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Abstract
DNA damage checkpoint and DNA repair mechanisms play critical roles in the stable
maintenance of genetic information. Various forms of DNA damage that arise inside cells due to
common errors in normal cellular processes, such as DNA replication, or due to exposure to
various DNA damaging agents, must be quickly detected and repaired by checkpoint signaling and
repair factors. Telomeres, the natural ends of linear chromosomes, share many features with
undesired “broken” DNA, and are recognized and processed by various DNA damage checkpoint
and DNA repair proteins. However, their modes of action at telomeres must be altered from their
actions at other DNA damage sites to avoid telomere fusions and permanent cell cycle arrest.
Interestingly, accumulating evidence indicates that DNA damage checkpoint and DNA repair
proteins are essential for telomere maintenance. In this article, we review our current knowledge
on various mechanisms by which DNA damage checkpoint and DNA repair proteins are
modulated at telomeres and how they might contribute to telomere maintenance in eukaryotes.
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2. INTRODUCTION
The maintenance of genomic stability is essential for normal cell growth and survival. Since
the integrity of genomic DNA is constantly under threat from various genotoxic agents in
the environment and errors in normal cellular processes such as DNA replication, eukaryotic
cells have evolved various complex mechanisms which ensure that genetic information can
be propagated free of errors. One form of DNA damage that is especially challenging for
cells to repair is DNA double-strand breaks (DSBs). In eukaryotic cells, DSBs are repaired
by two major DNA repair mechanisms known as non-homologous end-joining (NHEJ) and
homologous recombination (HR) (1). Furthermore, DSBs strongly activate DNA damage
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checkpoint responses to arrest cell cycle progression, so that cells have enough time to
properly process and repair DSBs.

Telomeres are specialized nucleoprotein structures responsible for protecting the ends of
eukaryotic chromosomes (2). Telomeric DNA ends do not fully activate DNA damage
checkpoint responses and escape re-joining/repair by DNA repair enzymes. Therefore, one
might predict that telomeres protect chromosome ends simply by denying access to the DNA
damage response machineries. However, many DNA damage checkpoint and DNA repair
proteins robustly bind telomeres and play essential roles in telomere maintenance (3, 4).
While much progress has been made in recent years, the precise mechanisms by which DNA
damage response factors contribute to telomere maintenance are still not fully understood. In
this article, we review our current knowledge on the contributions made by DNA damage
checkpoint and DNA repair proteins to maintain telomeres, and how their actions are
regulated at telomeres, focusing on recent findings from studies in yeast and mammalian
cells. For more comprehensive reviews on telomere maintenance mechanisms, readers are
referred to many excellent reviews that have been published recently (2–7).

3. CHECKPOINT SIGNALING AT DNA BREAKS AND REPLICATION FORKS
Successful detection and repair of DSBs, much like many other biological processes,
involve several proteins that work collaboratively in signaling cascades. Proteins involved in
DNA damage responses are highly conserved among eukaryotes from yeasts to humans
(summarized in Table 1). DNA damage checkpoint proteins have been classified into four
major functional groups: sensors, mediators, transducers and effectors (8, 9). In mammalian
cells, checkpoint signaling is initiated by the sensor kinases ATM (Ataxia Telangiectasia
Mutated) and ATR (ATM and Rad3-related), in complex with their respective binding
partners MRN (Mre11-Rad50-Nbs1) and ATRIP (ATR Interacting Protein). Additional
checkpoint sensor complexes Rad17-RFC (composed of Rad17 and four small subunits of
Replication Factor C) and Rad9-Rad1-Hus1 (9-1-1) are also crucial for the cell’s ability to
properly respond to DSBs. These sensor complexes, with the help of mediators such as
Mdc1, 53BP1, TopBP1 and Claspin, activate the transducer kinases Chk1 and Chk2, which
in turn regulate Cdc25 phosphatases to inhibit cyclin-dependent kinases (effectors) and stop
cell cycle progression (1, 10).

Depending on the type of DNA lesion being detected and the phase of the cell cycle in
which the DNA lesion occurs, cells respond differently to DNA damage. DSBs, generated
by genotoxic agents such as ionizing radiation, are first sensed by the MRN complex, which
then recruits ATM to sites of damage via the C-terminal ATM-interaction domain of Nbs1
and promotes ATM kinase activation (11–14). Activated ATM kinase phosphorylates and
regulates many proteins that are involved in cell cycle checkpoint control, apoptotic
responses and DNA repair, including p53, Chk2, BRCA1, SMC1, FANCD2, Rad17,
Artemis and Nbs1 (15, 16). While it was initially thought that ATR responds to DSBs
independently of ATM, recent studies have found that ATR acts downstream of ATM and
MRN to activate Chk1 in response to DSBs during S and G2 phases of the cell cycle (17–20)
(Figure 1A). ATM and MRN are important for the activation of ATR in response to DSBs
since they promote resection of DNA ends to expose long stretches of single-stranded DNA
(ssDNA), which in turn will be coated by RPA (replication protein A) and serves as a
recruitment and activation platform for the ATR-ATRIP complex (21, 22). Conversely,
ATR-ATRIP can also function upstream of ATM following replication fork stalling or
exposure to UV irradiation (Figure 1B). Interestingly, this mode of ATM activation does not
require the C-terminal ATM interaction domain of Nbs1 or Mre11 (23). The 9-1-1 complex,
which forms a PCNA-like ring-shaped complex (24), is also loaded to RPA-coated ssDNA
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with the help of Rad17-RFC, and contributes to the activation of ATR-ATRIP kinase in
collaboration with TopBP1 (25, 26).

DSBs generated in late G1- or S-phase may occur too late to induce proper checkpoint and
repair responses prior to the arrival of DNA replication forks (Figure 1C). For example, a
recent study in budding yeast has found that a single DSB generated in G1 is not able to
induce Mec1 (ATR ortholog)-dependent checkpoint activation during S-phase and DNA
replication continues all the way to the DSB, since the rate of DSB resection is too slow to
generate enough RPA-coated ssDNA required to activate Mec1 in S-phase (27). As DNA
replication forks reach DSBs, DNA strands replicated by leading strand synthesis and those
replicated by lagging strand synthesis are likely to have distinct structures, and thus likely to
be recognized/processed by different checkpoint and DNA repair proteins. While leading
strand synthesis could theoretically continue to the very end, generating blunt end DNA,
lagging strand synthesis is likely to leave behind substantial amounts of ssDNA since the
final Okazaki fragment cannot be synthesized very close to the 3′ ends of DSBs (28) (Figure
1C). It was recently shown that blunt ends as well as ends with short single-stranded tails are
the preferred substrates for ATM activation (22). However, as the single-stranded tail gets
longer, ATM activation gets attenuated, and RPA coated long ssDNA would activate ATR
(22). Thus, DSBs replicated by leading strand synthesis might be preferentially recognized
by ATM-MRN, while DSBs replicated by lagging strand synthesis might be recognized
primarily by ATR-ATRIP (Figure 1C). Likewise, since blunt-ended DSBs would serve as
good substrates for NHEJ repair, while extended ssDNA at DSBs would promote HR repair
(8), DSBs replicated by leading strand synthesis might be more suitable for NHEJ repair
while DSBs replicated by lagging strand synthesis might be more likely to be repaired by
HR repair.

The modes by which DNA damage checkpoint and repair proteins respond when DNA
replication forks encounter DSBs are highly relevant for telomere biology, since telomeres
are dependent on checkpoint and repair proteins for their stable maintenance and complete
replication (29–32). Furthermore, the observation that normally dormant replication origins
are activated by the presence of proximal DSBs (27) is intriguing, since short telomeres
replicate earlier in S-phase than longer telomeres due to the activation of normally dormant
sub-telomeric origins among critically short telomeres in budding yeast (33). Thus, while
longer telomeres could repress firing of replication origins perhaps by forming
heterochromatin structures, shorter telomeres seem to lose the ability to inhibit replication
origin firing and behave similarly to accidental/undesired DSBs, which lose repression of
replication origin firing perhaps due to changes in DNA topological constraints and/or
chromatin structures upon formation of DNA breaks.

4. TELOMERE SPECIFIC FACTORS AND INIHIBITION OF DNA DAMAGE
RESPONSES AT TELOMERES

What are the essential features of telomeric DNA that distinguish them from other types of
undesired DSBs? In most eukaryotic cells, telomeres are made up of repetitive GT-rich
sequences, which mostly consist of double-stranded DNA (dsDNA) that terminate with 3′
single-stranded tails, known as G-tails (2). A specialized reverse transcriptase, known as
telomerase, ensures the stable maintenance of these telomeric GT-rich repeats by
counteracting the loss of telomeric DNA caused by the inability of conventional semi-
conservative DNA polymerases to fully replicate ends of linear DNA molecules (known as
end-replication problem) (34). Telomerase utilizes its RNA subunit as template to synthesize
a GT-rich strand beyond the end of the original genomic DNA. Both dsDNA and G-tail
portions of telomeric repeat sequences play critical roles in the assembly of the telomere
protection complex. Repeated cell divisions in the absence of telomerase gradually deplete
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GT-rich repeats and their associated telomere protection factors. Once telomeres become too
short to bind sufficient telomere protection proteins, they will be treated like other undesired
DSBs, leading to increased fusion and recombination events among critically short
telomeres (3, 4). Studies have further shown that critically short or unprotected telomeres
massively attract and activate checkpoint sensors as well as adaptors and downstream
effectors of checkpoint signaling. In addition, at least in budding yeast, Tel1-MRX (ATM-
MRN) appears to act upstream of Mec1-Ddc2 (ATR-ATRIP) in processing and checkpoint
signaling of short or unprotected telomeres in S/G2-phase by contributing to the resection of
telomeres, much like in the case of undesired/accidental DSBs (35–37) (Figure 1A).

In human cells, telomeres are bound and protected by a “shelterin” complex, consisting of
TRF1, TRF2, RAP1, POT1, TPP1 and TIN2 (2) (Figure 2 and Table 2). While TRF1 and
TRF2 bind specifically to dsDNA telomeric repeats, POT1 binds to G-tails. TRF2 is
important for repressing ATM activation at telomeres, while POT1 is important for
repressing ATR activation at telomeres (38, 39). Interestingly, TRF2 has been shown to
interact with both ATM and Chk2 kinases (40, 41). Thus, TRF2 might inhibit ATM-
dependent checkpoint activation by interfering with the communication between ATM and
Chk2. Additional DNA repair proteins, including Apollo and the MRN complex, associate
with TRF2, suggesting that their activities might be regulated by TRF2 at telomeres (42–46).
POT1 is likely to inhibit activation of ATR and its downstream target Chk1 by protecting
telomeres against excessive resection and accumulation of RPA at telomeres (47, 48).
Mammalian RAP1 does not bind directly to telomeric DNA, but its recruitment to telomeres
by TRF2 is important for inhibition of NHEJ at telomeres (49). The mammalian shelterin
complex is also thought to promote insertion of 3′ telomeric G-tails into the dsDNA portion
of telomeres to generate a “t-loop” structure, thereby hiding telomeric 3′ ends from DNA
repair and checkpoint proteins (2, 50, 51).

An analogous shelterin-like complex, consisting of Taz1, Rap1, Pot1, Tpz1, Poz1 and Ccq1,
is found at telomeres of fission yeast Schizosaccharomyces pombe (52) (Figure 2 and Table
2). While mammalian Rif1 protein is not associated with functional telomeres (53, 54),
fission yeast Rif1 directly interacts with Taz1 and associates with functional telomeres (55).
Taz1 is thought to represent a functional counterpart of the mammalian TRF1 and TRF2
proteins, and specifically binds the dsDNA portion of telomeric repeats (56, 57). Deletion of
Taz1 or Rap1 leads to loss of telomere protection against NHEJ in cells arrested in G0/G1-
phase of the cell cycle (58–60). Interestingly, while Taz1 is required to inhibit
recombination among telomeres (59, 61), Rap1 promotes recombination-based telomere
maintenance in the absence of telomerase (61). This finding is quite surprising since
efficient recruitment of Rap1 to telomeres is dependent on Taz1 (55, 61). Taz1 also
promotes replication of telomeric repeat sequences by the conventional DNA replication
machinery (62), much like mammalian TRF1 (63). However, exponentially growing cells
deleted for Taz1 are surprisingly robust in their growth with very little sign of checkpoint
activation (56, 57). Therefore, fission yeast cells must posses a Taz1-independent
mechanism that inhibits full activation of the DNA damage checkpoint. In fact, the G-tail
binding protein Pot1, in collaboration with Tpz1 and Ccq1, provides protection against
telomere fusions and Rad3 (ATR)-dependent checkpoint activation in fission yeast cells (52,
64).

In contrast to mammalian and fission yeast cells, budding yeast Saccharomyces cerevisiae
lacks TRF1/TRF2-like proteins. Instead, Rap1 binds directly to the dsDNA portion of
telomeric repeats and is responsible for recruiting Rif1 and Rif2 to telomeres (2). (Figure 2
and Table 2). Much like its mammalian and fission yeast counterparts, budding yeast Rap1
inhibits NHEJ at telomeres (65, 66). Budding yeast also appears to lack Pot1, but utilizes
Cdc13 instead, along with its accessory factors Stn1 and Ten1 to protect telomeres (Figure 2
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and Table 2) (67–70). Therefore, it was initially thought that this G-tail recognition
complex, termed CST (Cdc13-Stn1-Ten1) (71), may only exist in budding yeast, while other
eukaryotic species utilize evolutionarily conserved Pot1-like proteins for G-tail protection.
However, this view was challenged by recent discoveries of orthologs for CST complex
subunits in mammalian and plant cells (72, 73) (Figure 2). Thus, the CST complex (for
CTC1-STN1-TEN1 in higher eukaryotes) may represent the most conserved telomere-
capping complex among eukaryotes. Given that fission yeast orthologs of Stn1 and Ten1
have been described (74), one might anticipate that fission yeast may also carry a Cdc13/
Ctc1-like protein (Figure 2) although no obvious ortholog has been identified. It is worth
noting that unlike budding yeast Cdc13, mammalian CTC1 shows no preference for
telomeric repeat sequences (72), and in fact may play a more global role in promoting DNA
replication (75). In any case, it remains unclear how the CST and shelterin complexes work
together at telomeres. In fission yeast, deletion of either Stn1 or Ten1 leads to complete loss
of telomere protection and fusion of chromosomes, much like in the case of Pot1 or Tpz1
deletion (72, 74). However, it appears that Pot1-Tpz1 and Stn1-Ten1 exist as two distinct
complexes in fission yeast, since no interaction has been detected between them.
Furthermore, Stn1 recruitment to fission yeast telomeres can be uncoupled from Pot1
recruitment (72, 76). In contrast, mammalian Stn1 has been reported to associate with TPP1
although it is currently unclear if any of the shelterin subunits makes direct contact with the
CST complex (77).

The CST complex has been proposed to represent a telomere specific ssDNA binding
complex resembling RPA (71–73), and recently determined X-ray crystal structures of Stn1
and Ten1 are consistent with this hypothesis (78, 79). In addition, the CST complex interacts
with subunits of the DNA polymerase alpha complex, which is involved in lagging strand
synthesis (75, 80–83). Cdc13 inactivation results in excessive accumulation of long stretches
of single stranded telomeric DNA and activation of a Mec1-dependent checkpoint response
in budding yeast, resulting in cell death (68, 84). However, rare survivor cells, which
maintain telomeres in the absence of Cdc13 and Stn1, can be isolated if the DNA damage
checkpoint is abolished and nuclease activities at telomeres are all attenuated to prevent
telomere resection (85). These data indicated that the essential function of the CST complex
is to protect telomeres against inappropriate checkpoint activation and DNA degradation.

Besides regulating DNA repair and DNA damage checkpoint at telomeres, GT-rich specific
telomere proteins play important roles in regulation of telomerase. The dsDNA telomere-
binding proteins are important for the negative regulation of telomerase, since disruption of
TRF1, Taz1 or Rap1 function causes massive telomerase-dependent telomere elongation
(86). G-tail binding proteins show dual roles in both positive and negative regulation of
telomerase action at telomeres. The negative regulation of telomerase by Pot1 in both
mammalian and fission yeast cells requires the function of several shelterin subunits that
connect Pot1 to dsDNA telomere-binding proteins (52, 87, 88). In mammalian cells, TPP1
and TIN2 connect POT1 to TRF1 and TRF2 to inhibit telomere elongation (87–89), but the
POT1-TPP1 sub-complex has also been implicated in telomerase recruitment and
enhancement of telomerase processivity (90, 91). In fission yeast, Poz1, which connects
Pot1-Tpz1 to Taz1-Rap1, is critical for the negative regulation of telomerase (52). Fission
yeast Ccq1, which directly interacts with Tpz1, is essential for promoting the interaction
between Tpz1 and telomerase to recruit telomerase to telomeres (52, 64, 92). In budding
yeast, Cdc13 contributes to the recruitment/activation of telomerase via association with
Est1, the regulatory subunit of telomerase (93, 94). In collaboration with Stn1 and Ten1,
Cdc13 is thought to form a protective complex, which can inhibit telomere extension by
telomerase (67, 80, 95).
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5. POSSIBLE ROLES OF CHECKPOINT AND DNA REPAIR PROTEINS IN
TELOMERE MAINTENANCE

The structure of telomeric DNA undergoes dynamic cell cycle-regulated changes. The
length of the G-tail has been shown to increase during S-phase in budding and fission yeast,
as well as in mammalian cells (96–98). In budding yeast, S-phase specific long G-tails are
generated independent of telomerase action, but depend partially on the MRX (Mre11-
Rad50-Xrs2) complex (99, 100). In addition, various nucleases involved in resection of
DSBs to generate 3′ ssDNA overhangs, such as Sae2 (related to mammalian CtIP and
fission yeast Ctp1), Exo1 and Dna2 helicase/nuclease, along with RecQ-like helicase Sgs1,
are likely to be involved in processing of budding yeast telomeres in S-phase, especially at
critically short telomeres (101). In fission yeast, the MRN complex and Dna2 have been
implicated in generation of the G-tail (96, 102). In particular, the MRN/MRX complex
increases its association with telomeres during S-phase in mammalian, fission yeast and
budding yeast cells (76, 103, 104). Thus, it appears that telomeres become less protected or
“open” during S-phase, providing access to end processing enzymes that are responsible for
resection of DSBs. Of course, telomerase could also be considered as an enzyme that
“repairs” short telomeres, and like other DNA repair proteins, gains the ability to act on
telomeres during S-phase when telomeres are replicated by the conventional DNA
replication machinery (76, 93, 105).

If DNA repair factors gain better access to “open” telomeres during S-phase, do DNA
damage checkpoint proteins also gain access to S-phase telomeres? Studies in yeasts and
mammalian cells have found that ATM-MRN and ATR-ATRIP are recruited to functional
telomeres during S- and G2-phases (76, 104, 106), supporting the notion that “open”
telomeres are more accessible to checkpoint proteins. In fission yeast, the arrival of lagging
strand DNA polymerases (alpha and delta) at telomeres is significantly delayed compared to
the arrival of the leading strand DNA polymerase (epsilon), and significant quantities of
RPA and Rad26 (ATRIP) transiently accumulate at replicating telomeres (76). Thus,
replicating telomeres might be primarily recognized as unusual/stressed replication forks by
Rad3-Rad26 (ATR-ATRIP) (76). Likewise, studies in mammalian cells have shown that
replication of lagging-strand telomeres is significantly delayed compared to leading-strand
telomeres (98), and that lagging strand telomeres carry significantly longer telomeric G-rich
single-strand tails than leading strand telomeres (107). Thus, replicating telomeres are likely
to accumulate high levels of RPA on the lagging strand and to activate ATR/Rad3 (Figure
1C). The Rad17-RFC complex also accumulates at telomeres during S-phase in mammalian
cells (104). What about ATM kinase? In mammalian cells, ATM is maximally recruited to
telomeres in G2-phase, significantly later than the timing of maximal recruitment for the
MRN complex and ATR kinase (104). Given an established preference of ATM for binding
to blunt ends or ends with only short ssDNA overhangs (22), ATM may be efficiently
recruited to leading strand telomeres but not to lagging strand telomeres, unless lagging
strand synthesis is fully completed or telomeres are processed to reduce G-tail length on the
lagging strand (Figure 1C). Indeed, inactivation of TRF2, which results in strong activation
of ATM (38), leads to preferential fusion among leading strand telomeres (38), consistent
with the idea that ATM preferentially binds leading strand telomeres. Once telomeres are
processed to re-generate the G-tail on leading strand telomeres, ATM binding may diminish
and ATR may be recruited/activated, much like in the case of the ATM to ATR crosstalk
observed at DSBs (17–20, 22) (Figure 1A).

Studies have not yet characterized in detail how leading strand and lagging strand DNA
polymerases are coordinated when DNA replication forks encounter non-telomeric DSBs. In
fact, the observed delay in lagging strand synthesis compared to leading strand synthesis at
telomeres might not be unique to telomeres. While it is possible that telomere specific
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features, such as the presence of shelterin, CST, and/or recruitment of telomerase might be
responsible for the delayed arrival of lagging strand DNA polymerases, it is just as likely
that these telomere factors are contributing to minimize the delay or even promoting
synthesis of the last Okazaki fragment near the 3′ ends of telomeres. Indeed, while lagging
strand DNA polymerases leave large gaps near DSBs in vitro (28), both budding yeast and
fission yeast cells lacking telomerase have been estimated to lose only a few bases from
telomeres per every cell division (108, 109). Thus, native telomeres appear to possess
telomerase-independent mechanism(s) that promote initiation of lagging strand synthesis
very close to the 3′ ends of parental telomeres, rather than leaving large gaps. Efficient and
timely synthesis of Okazaki fragments very close to the ends of lagging strand telomeres
may also be critical for reducing ssDNA-bound RPA to attenuate checkpoint responses at
telomeres. Since the CST complex in budding yeast and mammalian cells has been shown to
interact with the DNA polymerase alpha-primase complex (75, 80, 81), the CST complex
may be involved in ensuring that lagging strand synthesis can continue close to the 3′ end of
parental telomeres. In addition, since TRF1 in mammalian cells and Taz1 in fission yeast
promote efficient replication of telomeres (62, 63) and Taz1 prevents long G-tail formation
(102), TRF1/Taz1 may play a critical role in regulating the arrival of leading and lagging
strand polymerases at telomeres.

Simultaneous inactivation of ATM and ATR causes telomere maintenance defects in a wide
range of organisms (29, 30, 110, 111). The phenotype of fission yeast cells lacking both
Rad3 (ATR) and Tel1 (ATM) is especially dramatic, as these rad3 tel1 double deletion
mutant cells show fusion of all three chromosomes due to telomere maintenance defects
(30). In budding yeast, kinase activities of Tel1 (ATM) and Mec1 (ATR) are also important
for their telomere function (112). Remarkably, the requirement for ATM and ATR kinases
in telomere maintenance is conserved even in Drosophila, where retrotransposons have
replaced telomerase and neither the shelterin complex nor the CST complex exist (111). In
addition, the 9-1-1 complex and Rad17-RFC are required for telomerase-dependent telomere
maintenance in Caenorhabditis elegans (113–115), and the 9-1-1 complex interacts with
telomerase and modulates telomerase activity in mammalian cells (116). Fission yeast cells
deleted for 9-1-1 subunits or Rad17 show significant telomere shortening (117, 118). Thus,
the S/G2-phase recruitment of checkpoint sensors is in fact very important for telomere
maintenance. However, mutations in mediators and effectors of canonical checkpoint
signaling, such as Crb2, Chk1 and Cds1 in fission yeast and Rad9, Rad53 and Chk1 in
budding yeast, cause very little or no effect on telomere length maintenance (117–119).
Thus, telomere length regulation by checkpoint sensor proteins likely involves telomere-
specific effectors that are distinct from effectors in DNA damage or DNA replication
checkpoint regulation, but are phosphorylated by ATM and/or ATR.

What are telomere-specific substrates of ATM and ATR kinases? Budding yeast Cdc13 is
phosphorylated by Tel1 (ATM) and Mec1 (ATR) kinases within its Est1 interaction domain,
suggesting that Tel1 and Mec1 might promote interaction between Est1 and Cdc13 via
phosphorylation of Cdc13 (120). Interestingly, a telomere maintenance defect observed in
tel1 mec1 double mutant cells can be suppressed by deleting either Rif1 or Rif2 (negative
regulators of telomerase, see Figure 2 and Table 2), or by reducing Rap1 accumulation at
telomeres (121). Thus, the requirement for Tel1 (ATM) and Mec1 (ATR) in telomere
maintenance could be bypassed simply by making telomeres more accessible to telomerase
by removing inhibitors of telomerase (121). This might indicate that the most critical
contributions of Tel1 and Mec1 in telomere maintenance are to remove telomerase
inhibitors. In fact, mammalian ATM kinase has been shown to promote dissociation of
TRF1, a negative regulator of telomerase, from telomeres by phosphorylating TRF1 (122).
Thus, ATM and ATR kinases may have evolutionarily conserved roles in switching
telomeres to a more accessible state for telomerase by promoting dissociation of telomeric
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repeat specific dsDNA-binding factors. In budding yeast, Mec1 and Tel1 are known to
phosphorylate several DNA repair factors that are implicated in proper processing of
critically short or unprotected telomeres, including Exo1 nuclease (123) and Pif1 helicase
(124). Thus, ATM and ATR could also carry out their essential telomere function by
modulating general DNA damage response factors.

Unlike in budding yeast, deletion of negative regulators of telomerase (Taz1, Rap1 or Rif1)
is not sufficient to reverse chromosome fusions observed in tel1 rad3 double mutant fission
yeast cells (92). Currently there is no known mutation that can suppress chromosome
fusions in tel1 rad3 double mutant cells, and available evidence indicates that tel1 rad3
double mutant cells are defective not only in telomerase recruitment but also in telomere
protection (92, 118). In particular, we have recently observed that recruitment of Ccq1 to
telomeres is greatly reduced in tel1 rad3 double mutant cells. Ccq1 contributes to both
inhibition of checkpoint activation at telomeres and telomerase recruitment (52, 64). Thus,
we have proposed that Tel1/Rad3 and Ccq1 form a regulatory loop to ensure that telomeres
that are transiently de-protected would preferentially recruit/activate Tel1/Rad3 to promote
recruitment of Ccq1, and to re-establish proper protection of telomeres (92). Telomeres in
fission yeast, much like in budding yeast or mammalian cells, undergo cell cycle regulated
changes from a “closed” to an “open” state during S-phase (76). As it has been shown for
budding yeast (35, 37, 106, 125), shorter telomeres in fission yeast are also likely to recruit/
activate Tel1/Rad3 more strongly than longer telomeres. However, it is currently not known
which protein(s) must be phosphorylated by Tel1/Rad3 to allow stable maintenance of
telomeres in fission yeast. Furthermore, it is not yet clear whether ATM/ATR-dependent
phosphorylation events may regulate the recruitment of telomerase and/or protection factors
in a similar manner in mammalian cells, since a Ccq1 ortholog has not been identified to
date (Figure 2 and Table 2).

The MRN/MRX complex and ATM kinase work in the same pathway to regulate telomere
maintenance (111, 118, 122, 126). A conserved C-terminal motif in Nbs1 or Xrs2 interacts
with ATM/Tel1 to promote recruitment of ATM/Tel1 to DSBs (12, 13, 127). In budding
yeast, the MRX complex and Tel1 are preferentially recruited to critically short telomeres
and promote recruitment of telomerase (37, 106, 128, 129). However, a recent study in
budding yeast has shown that, while deleting as little as 20 amino acids from the C-terminus
of Xrs2 is sufficient to disrupt the interaction between Tel1 and Xrs2, these mutant cells
maintain significantly longer telomeres than mutant cells carrying a complete deletion of
either xrs2 or tel1 (130). Therefore, budding yeast Xrs2 can contribute to telomere
maintenance independently of its C-terminal Tel1 interaction domain. Even more
surprisingly, Tel1 was able to contribute to telomere length maintenance independently of its
kinase activity (130). In fission yeast, Rad3 (ATR) lacking its kinase domain contributes to
telomere maintenance by promoting recruitment of Tel1 (ATM) to telomeres in the absence
of the C-terminal 60 amino acid Tel1-interaction domain of Nbs1 (131). Therefore, these
recent studies have begun to reveal novel non-kinase functions for ATM and ATR in
telomere maintenance. Furthermore, much like in DSB processing (17, 23), telomere length
regulation by ATM and ATR kinases is likely to involve complex crosstalks between the
ATM and ATR pathways. Since lagging strand and leading strand telomeres are likely to
have very distinct structures after DNA replication (Figure 1C) and also appear to be
differentially processed or extended by nucleases and telomerase (98, 132), future studies
must take into account how ATM, ATR and other checkpoint and DNA repair proteins
could differentiate leading strand and lagging strand telomeres, in order to fully understand
the functional contributions of these proteins at telomeres.
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6. PERSPECTIVE
It has been over 70 years since Barbara McClintock and Hermann Muller realized that ends
of chromosomes are protected from degradation, recombination and fusion events that can
occur at other DSBs. The pioneering work of Drs. Elizabeth Blackburn, Jack Szostak and
Carol Greider (winners of the Nobel Prize for Physiology and Medicine 2009) in the 1980s
has allowed researchers to better understand the molecular nature of telomeres and how
complete replication of telomeric DNA is accomplished in eukaryotic cells (133). It has
become increasingly clear in recent years that telomere biology has human medical
implications for various age related diseases, tumor progression and stem cell biology (134,
135). Studies have just begun to unravel mechanisms by which DNA damage checkpoint
and DNA repair proteins balance their functions at telomeres. The existing evidence
generally supports the notion that the DNA damage checkpoint kinases ATM and ATR
primarily contribute to functional telomere maintenance by acting on telomere-specific
substrates and controlling proper processing of telomeric DNA, rather than by regulating
cell cycle progression. Coupled with the major advances made by researchers in the DNA
repair and checkpoint fields, we should expect many more exciting discoveries in the
telomere field, which may ultimately allow us to fully understand the molecular mechanisms
by which DNA repair and checkpoint proteins are modulated to ensure stable maintenance
of telomeres in coming years.
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Figure 1.
DNA damage checkpoint and DNA replication checkpoint responses in mammalian cells.
(A) A signaling crosstalk between ATM-MRN and ATR-ATRIP in response to DSBs. (B) A
signaling crosstalk between ATR-ATRIP and ATM in response to DNA replication stress.
(C) Checkpoint signaling possibilities at leading strand and lagging strand after DNA
replication forks encounter DSBs. Short red lines on lagging strand represent Okazaki
fragments. The lagging strand DNA polymerases (alpha and delta) and the leading strand
DNA polymerase (epsilon) are also indicated as circles with the corresponding Greek letters.
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Figure 2.
Models of telomere proteins in humans, fission yeast and budding yeast. Evolutionarily
related proteins are represented in the same color. See Table 2 and main text for more details
on the proteins shown.
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Table 1

Checkpoint and DNA repair proteins discussed in this review

Factors (Hs =
Human, Sc =
budding yeast, Sp
= fission yeast) Function in DNA damage response Function in telomere maintenance

Mre11-Rad50-Nbs1
(MRN) (Hs)
Mre11-Rad50-Xrs2
(MRX) (Sc)
Rad32-Rad50-Nbs1
(MRN) (Sp)

Sensor of DSBs; Nbs1/Xrs2 interacts with ATM/
Tel1 via evolutionarily conserved C-terminal
motif; involved in HR & NHEJ

Required for damage response to short telomeres and their
preferential elongation by telomerase in Sc; important for
generating telomeric G tail and preventing NHEJ at telomeres;
promotes Type II telomere recombination in Sc; promotes HR-
based telomere maintenance in Sp and human ALT cells;
required for ATM signaling at telomeres

ATM (Hs)
Tel1 (Sc, Sp)

PIKK family kinase; recruited to DNA damage
sites by MRN/MRX; activates CHK2 in response
to DNA damage; phosphorylate many factors at
DNA damage sites, including histone H2AX, to
amplify DNA damage responses and facilitate
DNA repair

Preferentially binds critically short telomeres in both Sc & Sp;
regulates telomerase recruitment to telomeres in Sc; important
for mammalian telomere length regulation; phosphorylates
mammalian TRF1; inhibited by Sc Rif1/Rif2 and mammalian
TRF2

RPA (Hs, Sc, Sp) Binds to ssDNA tracts; plays critical roles in DNA
replication, various forms of DNA repair; provides
platform to facilitate recruitment of checkpoint
sensors ATR-ATRIP and 9-1-1

Important for telomere length maintenance in Sc and Sp;
regulates telomerase access to telomeres in late S phase in Sc;
binds Sp telomeres in S phase in a replication-dependent
manner; competes with G-tail binding proteins for binding to
telomeric G-overhang

ATRIP (Hs)
Ddc2 (Sc)
Rad26 (Sp)

Recruited to RPA-coated ssDNA at damage sites;
binding partner of ATR/Mec1/Rad3; recruits ATR
to damage sites via the C-terminus of ATRIP

Important for telomere length maintenance in Sp but not in Sc;
binds Sp telomeres in S phase in a replication-dependent
manner; binds short dysfunctional telomeres, and required for
activation of senescence following telomerase loss in Sc

ATR (Hs)
Mec1 (Sc)
Rad3 (Sp)

PIKK family kinase; recruited to DNA damage
sites by ATRIP; induces cell cycle arrest following
DNA damage by activating CHK1; can activate
ATM in a Nbs1 C-terminus independent manner;
primary sensor kinase activated by DSBs in Sc and
Sp but not in mammals

Important for telomere length maintenance in Sp and mammals
but not in Sc; binds short dysfunctional telomeres, and required
for activation of senescence following telomerase loss in Sc;
associates with human telomeres in S phase even before
replication is completed; inhibited by Cdc13 in Sc and POT1 in
mammals

Rad9-Hus1-Rad1
(9-1-1) (Hs, Sp)
Ddc1-Mec3-Rad17
(Sc)

Forms PCNA-like clamp; Loaded to telomeres and
sites of DNA damage by the replication factor C
(RFC)-like clamp loader Rad17-Rfc2–5 (Hs, Sp) or
Rad24-Rfc2–5 (Sc)

Associates with telomerase and regulates its activity (Hs);
mutations in 9-1-1 subunits generally cause telomere shortening
(Sc, Sp), except in Mec3 that has been reported to cause
telomere elongation (Sc)
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Table 2

Telomere-specific proteins discussed in this review

Factors Hs =
human, Sc =
budding yeast, Sp
= fission (yeast) Telomeric binding specificity Function

CTC1-STN1-
TEN1 (Hs)
Cdc13-Stn1-Ten1
(Sc)
Stn1-Ten1 (Sp)

G tail-binding Required for telomere protection; shown to closely resemble heterotrimeric RPA
complex in OB-fold domain structure and function; Sc Cdc13 required for normal
telomerase function and to prevent Mec1-dependent checkpoint responses at
telomeres; Sc Stn1 inhibits the S-phase checkpoint; Sp Cdc13 ortholog remains to
be identified

POT1 (Hs)
Pot1 (Sp)

G tail-binding Required for telomere protection in both Sp and mammals; binds telomeric DNA
through OB-fold domains; along with TPP1, prevents ATR signaling at
mammalian telomeres; Sp Pot1 dissociates from telomeres during telomere
replication in late S-phase providing an open conformation for telomerase-
mediated telomere extension; Sc appears to lack Pot1 ortholog

TPP1(Hs)
Tpz1 (Sp)

Associated with G tail- binding
proteins

Tpz1 (Sp) and mammalian TPP1 are orthologs; Associates with both Pot1 &
Poz1 (Sp) or mammalian POT1 & TIN2; prevents ATR signaling at mammalian
telomeres along with POT1; required for normal telomerase function; Sc appears
to lack TPP1 ortholog but Sc Est3 is thought to serve analogous function

TIN2 (Hs)
Poz1 (Sp)

Associates with Tpz1 and Rap1 (Sp) or TPP1 and mammalian TRF1/2;
negatively regulates telomerase-mediated telomere elongation in Sp

Ccq1 (Sp) Identified thus far only in Sp; component of the SHREC heterochromatin
complex; associates with Tpz1, and required for telomerase recruitment and
function; also required for inhibiting the Rad3-dependent checkpoint at telomeres

TRF1/TRF2 (Hs)
Rap1 (Sc)
Taz1 (Sp)

Double stranded telomeric DNA Binds directly to GT-rich telomeric DNA through Myb-like domain; Sp Taz1 is
related to mammalian TRF1/TRF2; TRF2 inhibits ATM signaling at telomeres,
and prevents NHEJ and HR; TRF1 is required for efficient telomere replication
and inhibition of ATR signaling in S phase; Sp Taz1 is required for prevention of
NHEJ and HR as well as normal telomeric DNA replication; Sp Taz1 and Sc
Rap1 negatively regulate telomerase-mediated telomere elongation; Sc appears to
lack TRF1/TRF2 ortholog, however Sc Rap1 fulfills analogous function

RAP1 (Hs)
Rap1 (Sp)

Associated with double stranded
telomeric DNA - binding proteins

Sc Rap1 homologs containing Myb domains, recruited by Taz1 (Sp) or
mammalian TRF2; prevent NHEJ at telomeres; Sp Rap1 promotes telomere
recombination, and negatively regulates telomerase-mediated telomere elongation

RIF1 (Hs)
Rif1/Rif2 (Sc)
Rif1 (Sp)

Recruited by Rap1 (Sc) or Taz1 (Sp); Sp Rif1 & human RIF1 may have stronger
affinity for dysfunctional telomeres; Both Sp and Sc Rif1 negatively regulate
telomerase-mediated telomere elongation; Sc Rif1/Rif2 negatively inhibit Tel1 at
telomeres
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