from both the SMAp areas Left

and Right is largely higher than the CTRL subjects. This
result puts in evidence the important role of the supple-
mentary motor areas (SMAp Left and Right) that
increase their outgoing functional flows to support the
diminished activity of their primary motor areas (MIF
Left and Right) during the preparation of this motor act.
The panels at the bottom of Figure 5 show the average

profiles of the degree distributions for SCI and CTRL
group, in the Beta frequency band. An interesting result
is that in-degree and out-degree distributions show dif-
ferent trends within each group.
Right-skew tails of out-degree distributions indicates

the presence of few nodes with a very high level of out-
going connections, while for the in-degree distributions
there are no ROIs in the network with more than six
incoming connections. The inset in each figure illus-
trates the typical Gaussian profile of the degree-distribu-
tions in random graphs, which appears to be different
from the estimated cortical networks.
Fig. 6 shows the contrast between the values of global

and local efficiency obtained in the two studied popula-
tions with those obtained in a set of one thousand ran-
dom graphs, having the same number of nodes and arcs.
Analysis of variance (ANOVA p=0.05) was used in

order to find significant differences between the indices
of efficiency indexes computed in the two groups (SCI,
CTRL) for all the frequency bands (Theta, Alpha, Beta
and Gamma). ANOVA performed on the global-effi-
ciency Eg variable showed no significant differences for
the main factors GROUP and BAND. Instead, the
ANOVA performed on the El variable revealed a strong
influence of the between factor GROUP (F=32.67,
p=0.00045); while the BAND factor and the interaction
between GROUP X BAND were found not significant
(F=0.21 and F=0.91 respectively, p values equal to 0.891
and 0.457). Post-hoc tests revealed a significant differ-
ence between the two examined experimental groups
(SCI, CTRL) in Theta, Alpha and Beta band (p=0.006,
0.01, 0.03 respectively). It can be observed (Fig. 6) that
the average values of the local efficiency in the SCI sub-
jects are significantly higher than those obtained in the
CTRL group, for these three frequency bands. Moreover,
the estimated cortical networks are not structured like
random networks. The statistical contrasts performed by
separate Z-tests (Bonferroni corrected for multiple com-
parisons, p=0.05) were summarized in the Table 1. By
inspecting the data presented in both Tab I and Figure
6, it is clear that in general the cortical networks exhib-
ited ordered and regular properties. In particular, the
global efficiency is significantly lower than the random
mean value, while the local efficiency of the SCI group
is significantly higher than random graphs in each band.
The superedges approach was applied to the estimated

cortical networks by considering path lengths ranging
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from 1 to 10 (h=1,2…10, where 10 is the maximum dis-
tance observed for such networks). The dynamics of the
cortical connectivity patterns was evaluated through
the number of outward activations (i.e. the Ω index).
The results for all the frequency bands are presented in
Figure 7. Each scatter plot shows the projections of the
Ω values with respect to the first three main principal
components (i.e. PCA1, PCA2, PCA3).
The results show that the separation between SCI

patients and CTRL subjects is clear only for the Theta
band. The projections obtained for the other bands
show several intersections of points between injured
patients and healthy subjects. This concludes that the
different dynamics generated by self-avoiding random
walks in the SCI functional network affects mainly the
lower spectral contents.
Figure 8 shows that the mean Ω values have similar

profiles, with an activation that decreases as h increases.
This behavior of the activation measurement with respect
to h indicates that the probability to find dead-ends tends

to increase with the distance. In this way, as more distant
are the input from the output, fewer random walks
departing from the input can reach the output.
However, a clear difference can be observed in the SCI

network that exhibits a higher activation across the first
h values (i.e.1 ≤ h ≤ 5). We quantified such a difference
considering the Manova test. For Rao, Pillai, Lawley-
Hotelling and Roy tests, we obtained the p-value equal
to 0.066, which shows that the CTRL and SCI networks
are different with respect to the activations. Table 2 pre-
sents the p-values for the other frequency channels.

Discussion
In the present paper we considered an EEG dataset that
has been already studied in previous works [23,24]. The
results obtained in those works served as a baseline for
the novel approach proposed here. Such approach
mainly consists in finding the parallel multiple pathways
between cortical areas rather than considering only their
shortest paths.

Figure 4 a) Average in- and out-degrees for the SCI group in the Beta frequency band. b) Average in- and out-degrees for the CTRL group in
the Beta frequency band. c) Average in- and out-degree distributions for the SCI group in the Beta frequency band. d) Average in- and out-
degrees distributions for the CTRL group in the Beta frequency band.
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Analysis performed on the cortical networks estimated
from the group of normal and SCI patients revealed that
both groups present few nodes with a high out-degree
value. This property is valid in the networks estimated

for all the frequency bands investigated. In particular,
cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the
outflow of information in both groups, SCI and healthy.
This means that removal of CMAs from the estimated
patterns will cause a collapsing of the whole cortical net-
work, thus corrupting the characteristic behavior of the
preparation to the effecting of this experimental task. In
addition, while SCI patients show a remarkable flow out-
going from their SMAp areas in the beta frequency band,
healthy subjects show a relevant outflow from the MIF
areas in the same frequency band.
Although the presence of ‘‘hubs’’ in the out-degree dis-

tributions of all the cortical digraphs could suggest a
power-law trend, we cannot formally assert their scale-
free properties, according to actual procedures [25],
because the small size of the networks involved prevents
us from achieving a reliable degree distributions. Results
suggest that spinal cord injuries affect the functional
architecture of the cortical network sub-serving the voli-
tion of motor acts mainly in its local feature property. In
fact, SCI patients have shown significant differences from
healthy subjects in this index; this could be due to a func-
tional reorganization phenomenon, generally known as
brain plasticity [26]. The higher value of local efficiency
El suggests a larger level of the internal organization and
fault tolerance [27]. In particular, this difference can be
observed in three frequency bands, theta, alpha and beta,
which are already known for their involvement in electro-
physiologic phenomena related to the execution of foot

Figure 5 Scatter plot of global- and local-efficiency for SCI networks, CTRL networks and random networks. The Greek symbol codes the
average value in a particular frequency band. Black dots identify the values from a distribution of 1000 random graphs.

Figure 6 Example of random walk. The arrows indicate possible
self-avoiding random walks between the input vertex and the
output vertex. The transition probability between the input and
output is 1/12. The first probability is calculated by one divided by
the number of connections of the input (1/3). At each subsequent
step, the probability transition can be obtained by dividing the
current probability by the number of non-visited vertices. In the
superedges approach, all the possible self-avoiding random walks
are considered between the input and output, yielding the
respective transition probability.
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movements [28]. A high local efficiency implies that the
network tends to form clusters of ROIs which hold an
efficient communication. These efficient clusters, noticed
in the SCI group, could represent a compensative
mechanism as a consequence of the partial alteration in
the primary motor areas (MIF) due to the effects of the
spinal cord injury. Instead, it seems that the global level
of integration between the ROIs within the network do
not differ in a significant manner from the healthy beha-
vior. This could mean that spinal cord injuries do not
affect the global efficiency of the brain, which attempts to
preserve the same external properties observed during
the foot-lip task in the cortical networks of healthy

subjects. By perusing data presented in both Table 1 and
Figure 6, it is clear that cortical networks estimated in
this study are also not structured like random networks.
Instead, well ordered properties arise from most of the
digraphs obtained from each experimental group and fre-
quency band. In fact, they show similar values of global
and local efficiency and more precisely fault tolerance is
privileged with respect to global communication. More-
over, these real digraphs show a lower global efficiency
and a higher local efficiency than respective values
obtained from random digraphs. Since the original
graphs were rather small (12 nodes), random digraphs
are generated by simply shuffling in a random fashion

Table 1 Z-scores of Eg and El from the contrasts with 1000 random graphs

Z Values SCI-Theta SCI-Alpha SCI-Beta SCI-Gamma Healthy-Theta Healthy-Alpha Healthy-Beta Healthy-Gamma

Eg -237.45 -250.13 -262.88 -267.07 -249.81 -238.21 -225.95 -223.4

El 57.714 53.314 57.025 38.936 -15.99 -11.051 7.163 21.674

Figure 7 Profile of the activation in the Theta frequency band. Red circles represent the mean values from the SCI group; blue squares
represent the mean values from the CTRL group. Vertical bars indicate the respective standard deviation.
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the original links and keeping the same number of nodes.
Another way to obtain comparisons that are more robust
in large networks can be addressed by using algorithms
that also preserve the degree distributions [29].
The small-world analysis relies on the estimate of two

characteristic measures i.e. the path length and the clus-
ter index. Both these indexes are computed from the
shortest paths within the network. The organization of
such optimal pathways is very useful as it reveals the
level of information processing and signal transmission
among different cerebral structures. However, the solely
consideration of shortest path distances could provide
for an incomplete characterization of networks, since
complex connectivity systems with similar shortest
paths distribution can indeed exhibit distinct structures
and dynamics.
In the present study, we also analyzed the functional

network from a different perspective according to a
novel approach (i.e. superedges approach) founded on
the evaluation of multiple paths between cortical
regions. The higher activation observed in the SCI
group for the Theta frequency band reflects a lower

presence of dead-end ROIs that would interrupt the sig-
nal propagation toward other cortical areas.
This evidence indicates that the signal propagation

within the SCI network is highly increased due to a
lower presence of dead-end nodes in the modeled
graph. In the literature, Theta oscillations have been
related to episodic memory process responsible for
orientation in space and time [30]. In the light of the
results obtained with the standard small-world analysis,
a possible interpretation of the increased signal propaga-
tion in the SCI functional network relies on the need of
a higher functional interaction among the ROIs as a
mechanism to compensate the lack of feedback from the
peripheral nerves to the sensomotor areas.
Eventually, is it worth to note that in the present

study the estimation of functional connectivity from
EEG measurements is not biased by volume conduction
effects. Indeed, it has been proved that the use of the
distributed inverse methods (as that used in this paper),
as well as the use of cortical imaging, allows to recover
the “true” signals at the cortical level from scalp record-
ings [31,32]. This was proved by using simulations in
which it has been tested the degree of accuracy of the
reconstruction of the imposed connectivity [33-37]. All
these simulations assure that by using a SNR greater
than 3 in the data and a more than 15 seconds of data
(cumulative on all trials recorded) the reconstruction of
the “true” connectivity will be not biased by the volume
conduction with errors greater than 5%. These are
exactly the conditions in which we employed our meth-
odology from the gathered EEG data.

Conclusions
The proposed work suggests a possible way to treat the
brain connectivity from neuroelectrical measurements
with mathematical instruments and methodologies
derived from other fields of science. In particular, the
present work explored the use of graph theory indexes
on the assessment of particular brain functions during
movement tasks in tetraplegics. The possibility to esti-
mate such flow of brain networks sub-serving the differ-
ent functions in the human here explored it is
promising for a generation of a better understanding of
the brain functions.
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Figure 8 Scatter plot of the three main components obtained
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Table 2 Z The p-values for the channels considering
Manova (Rao, Pillai, Lawley-Hotelling and Roy tests)

Channel p-value(Ω)

Theta 0.066

Alpha 0.169

Beta 0.705

Gamma 0.632
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