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Abstract

Background: During the last years, functional magnetic resonance imaging (fMRI) of the brain has been
introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive
research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g.
computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively.

Results: The present work deals with a pluralistic approach to “consciousness’’, where we connect theory and tools
from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2)
functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics – in particular
the Wilson-Cowan model and stochastic resonance.

Conclusions: Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal
processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with
functional MRI during “resting state”, can deepen our understanding of graded consciousness in a clinical setting,
and clarify the concept of “consiousness” in neurocognitive and neurophilosophy research.

Background
During the last decade functional magnetic resonance
imaging (fMRI) has been introduced as an experimental
tool in the study of human consciousness, e.g. [1-8].
From the early report by Binder and coworkers on “con-
ceptual processing” and “task-unrelated thoughts” cap-
tured by resting state fMRI [9], and the “default mode
network” hypothesis by Raichle et al. [10], substantial
improvements in MR image acquisition technology,
experimental designs, and image analysis methodology
have taken place. Functional MRI investigations now
provide an increasingly important source of information
to the modeling of integrative brain functions [11-16]
and modern philosophy of mind, including the emer-
gence of consciousness (e.g. [17,18]), and sophisticated
mathematical and statistical models for fMRI signal pro-
cessing and interpretation have come into play [19-30].

The present work deals with a pluralistic approach to
“consciousness”, where we try to connect theory and
tools from three quite different disciplines:

1. philosophy of mind (emergentism and global work-
space theory),
2. functional neuroimaging recordings, and
3. theory of deterministic and statistical neurodynamics

This in order to explore and review – surely prema-
turely and haltingly – an experimental and theoretical
framework for the study of large-scale neuronal pro-
cesses (activity fluctuations, state transitions) that goes
on in the conscious human brain while examined with
functional MRI during “rest”.
The occurrence of state transitions in the brain (i.e.

neurodynamics [31,32]) and the presence of noise in
neuronal systems (e.g. [33]) have been jointly investi-
gated and incorporated into the framework of stochastic
dynamical systems theory. Stochastic dynamical systems
theory (e.g. [34-36]) deals with the study of dynamical
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systems (discrete or continuous rule-based time evolu-
tions on a state space) under the influence of noise. It
has been shown that the coupling of noise to nonlinear
deterministic equations of motion can lead to non-trivial
effects such as stabilizing unstable equilibriums, transi-
tions between coexisting deterministic stable states
(attractors), and enhanced response of a nonlinear sys-
tem to external signals (i.e. stochastic resonance). In our
setting, perceptions, attention, and memories have
extensively been modeled as state space attractors in
dynamical neural networks (e.g. [37,38]). We want to
explore these concepts and theoretical results in the
context of resting state fMRI [39]. These are 4-D
recordings consisting of spatial multivariate discrete
time series (Δt ~ 1-3 s) of length T (~ 4-6 min), expres-
sing local magnetic BOLD (Blood-Oxygen-Level-Depen-
dent) signal changes in a collection of n brain regions,
and can be regarded as realizations of our neurodynami-
cal system with state space Rn. In the simplest case,
each state space component xi : {1,..., T} ® R, (i = 1,...,
n) can be represented by a single brain voxel, consisting of
thousands of neurons, or be represented by a larger spatial
region as obtained from e.g. independent component ana-
lysis (spatial ICA). The joint activation pattern during the
observation period T, where neuronal activities are
embedded in noise, is denoted [x1(t),..., xn(t)]t=1,…,T, from
which “neural correlates of consciousness” (NCC) [40-42]
and dynamical state space models can be derived. This
approach has a modest relationship to the recent introduc-
tion of ensemble dynamics and neural mass models into
the imaging domain [43,44], concepts that have been per-
tinent to computational electrophysiology for many years
[21,45,46].
The rest of the paper is organized as follows. In the

next section we briefly introduce the concepts of ‘emer-
gentism’ and the ‘global workspace theory’ which we
have found particularly relevant regarding consciousness
and the philosophy of mind in our empirical context.
Next we present the exploding field of functional mag-
netic resonance imaging and so-called resting state func-
tional connectivity MRI (rs-fcMRI) mapping, including
the default mode network (DMN) as a particular subset
of the resting state networks (RSNs) that can be com-
puted from the 4-D fMRI recordings. We also refer to
recent literature that apply these technologies in the
study of ‘consciousness’ within basic cognitive neu-
roscience and in a clinical setting (vegetative state, sleep,
anesthesia, etc.). The most widely used class of methods
for analyzing resting state fMRI recordings (i.e. ICA) is
presented in a separate section. This brings us into the
theory of dynamical systems and neurodynamics and its
application to time course data in voxels or in spatially
more extensive ICA components representing functional

networks with long-range dependencies. In an experi-
mental study we present an illustrative example, where
the fMRI data are taken from one individual in a collec-
tion of more than hundred subjects that participates in
a comprehensive and longitudinal study of cognitive
aging that includes structural and functional brain ima-
ging, neuropsychological testing and genetic profiling.
Finally, we give some concluding remarks and future
perspectives.
To guide a more detailed and mature tour, we have

deliberately provided references to relevant and recent
literature in our cross-disciplinary endeavor.

Theory and methods
Philosophy of mind, emergentism, and global workspace
theory
The concept of ‘emergence’ can be defined as (J. Gold-
stein, 1999):
... the way complex systems and patterns arise out of a

multiplicity of relatively simpler interactions - occurring
on the macro level, in contrast to the micro-level compo-
nents and processes out of which they arise. Hence, the
construct of ’emergence’ (cf. Fig. 1) is applicable to the
brain and the integrative levels of brain function in man
and animal, including ‘consciousness’.
According to [47], the common characteristics of

‘emergence’ are [here focussing on fMRI-derived “emer-
gents” of resting state networks (RSNs) including the
default mode network (DMN)]:
Radical novelty: emergents have features that are not

previously observed in the complex system being
studied.
Coherence or correlation: emergents appear as inte-

grated wholes that tend to maintain some sense of iden-
tity over time. This coherence spans and correlates the
separate lower-level components into a higher-level unity.
Global or macro level: the locus of emergent phe-

nomena occurs at a global or macro level, in contrast to
the micro-level locus of their components.
Dynamical: emergent phenomena are not pre-given

wholes but arise as a complex system evolves over time.
As a dynamical construct, emergence is associated with
the appearance of new attractors in dynamical systems
(i.e. bifurcation).
Ostensive: emergents are recognized by “showing

themselves” [in casu: can be measured by fMRI].
In this neurophilosophical landscape, where resting

state fMRI is an empirical ingredient, a particular rele-
vant position is the viewpoint of global workspace
(GW) theory or the “conscious access hypothesis” pro-
posed by Bernard Baars [48]. According to this theory
there is a global distribution of conscious content
where multiple brain networks cooperate and compete.
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For such, Baars states the following theoretical claims
[49]:

“1. Conscious perception enables access to widespread
brain sources; unconscious sensory processing is much
more limited.
2. Conscious perception, inner speech, and visual
imagery enable working memory functions; there is
no evidence for unconscious access to working
memory.
3. Conscious events enable almost all kinds of learn-
ing: episodic and explicit learning, but also implicit
and skill learning.
4. Conscious perceptual feedback enables voluntary
control over motor functions, and perhaps over any
neuronal population and even single neurons.
5. Conscious contents can evoke selective attention.
6. Consciousness enables access to ‘self’ – executive
interpreters, located in part in the frontal cortex.”

Since its inception in 1983, the global workspace the-
ory has been refined and elaborated, integrating experi-
mental data and models from cognitive psychology,
artificial intelligence, electrophysiology, and neuroima-
ging [41,50-54]. Global workspace theory has thus
evolved into a comprehensive framework for empirically
based characterization and understanding of ‘conscious-
ness’, and might also show to be a useful interpretative
tool regarding neural correlates of consciousness using

computational neuroimaging with resting state fMRI
recordings (cf. [55] with commentaries, and [56,57]).

Neuroimaging and resting state fMRI
... If we hope to understand how the brain operates,
we must take into account the component that con-
sumes most of the brain’s energy: spontaneous neuro-
nal activity.

From Fox & Raichle [39]
The observation that spontaneous BOLD fMRI activity

is not random noise, but is specifically organized in the
resting human brain as functionally relevant resting-
state networks (RSNs) has generated a new avenue in
neuroimaging and cognitive research.
Biswal et al. [58] were the first to demonstrate the fea-

sibility of using fMRI to detect such spatially distributed
networks within primary motor cortex during resting-
state. From a MRI time course of 512 echo-planar
images obtained every 250 ms in the resting human
brain they calculated temporal correlations across the
brain with the time-course from a seed voxel whose spa-
tial location was chosen from a prior finger-tapping
study. Time courses of low frequency (< 0.1 Hz) fluctua-
tions where found to have a high degree of temporal
correlation within sensorimotor regions and also with
time courses in several other regions that can be asso-
ciated with motor function, and they concluded that
correlation of low frequency fluctuations in the resting

Figure 1 Mathematical and scientific roots of emergence, where the ‘route to consciousness’ is indicated by boxes (modified from [47]).
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state BOLD signal is a manifestation of functional con-
nectivity of the brain. With increasing evidence during
the last decade, the common understanding is that
RSNs reflect interactions in cognitively relevant func-
tional networks of the brain and are not, as early
debated, a simple consequence of ongoing non-neuronal
physiological processes such as the cardiac and respira-
tory cycles [59] (but see also [60,61]). Resting state func-
tional connectivity MRI (rs-fcMRI), combined with
structural connectivity mapping (cf. Fig. 2), has therefore
proven to be a useful probe for functional alterations in
the brain as a consequence of changes in brain state,
disease processes, neurodevelopment and aging, phar-
macological interventions, and genetics [62-71].
Moreover, several fMRI studies have demonstrated

that some of these self-organizing, resting state networks
coincide with brain regions that are found to be deacti-
vated across several fMRI (and PET) studies where an
external stimulus or a cognitive paradigm is applied.
Thus, these brain locations are more active at rest than
during task performance. These observations have led to
the hypothesis that the brain remains active in an orga-
nized fashion during the resting state, denoted the
default mode network (DMN) [10,39]. The default mode

hypothesis has been extensively studied [10,71-78],
including direct electrophysiological measurement of
default network areas [79], and its changes in different
clinical states of consciousness [8]. The concepts and
exploration of RSNs and the DMN has therefore been
regarded as “a paradigm shift in functional brain
imaging’’[80,81].
Spatial Independent Component Analysis (ICA)
in the study of resting state fMRI
Independent component analysis (ICA) [82,83] has pro-
ven to be a powerful exploratory tool for data-driven
analysis of fMRI recordings. It is used to blindly esti-
mate distributed spatial patterns in the brain, jointly
with hidden source processes in the observed data,
under the assumptions of statistically independent pat-
terns and non-Gaussianity of the source components
[84,85]. In this setting, one typically represents the 4-D
fMRI dataset as a p × n matrix X, where the n columns
consist of an enumeration of the n voxels that covers
the imaged 3-D object of interest (i.e. the brain), and
the rows consist of the recorded signals in these voxels
at p different time points. Furthermore, one assumes
that a matrix decomposition exists such that X = AS,
where S is a p × n matrix of source signals, and A is a

Figure 2 Structural and functional connectivity assessed with multimodal MRI (anatomical T1-weighted 3D scan, diffusion tensor imaging,
BOLD fMRI).
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p × pmixing matrix. This expresses that the ICA model
is a generative model that describes how the observed
data are generated by a mixing process of the compo-
nents (i.e. row vectors) in S, and that the independent
components are latent variables that cannot be directly
observed. Both A and S must be estimated from X
under some general statistical assumptions (indepen-
dence and non-Gaussianity), and the ICA method is
thus a type of blind source separation (BSS).
During ICA estimation, the matrix S is optimized to

contain, in its rows, statistically independent areas in the
brain (spatial maps, or components), each with an
internally consistent time course (the corresponding col-
umn vector in A).The observed signal intensity xij in
time sample i of voxel j is thus a weighted sum (linear
mixing) of the unobserved source signals in the voxel,

i.e. x a sij ik kj
k

p
=

=∑ 1
. With iterative optimising of an

unmixing matrixW = A-1, we obtain S = WX with
mutually independent rows using e.g. the InfoMax algo-
rithm [84,86]or the FastICA algorithm [87]. No noise
is included in the model. Typically, the spatial maps
are transformed to have zero mean and unit variance
(Z-scores), thresholded at some level (e.g. |Z| > 2.0),
and mapped back to 3-D image space, color-coded, and
superimposed on a coregistered anatomical image for
visual assessment of the ICA component.
It can be shown that the independent components are

identifiable up to a permutation and scaling of the
sources under the assumption that at most one of the
sources sk = [sk1,..., skn] (k = 1,... ,p) is Gaussian, and that
the mixing matrix A is full rank. The assumption that
the mixing matrix is square i.e. the complete case with
as many mixtures (M) as sources (K), can be relaxed
[88-90]. Important challenges are to reduce large fMRI
data sets for ICA [91] and to estimate the number of
independent components in the data [92]. Calhoun and
coworkers [93] has also introduced an approach (GIFT)
for drawing group inferences using ICA of fMRI data
from many subjects, and Beckmann et al. [94] have con-
structed a “tensor probabilistic ICA” for multisubject
fMRI analysis. These extensions have widened the scope
and popularity of ICA for fMRI studies, especially group
studies of resting state networks and the DMN (see [95]
for a comparative framework with these approaches).
Furthermore, ICA methods has also been applied to
EEG recordings and combined fMRI-EEG data [96],
with a large potential for integrated analysis of electro-
physiological recordings (with high temporal, low spatial
resolution) and BOLD image acquisitions (with high
spatial, low temporal resolution). Recently, it has been
argued that independence is not the right mathematical
framework for blind source separation in fMRI and that
representations in which the fMRI signal is spatially

sparse are more promising [97], and in their simulation
studies Daubechies et al. demonstrated that the ICA
algorithms InfoMax and FastICA select for such sparsity
of components rather than spatial independence.

Theory of dynamical systems and neurodynamics
... Neurodynamics has a peculiar property described
as the “edge of stability” or “metastability”. Accord-
ingly, the brain as a complex dynamic system is in
perpetual movement from one state to another.
When the brain reaches a dominant state, it does
not rest there, rather it immediately moves on and
decays into an unordered state, only to emerge a
moment later to another prominent state. Freeman
has identified neurophysiological correlates of this
metastable wandering along the landscape of brain
dynamics in the form of spatio-temporal patterns of
oscillations, sudden jumps or phase transitions of
local field potentials. (From [38])

To bring functional MRI into the domain of experi-
mental neurodynamics (cf. Fig. 3), we can: (i) regard
voxel time courses as the given spatio-temporal observa-
tions, or (ii) incorporate a “higher level” spatial repre-
sentation based on anatomically meaningful regions (cf.
the 38 cortical and 2 subcortical regions defined in
[43]), or (iii) incorporate regions that are derived from
spatial ICA analysis, or from cross-correlation clustering
and graph theory (pionered by [98]), or from structural
connectivity maps obtained with diffusion tensor MRI
recordings and fiber tracking.
Due to the coarse spatial resolution of fMRI (for

whole brain human studies voxel size is typically limited
to ≥ 1µl) and low temporal resolution (typically ≥ 1000
ms), these measurement techniques will only be able to
consider the granularity of ‘mesoscopic brain dynamics’,
i.e. (nonlinear) dynamics and neural activity at spatial
scales between a few millimeters and the entire brain,
and temporal scales of a few hundred milliseconds to
seconds (cf. [99]). Moreover, mesoscopic brain dynamics
is characterized by “its high complexity, often involving
oscillations of different frequencies and amplitudes, per-
haps interrupted by chaotic or pseudo-chaotic irregular
behaviour. The mesoscopic brain dynamics is affected by
the activity at other scales. For example, it is often
mixed with noise, generated at a microscopic level by
spontaneous activity of neurons and ion channels. It is
also affected by macroscopic activity, such as slow
rhythms generated by cortico-thalamic circuits or neuro-
modulatory influx from different brain regions” [100]. As
indicated above, there are a number of naturally occur-
ring ‘noise sources’ in the brain (related to e.g. channel
gating, ion concentrations, membrane conductance, and
synaptic transmission [33]) that will influence signal
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measurements at mesocopic and macroscopic scales
([101]). During the last years, the importance of noise in
neural systems has been put in the context of ‘stochastic
resonance’ – and before we deal with a classical frame-
work for neural dynamics (the Wilson-Cowan model),
we will present this highly interesting and relevant
phenomenon.
Stochastic resonance
Stochastic resonance (SR) is “a mechanism by which a
system embedded in a noisy environment acquires an
enhanced sensitivity towards small external time-depen-
dent forcings, when the noise intensity reaches some finite
level” [102]. This SR effect introduces a new role of
noise processes, not only as a detrimental nuisance, but
as a constructive component in a broad range of natural
and man-made systems. The mechanism was first
observed and reported in climate research by Benzi et
al. [103] in the early 1980’s to explain the almost peri-
odic recurrences of ice ages on the earth.
Mathematically, the SR phenomenon can be captured

in a bistable nonlinear dynamical system where a one-
variable formulation could be [104]:

dx

dt

U

x
= − ∂

∂
+ + + ( )A tcos  t( )   (1)

where the state variablex(t), interpreted as e.g. the
position of a Brownian particle in a bi-stable potential
U : R ® R, is subject to both a weak periodic forcing
parameterized with amplitude A, frequency ω and initial
phase j, and a noise process ξ(t). In our example U(x)
can be the reflection-symmetric quartic potential

U x x x( ) = − +1
2

1
4

2 4 , with minima xm located at ±1 and

with height of the potential barrier between the two

stable minima equal to ΔU = 1
4
. The noise term ξ(t) in

the stochastic differential equation (1) is typically a zero-

mean Gaussian where the SR mechanism is related to
its autocorrelation function <ξ(t), ξ(0)>, which could be

on the form
D

e t


− where τ is correlation time and D

is intensity of the colored noise. The effect of SR can be
enhanced by introducing an ensemble of stochastic reso-
nators. In this case, a weak periodic signal can induce
large-scale stochastic synchronization and self-organiza-
tion (Ch. 3 in [34]).
More recently, SR has been introduced to explain

behavior in biological systems (see [105], 106 for
reviews), including single neurons and large-scale brain
systems (e.g. [107]). Neural synchrony, noise, and SR
has also been applied to the modeling of attention and
consciousness [108], and how age-related neuromodula-
tory deficiencies may contribute to increased neuronal
noise leading to less robust information processing in
aging neurocognitive systems [109,110]. Most interest-
ingly, the stochastic resonance mechanisms has recently
been proposed to explain resting state results in connec-
tivity data from BOLD fMRI experiments [43].
As an illustrative example of stochastic resonance in

basic neurophysiology, we will briefly present a simula-
tion study of the spiking behavior in a neuron with
Hodgkin-Huxley (HH) dynamics [111], where the firing
of action potentials is driven by a sinusoidal external
force and Gaussian noise. The simulation code we are
using is modified from the exposition on nonlinear

Figure 3 Functional MRI voxel time courses and spatio-temporal activity patterns in the context of experimental neurodynamics (modified
from [155]).
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neurodynamics by H.R. Wilson [112] (HHnoise.m),
using a fourth order Runge-Kutta solver with constant
step size to solve the Rinzel approximation to the HH
equations:

C
dV

dt
a bV cV V E R V E I t n t

dR

dt R
R

Na k= − + + − − − + +

= − +

( )( ) . ( ) ( ) ( )

(

2 26 0

1


11 35 1 03. . )V +

For the simulations we used time increment Δt = 0.02,
and a = 17.81, b = 47.71, c = 32.63, d = 26. The equili-
brium potentials were ENa = 0.55 and EK = –0.92. The
neural capacitance was C = 0.8, and the recovery time
constant τR = 1.9 ms. The stimulating oscillating current
was given as I(t) = A sin(ωt + j) with amplitude A = 0.035
and initial phase j = 0, were the ω was fixed to give an
angular input frequency of 200 Hz. We adjusted zero
mean noise level h with standard deviations (SD) in steps
of 0.01 in the range [0.0, 0.5] to observe the effect of noise
level of the system and the occurrence of stochastic reso-
nance. The results from this simulation study are given in
Fig. 4, where Figs. 4c &4e depict SR with clustering of
spike intervals corresponding to integral multiples of the
principal inter-spike interval of about 5 ms.
Linking fMRI and neurodynamical modeling
The theory of dynamical systems has been applied to fMRI
in different settings [113-118]. To explore a particularly
interesting link between fMRI and neurodynamical model-
ing in more detail, we adopt the approach taken by Deco
et al. [43]. Here, the dynamics of each ‘node’ (to be inter-
preted below) is captured by a mean-field type rate model,
expressing the coupling between excitatory and inhibitory
nodes in the network. This is very similar to the classical
attractor neural network (ANN) model stated by Amit
[37] and others.
More specifically a Wilson-Cowan [119] type neural

network dynamics is introduced, following [120,121]

du

dt
u W u Ii i

ij j

j i

i i= − + + +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

≠
∑ Θ (2)

where ui denotes the activity of the i-th ‘neuron’
(neural mass, or enumerated spatial localization i = 1,...,
n in the brain); a is inverse relaxation time; Wij is the
‘synaptic’ or connection strength between locations i and j
(i.e. the connectivity matrix); Ii is the external input to
location i; and ξi is random noise related to i. The non-
linear (e.g. sigmoidal) function Θ(x) limits the growth of
x, accounting for saturation of ‘firing rates’ or local neural
mass activity. In the ‘resting state’, external inputs to the
network nodes vanish, i.e. Ii ≡ 0, where we also assume
the noise terms ξi are Gaussian N(0, si), and that

saturation can be ignored, i.e. Θ(x) ≡ x. With these
assumptions, the coupled stochastic ODE’s (2) can be dis-
cretized in time, with time step Δt, to obtain

u t t t u t W u t t N t ti i ij j i

j i

( ) ( ) ( ) ( ) ( , )( )+ = − + +
≠

∑Δ Δ Δ Δ1 0  (3)

which can be written on matrix form

u(t + Δt) = Au(t)+ξ(t) (4)

where A = (1 – aΔt)1 + WΔt;ξ = N(0,s)(t)Δt, and
N(0,s)(t) denotes the noise column vector at time point
t. The temporal averaged covariance matrix of the rest-
ing state time courses is C =〈u(t) • u(t)T〉, and the
eigenvectors vk of the real-valued symmetric matrix C
are the principal components or the dominant patterns
or modes of the resting state activity,
i.e. u v v u( ) ( ) ; ( ) ( ); ( )t a t a t t a tk k k k

T
k k

k

n
= = ⋅ =

=∑  2

1
. In

[120] it is shown that the covariance matrix of the rest-
ing state activity is determined by the covariance matrix
of the intrinsic noise and the eigenvalues of the connec-
tivity matrix W. As the overall weight of each mode in
the resting state activity is given by the magnitude of
the associated eigenvalue lk, there is link between the
dominant patterns and the concept of attractor in
neural dynamics [120]. Morover, Galán [120] provides
arguments that the resting state neural activity ‘fluctu-
ates most of the time around the basin of attraction
([37,122]) of the dominant pattern’, and that ‘the
amount of time spent around the basin of attraction of
the remaining principal components is proportional to
the magnitude of their eigenvalues’.
In their simulation study of resting brain fluctuations,

Deco and co-workers [43], using the above Wilson-
Cowan model with 38 cortical and 2 subcortical thalamic
nodes and a realistic neuroanatomical connectivity matrix
and signal transmission delay between nodes in the net-
work, were able to reproduce typically occurring resting
state fMRI brain dynamics. In their synchronization ana-
lysis (employing the Kuramoto synchronization index
[123]) of simulated neuroelectric activity in each of two
individual community clusters (the occipital-temporal-
prefrontal community, and the sensorimotor-premotor
community), using internode communication velocity of
v ~ 1.65 m/s and global coupling strength of a ~ 0.007, a
global slow 0.1 Hz) oscillation at rest could emerge from
a network built up with simple fast oscillators in the
g-band of 40 Hz. This underscores the role of neural
synchronization as a mechanism for the emergence of
ultraslow fluctuations in e.g. the default mode network as
observed in resting state BOLD fMRI. Moreover, Deco
et al. also observed a stochastic resonance effect for the
same level of fluctuations that revealed optimal
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emergence of 0.1 Hz global slow oscillations, with the
occurrence of anti-correlated spatiotemporal patterns (as
reported in fMRI) in both communities – without the use
of (unrealistic) long-range inhibition. From their work,
they conclude that “the particular dynamics of the intrinsic
properties of the brain are useful for keeping the system in
a high competition state between the different subnetworks
that later are used during different tasks. ... In this way, a

relatively small external stimulation is able to stabilize one
or the other subnetwork giving rise to the respective evoked
activity. So, the anticorrelated fluctuating structure of the
subnetwork patterns characteristic of the resting state is
particularly convenient for that.”
Linking consiousness and neurodynamics
The field of neurodynamics has also had impact on the
theory of consciousness [38,41,124-127] (so has

Figure 4 Stochastic resonance in a simple neuronal system with an oscillating driving force and a noise term. The simulated neuron is
modeled with Hodgkin-Huxley dynamics [112] and is stimulated by a sinusoidal current I at a frequency 200 Hz and amplitude 0.035 (a.u.) with
added zero mean Gaussian noise with standard deviation SD. At low noise levels (SD less than 0.01), spike threshold is not attained. With
increased noise (SD = 0.04) irregular spike bursts occur. At a narrow noise band, stochastic resonance occur with inter-spike interval (ISI) at about
5 ms and integral multiples of that period. We see that the neuron can miss four or more periods between spiking, but keep firing at integral
multiples of the 5 ms stimulus period. In the simulations, one could also show that (low and moderate) noise alone will not be sufficient to
drive the spiking in the absence of the periodic stimulus. In this simulation we observe that sub-threshold noise can increase the sensitivity of
the neuron to periodic stimulation - that be sensory input or input from a neuronal rhythm generator. This illustrates stochastic resonance. a)
Insufficient noise level (SD = 0.01) to trigger spikes. b) Low noise level (SD = 0.04) - infra SR. c) Stochastic resonance, SR (SD = 0.19). d) High
noise level (SD = 0.30) - supra SR. e) Magnification of the SR condition in c). Blue trace = oscillating driving force; Black trace = input noise; Red
trace = response (firing pattern) of the simulated neuron at the given noise level. The inserts in b) and d) show the corresponding inter-spike
interval histograms.
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stochastic resonance [32,108,128]). A prominent exam-
ple is the ‘dynamic core hypothesis’ presented in a semi-
nal paper by Tononi and Edelman [129], and later
refined and extended [127,130,131]. Based on modeling
concepts from statistical physics and information theory,
together with accumulated empirical findings in the his-
tory of clinical and experimental neuroscience, they pro-
pose the following:

• A group of neurons can contribute directly to con-
scious experience only if it is part of a distributed
functional cluster that achieves high integration in
hundreds of milliseconds.
• To sustain conscious experience, it is essential that
this functional cluster be highly differentiated, as
indicated by high values of complexity.
• A large cluster of neuronal groups exist that
together constitute, on a time scale of hundreds of
milliseconds, a unified neural process of high com-
plexity – termed the dynamic core, where

– its participating neuronal groups are much
more strongly interactive among themselves than
with the rest of the brain
– its global activity patterns must be selected
within less than a second out of a very large
repertoire
– deliberately does not refer to a unique, invar-
iant set of brain areas (e.g. prefrontal, extrastri-
ate, or striate cortex) and,
– can transcend traditional anatomical bound-
aries and may change in composition over time

An other interesting neurodynamics theory of con-
sciousness is the COrollary Discharge of Attention Move-
ment (CODAM) model of J. G. Taylor and co-workers
[132,133], based on application of engineering control
theory and artificial neural networks. The CODAM fra-
mework is claimed to have considerable experimental
support for certain of its modules. Support that comes
from both brain imaging, ERP studies, and single cell
experiments, as well as transcranial magnetic stimula-
tion (TMS) that enables non-invasive, temporarily
‘knock out’ of brain circuitry in operator-defined cortical
regions. In this model, the so-called ‘working memory
corollary discharge (WMcd) buffer’ is the most impor-
tant element in the circuitry to create consciousness.
The framework consists of an input module (for pre-
processing in low-level visual cortex), the object map
(where object codes are stored), the inverse model con-
troller (IMC) which is a generator of the signal to move
the focus of attention in lower cortices, the corollary
discharge module where a copy of the attention move-
ment signal is stored temporarily, the working memory
(WM) holding an estimate of the attended target

representation, and the monitor producing an error sig-
nal given by the difference of the required goal signal
and that produced by the corollary discharge module as
a predictor of the attended next state or of the working
memory module activation (cf. [133]). So far, very little
work has been done to put fMRI experiments into the
CODAM framework, which might have been due to dif-
ficulties of interpreting fMRI data in terms of timing
and inhibition ( [134]).
As resting state fMRI networks revealed by e.g. inde-

pendent component analysis might represent neural
mass activity related to the state of consciousness ([17]),
further empirical investigations and numerical simula-
tions of distinct network components and their time
courses, IC1(t), ..., ICn(t), should be performed in the
framework of Wilson-Cowan type neural network
dynamics ( [43,121]). Moreover, measuring fMRI resting
state functional connectivity (rsFC) and structural con-
nectivity (SC), using DTI or diffusion spectrum imaging
tractography at high resolution in the same individuals,
it has been shown that the organizations of SC and of
rsFC are strongly interrelated [121,135] 135. In [121]
the authors applied Eq. (4) to model macroscopic corti-
cal dynamics within segmented cortical parcellations
(n=998), where the inter-nodal interaction efficacy
matrix W in the generalized coupling matrix A = (1 –
aΔt)1 + WΔt was the resampled fiber strengths
obtained from diffusion spectrum imaging tractography.
Such approaches might open up a new opportunity to
combine mutlimodal MRI and neurodynamics in the
study of consciousness.
In the following experiment, we illustrate the first

steps of deriving time course information from resting
state fMRI data that can be further analyzed in such
modeling frameworks.

An experimental resting state fMRI illustration
As an illustrative example, we report data from one sub-
ject (651) in a cohort of 100 healthy elderly people that
were scanned with a 1.5 Tesla GE Signa Excite scanner
equipped with an eight-channel head coil as part of a
larger longitudinal study of cognitive aging [136-139],
where our laboratory was responsible for the image
analysis.
Data acquisition
While the subject was lying comfortably in the scanner
with eyes closed, head fixed with noise-protecting ear-
pads, and asked not to fall asleep, we used an EPI gradi-
ent echo pulse sequence (TR / TE / FA = 2 s / 50 ms /
900); 64 × 64 acquisition matrix, 25 slices, 256 time
frames, with voxelsize = 3.75 × 3.75 × 5.5 mm3 and
time resolution of 2 s to obtain “resting state” data. In
addition, the imaging protocol consisted of an alternat-
ing left and right hand finger-tapping fMRI paradigm,
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two anatomical 3D T1-weighted scans for brain segmen-
tation with FreeSurfer (http://surfer.nmr.
mgh.harvard.edu), and DTI acquisitions (TR / TE /
FA = 7900 / 104.8 / 90; 25 b=1000, 5 b=0; 25 slices;
voxelsize = 1.88 × 1.88 × 4.0 mm3) for assessment of
white matter integrity and fibertracking with TrackVis
(http://trackvis.org).
Data processing
Image processing and analysis of the “resting state
fMRI” data was carried out using Probabilistic Indepen-
dent Component Analysis [85] as implemented in
MELODIC (Multivariate Exploratory Linear Decomposi-
tion into Independent Components) Version 3.09, part
of FSL (FMRIB’s Software Library, http://www.
fmrib.ox.ac.uk/fsl) [29]. The following data pre-
processing was applied to the input data: masking of
non-brain voxels; voxel-wise de-meaning of the data;
normalization of the voxel-wise variance; Pre-processed
data were whitened and projected into a 60-dimensional
subspace using probabilistic Principal Component

Analysis where the number of dimensions was estimated
using the Laplace approximation to the Bayesian evi-
dence of the model order [85,140]. The whitened obser-
vations were decomposed into sets of vectors which
describe signal variation across the temporal domain
(time-courses) and across the spatial domain (maps) by
optimizing for non-Gaussian spatial source distributions
using a fixed-point iteration technique [87]. Estimated
Component maps were divided by the standard devia-
tion of the residual noise and thresholded by fitting a
mixture model to the histogram of intensity values [85].
Figure 5 shows recorded images and a voxel time course
from the subject, while Fig. 6 depicts MELODIC com-
ponent no. 45, representing the default mode network.
A more advanced processing scheme of the multimo-

dal MRI acquisitions from the same subject (651),
combining both structural connectivity information
from DTI recordings and functional connectivity from
resting state fMRI recordings, is shown in Fig. 7. [The
original acquisitions Anatomyi.nii, Anatomy2.

Figure 5 Voxel time course in right cerebral hemisphere from subject 651. a) Time frame from the resting state fMRI recording, where a
voxel-of-interest in the visual area of the occipital lobe is marked with a cross-hair. b) Corresponding voxel in the 3D Tl-weighted anatomical
image. c) Same voxel in the volume-rendered 3D anatomical image obtained with MRIcron (http://www.sph.sc.edu/comd/
rorden/MRicron) d) Plot of signal intensity (S.I.) versus time for the same voxel.
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nii, DWI.nii, bvec.dat, bval.dat, Resting.
nii, Fingertapping.nii are available in NIFTI-1
format from the author; see also http://sites.
google.com/site/hufy372 ]

Concluding remarks and perspectives
During the last few years, functional MRI has been
introduced as a new tool to measure consciousness, both
in a clinical setting and in basic neurocognitive research
[1,2,7,8,18,141-153], and advanced methods and theories

(e.g. computational neuroimaging) has arrived the field
of fMRI [114,121,154-158]. The aim of this paper has
been to present the great excitement (and limitations)
regarding the use of fMRI as a tool for the study of
one of the Big Questions - the neural correlates of
consciousness.
To end up with a more balanced picture regarding the

measurement of NCC, we have also to address electrical
neuroimaging (e.g. [159]) and the assessment of neuro-
dynamics at subsecond time scale - not yet possible

Figure 6 a) Spatial extension of MELODIC component no. 45, a thresholded IC map, representing the default mode network. b) The temporal
mode or timecourse of component no. 45. c) Powerspectrum of timecourse belonging to component no. 45. Note the peaks in the low
frequency band ~ 0.01 – 0.02 Hz.

Lundervold Nonlinear Biomedical Physics 2010, 4(Suppl 1):S9
http://www.nonlinearbiomedphys.com/content/4/S1/S9

Page 11 of 18

http://sites.google.com/site/hufy372
http://sites.google.com/site/hufy372


with MRI. Up to now, electrophysiology has had much
greater impact than fMRI on the study of consciousness,
both in the clinics [160-162] and in basic research
[163,164]. However, during the last years the technology
for obtaining simultaneous recordings of multichannel
electroencephalography (EEG) and BOLD fMRI acquisi-
tions has been developed. This technology, involving
both hardware solutions and clever data analysis,
exploits and joins the advantages of each technique -
the high spatial resolution of fMRI and the high tem-
poral resolution of EEG. Due to these developments
there are an increasing number of investigations being
performed, both in the clinics (e.g. epilepsy) and in neu-
rocognitive research that uses simultaneous EEG-fMRI

recordings to disentangle brain processes and spatio-
temporal activity patterns [75,96,165-177]. Recently,
Musso et al. [178], using a novel EEG-fMRI analysis
approach to explore resting-state networks, were able to
show that the information contained within EEG micro-
states on a millisecond timescale was able to elicit
BOLD activation patterns consistent with well known
RSNs - “opening new avenues for multimodal imaging
data processing”. Finally, direct mapping of neuronal
activity using MRI detection has been demonstrated
[179-182], but seems not to be very promising, or of
practical value, so far [183].
To conclude this paper, we will briefly bring up some

themes and challenging topics that need to be clarified,

Figure 7 Integration of structural connectivity (DTI) and functional resting state networks (fMRI). All derived information from the
multimodal MRI examination (subj651) was obtained automatically with different freely-available analysis tools. Coregistration was performed in
Matlab. a) Tl-weighted anatomical 3-D image superimposed with: (i) anatomical region (thalamus) segmented by FreeSurfer; (ii) resting state
networks (RSNs) derived from ICA analysis (GIFT) of the BOLD fMRI recordings; (iii) white matter fiber tracts (TrackVis) between these regions of
interest (ROIs). Yellow blob is the ventromedial prefrontal cortex (VMPFC) component of the default mode network (DMN). b) Corresponding time
courses (256 frames; TR= 2 s) of the resting state components. Upper trace is IC-3 (DMN). Lower trace is IC-26 located in the central thalamic
region (not part of the DMN). c) Histogram of the FA values, reflecting white matter integrity and structural connectivity along the fiber tracts
between the two regions: (i) spatial intersection between anatomical thalamus and the RSN defined by IC-26, and (ii) the VMPFC component of
DMN defined by IC-3. [Courtesy of Martin Ystad, Tome Eichele, Erlend Hodneland, and Judit Haasz]
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or incorporated into experimental procedures and mod-
eling frameworks:

• The emergence of human consciousness [184]
• Consciousness without a cerebral cortex? [185] Is
your brain really necessary? [186]
• The possibility or plausibility of quantum informa-
tion processing capabilities of neuronal microtubules
(MT) and relation to consciousness, with proponents
[187-193] and opponents [195-197]
• Different time scales in the brain [198,199]
• Fast dynamics in local and large-scale networks
[200], and hierarchy of attractors [201]
• Direct correlations between the BOLD response
and neuronal electrophysiology [202,203]
• Resting state fMRI - “spatially sparse” rather than
“spatially independent” componets? [97]
• Mind reading using fMRI time courses
[14,183,204-207]
• Consciosness and unilateral neglect [208] – the
role of fMRI? [209,210]
• Graded consciousness and fMRI [1,7,8,67,70,
142,144,211-219] and unconscious cognitive control
[146,220].

Finally, within frameworks of emergentism, global work-
space theory, dynamic core hypothesis, and the CODAM
model we believe the combination of (i) resting state fMRI
(functional connectivity), (ii) diffusion tensor MR imaging
(structural connectivity), and (iii) neurodynamical model-
ing will bring a new set of tools to the study of conscious-
ness and cognition – that be during early development,
during aging and neurodegeneration, and in altered brain
states such as anesthesia, sleep, and meditation.

List of abbreviations used
4-D: four dimensional (3-D + time); ANN: attractor neural network; BOLD:
blood-oxygenation-level-dependent; BSS: blind source separation; CODAM:
COrollary Discharge of Attention Movement; DMN: default mode network;
DTI: diffusion tensor imaging; EEG: electroencephalography; ERP: event
related potentials; FA: flip angle (in MRI); fMRI: functional magnetic
resonance imaging; GW: global workspace (theory); HH: Hodgkin-Huxley
(dynamics); IC: independent (spatial) component; ICA: independent
component analysis; MT: microtubule; NCC: neural correlates of
consciousness; NMM: neural mass model; ODE: ordinary differential equation;
PET: positron emission tomography; rsFC: resting state functional
connectivity; RSN: resting state network; SC: structural connectivity; SDE:
stochastic differential equation; SR: stochastic resonance; TE: echo time (in
MRI); TMS: transcranial magnetic stimulation; TR: repetition time (in MRI);
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