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Abstract
The classical setting of evolutionary game theory, the replicator equation, assumes uniform
interaction rates. The rate at which individuals meet and interact is independent of their strategies.
Here we extend this framework by allowing the interaction rates to depend on the strategies. This
extension leads to nonlinear fitness functions. We show that a strict Nash equilibrium remains
uninvadable for non-uniform interaction rates, but the conditions for evolutionary stability need to
be modified. We analyze all games between two strategies. If the two strategies coexist or exclude
each other, then the evolutionary dynamics do not change qualitatively, only the location of the
equilibrium point changes. If, however, one strategy dominates the other in the classical setting, then
the introduction of non-uniform interaction rates can lead to a pair of interior equilibria. For the
Prisoner’s Dilemma, non-uniform interaction rates allow the coexistence between cooperators and
defectors. For the snowdrift game, non-uniform interaction rates change the equilibrium frequency
of cooperators.

1. Introduction: replicator equation with uniform interaction rates
Consider a two strategy game with payoff matrix

Strategy A receives payoffs a and b when playing against strategy A and B respectively. Strategy
B receives payoffs c and d when playing against A and B, respectively. We denote by x and y
the frequency of individuals adopting strategy A and B, respectively. We have x + y = 1.

With uniform interaction rates, where players interact with each other indiscriminantly, the
selection dynamics can be described by the standard replicator equation [Taylor & Jonker,
1978, Hofbauer et al., 1979, Hofbauer & Sigmund, 1998, and Hofbauer & Sigmund, 2003]:

(1)

The fitness of A and B players are linear functions of x, given by
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The average fitness of the population is given by

The replicator equation assumes that the rate (or probability) of interaction between two players
is independent of their strategies.

There are three generic evolutionary outcomes:

1. A dominates B: If a > c and b > d, then the entire population will eventually consist
of A players. The only stable equilibrium is x = 1. A is a strict Nash equilibrium, and
therefore an evolutionarily stable strategy (ESS), while B is not. We use the notation
A ← B.

2. A and B co-exist in a stable equilibrium: If a < c and b > d, then the interior equilibrium
x = (b−d)/(b + c−a−d) is stable. Neither A nor B are Nash equilibria. We use the
notation A →← B.

3. A and B are bi-stable: If a > c and b < d, the interior equilibrium x = (d−b)/(a+d−b
−c) is unstable. The two boundary points, x = 0 and x = 1 are attracting. A and B are
both strict Nash equilibria. We use the notation A ←→ B. If a + b > c + d, then strategy
A is risk dominant. It has the larger basin of attraction. If a > d, then strategy A is
Pareto optimal, i.e. there is no other strategies the two players can employ to have
payoff at least as high as a, and at least one player having payoff higher than a.

2. Replicator equation with non-uniform interaction rates
Now suppose that the probability of interaction between two players is not independent of their
strategies. Analogous to a chemical reaction, an A player interacts with another A player with
reaction rate r1, an A player and a B player interact with reaction rate r2, and a B player interacts
with another B player with reaction rate r3.

We assume that the fitness of individuals is determined by the average payoff over a large
number of interactions. Therefore, the fitness of A and B players are non-linear functions of
x and y, given by
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The rates r1, r2 and r3 are non-negative. The normal replicator equation with uniform
interaction rates corresponds to the special case r1 = r2 = r3 > 0. If r1 > r2 and r3 > r2, then
players prefer to interact with their own kind. If, however, r1 < r2 and r3 < r2, then mixed
interactions (between A and B) are more likely.

2.1. A comparison with kin selection
In the context of kin selection [Hamilton, 1964], games between relatives have been studied
in the late 1970’s by [Grafen, 1979], [Hines & Maynard Smith, 1979], [Mirmirani & Oster
1978], [Orlove, 1978 Orlove, 1979a, 1979], and [Treisman, 1977]. The “inclusive fitness”
approach simply modifies the original payoff matrix M to

where r is the coefficient of relatedness. In this framework, all individuals of the population
are assumed to be related equally. The payoff to a player in a pairwise interaction is the sum
of his own payoff plus r times the opponent’s payoff. Grafen proposed a “personal fitness”
approach to account for the fact that an individual is more likely to play an opponent with the
same strategy. In Grafen’s model,

where r is the probability than a player will meet an opponent with the same strategy because
of some genetic or social relationship.

More recently, [Tao & Lessard, 2002] developed the ESS theory for frequency-depedent
selection in family-structure populations. In particular, they use the payoff matrix

where r is the probability to interact with a sib, to show the effect of kin selection involving
full sibs on ESS conditions.

All these approaches contain linear fitness functions. In contrast, our model is based on non-
linear fitness functions and can therefore not be studied by a simple transformation of the payoff
matrix. In our model, there will be new dynamical features which are not present in the standard
replicator equation.

[Queller, 1985] used a definition of relatedness which depends on the covariance of the
strategies of interacting individuals. Non-uniform interaction rates lead to high covariance of
players’ strategies, and hence a degree of relatedness in Queller’s formulation.
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2.2. Invariant transformations
For the standard replicator equation, there exist some useful transformations of the payoff
matrix that do not change the evolutionary dynamics. Here we show that some of these
transformations can also be used for non-uniform interaction rates.

Consider the equations

with φ = xfA + yfB and

1. Adding the same constant to all payoff values, a, b, c and d, does not change the
evolutionary dynamics. We have

Therefore, we obtain the substitutions

The corresponding fitness of A and B players, and hence the average fitness of the
population, are all increased by the base fitness f0. Therefore, the evolutionary
outcome and speed remain invariant when background fitness is introduced.

2. Multiplying all payoff values, a, b, c and d, by the same factor does not change the
evolutionary dynamics. We have

Therefore, we have the substitutions

The corresponding fitness of A and B players, and hence the average fitness of the
population, are all multiplied by k. The evolutionary outcome is still the same, while
the evolutionary speed is increased k-fold.

3. For the replicator equation with uniform interaction rates, it is possible to add arbitrary
constants to each column of the payoff matrix:
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We have the substitutions

Hence

This transformation does not change the evolutionary dynamics for uniform
interaction rates. For non-uniform interaction rates, however, such transformations
will change the evolutionary dynamics, in general. Only for the specific case,

, the evolutionary dynamics remain invariant.

2.3. Evolutionary stability
When players do not interact with players of the opposite strategy, r2 = 0, then A dominates
B if and only if a > d, while B dominates A if and only if a < d.

With uniform interaction rates, if ε many B players enter a population of 1 − ε many A players,
the fitness of A and B players are given by

A is stable against invasion by B if fA > fB for small z. Hence A is an evolutionary stable strategy
(ESS), if

1. either a > c,

2. or a = c and b > d.

The concept of an ESS was introduced by [Maynard Smith & Price, 1973]. With non-uniform
interaction rates, if z many B players enter a population of 1 − ε many A players, the fitness of
A and B players are given by

In this case, strategy A is ESS if either

TAYLOR and NOWAK Page 5

Theor Popul Biol. Author manuscript; available in PMC 2010 June 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. a > c, or

2. a = c and .

Therefore, the conditions for evolutionary stability does depend on the interaction rates r1,
r2, and r3.

If a > c, then A is a strict Nash equilibrium and cannot be invaded by B for any choice of r1,
r2 and r3 with r1, r2, r3 > 0. Therefore, a strict Nash equilibrium remains uninvadable for non-
uniform interaction rates, while the condition for ESS changes.

Consider the following example

For uniform interaction rates, strategy A is ESS and therefore cannot be invaded by B. We have
A ← B. For non-uniform interaction rates, however, if

then B can invade A.

2.4. Evolutionary dynamics
From now on, we consider the case r2 > 0. Without loss of generality, let r2 = 1. We will show
that for non-uniform interaction rates, there are four generic outcomes, one of which is entirely
new.

Let us introduce the parameters

(2)

We list below the evolutionary outcomes of a deterministic two strategy game with non-
uniform interaction rates. We will prove these results in the Appendix.

2.5. B dominates A
If a < c and b < d, then B dominates A in the normal replicator equation. We have to distinguish
two cases:

1. If c > a > d > b and
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then we have

The stable interior equilibrium is given by

The unstable interior equilibrium is given by

The bifurcation occurs when

As r1r3 increases above this threshold, α2 − 4βγ increases.

2. If d > b > c > a and

then we again have

The stable interior equilibrium is given by

The unstable interior equilibrium is given by

The bifurcation occurs when
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As r1r3 decreases below this threshold, α2 − 4βγ increases.

3. Otherwise, if conditions in case (1) and (2) are not met, namely when α2 − 4βγ < 0,
we have the usual scenario where B dominates A. The entire population will converge
to all B:

Hence, for the first two classes of games where strategy B is strictly dominant, the evolutionary
outcome can be altered by varying the reaction rates r1 and r3. Note, however, that the invasion
dynamics do not change. B can invade A, but A cannot invade B. If initially most of the
population play B, then everyone will play B. If initially most of the population play A, then
A and B players will co-exist.

The bifurcation point is where the evolutionary outcome changes its course. In particular,
bifurcation occurs when

When α2 − 4βγ < 0, we simply have A → B.

When α2 = 4βγ, and , we have a tangent (or fold) bifurcation point at

As α2 − 4βγ increases above zero, the two equilibria move symmetrically away from

toward the neighboring end points.

When r1 = r3, we find that the bifurcation point is at

Obviously when a > c and b > d, then the situation is similar with A and B exchanged.

2.6. A and B coexist
If a < c and b > d, then A and B co-exist in a stable equilibrium,
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The interior stable equilibrium is given by

The evolutionary dynamics do not change by introducing non-uniform interaction rates.
However, the location of the interior stable equilibrium, x*, can be shifted by varying r1 and
r3.

We find that x* increases monotonically with respect to r1 and r3. As r3 → ∞, x* → 1; as r3 →
0, x* → 0. In particular, we can increase the equilibrium frequency of A by increasing r1 and
r3, and we can increase the equilibrium frequency of B by decreasing r1 and r3.

2.7. A and B are bi-stable
If a > c and b < d, then A and B are bi-stable,

Both strategies are strict Nash equilibria. The unstable interior equilibrium is given by

For a bi-stable game, the evolutionary outcome stays the same with nonuniform interaction
rates. However, the location of the interior unstable equilibrium, x*, can be shifted by varying
r1 and r3.

We find that x* decreases monotonically with respect to r1 and r3. As r1 → ∞, x* → 0; as r1
→ 0, x* → 1. In particular, we can minimize the invasion barrier for A by increasing r1 and
r3, and we can minimize the invasion barrier for B by decreasing r1 and r3.

For uniform interaction rates, A is risk dominant if

This implies x* < 1/2 and, hence, A has a larger basin of attraction.

For non-uniform interaction rates, A has the larger basin of attraction if

This inequality can be written as
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This is the condition that the fitness an A player is greater than that of a B player when the
proportion of A and B players are equal. We argue that this condition is the relevant criterion
for risk-dominance in the context of non-uniform interaction rates as it generates the larger
basin of attraction.

Given a > c and d > b, it is not possible that a strategy is risk-dominant for any choice of r1
and r3.

Let us focus on the special case where r1 = r3 = r > 0 and r2 = 1. Strategy A is risk dominant
if

Consider the example

For uniform interaction rates, B is risk dominant. For non-uniform interaction rates, if r < 2,
B is risk dominant, and if r > 2, then A is risk dominant. If a > d > b > c, then A is risk dominant
for any choice of r.

3. Application to Prisoner’s Dilemma
In the Prisoner’s Dilemma, the two strategies C and D denote cooperation and defection. The
payoff matrix is given by

The Prisoner’s Dilemma is defined by T > R > P > S and R > (T + S)/2, and it corresponds to
the case outlined in case (1) in section 2.5.

For uniform interaction rates r1 = r2 = r3, defection is the dominant strategy. Hence, the entire
population will consist of defectors eventually. We have C → D.

However, if players only interact with opponents of the same strategy, then cooperators cannot
be exploited by defectors. In this case, where r2 = 0 and r1, r3 > 0, cooperation is the dominant
strategy, because R > P. Hence C ← D.
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Assume r2 ≠ 0, which means that cooperators and defectors do interact. Without loss of
generality, assume that r2 = 1. The selection dynamics depend on the size of r1r3 relative to
ρ2, where

Note that ρ is always greater than 1. We use the values set in [Axelrod & Hamilton, 1981], T
= 5, R = 3, P = 1, S = 0, we obtain ρ ≃ 2.44.

If r1r3 < ρ2, then defection is the dominant strategy. If r1r3 > ρ2, then there are two interior
equilibria, one stable and the other unstable, in addition to the two equilibria on the boundary.
We have C → · ← · → D.

At the bifurcation point, we have r1r3 = ρ2. As r1r3 increases above ρ2, the two interior equilibria
move further apart from the bifurcation point, given by

Now let r = r1 = r3. Thus the cooperator-cooperator interaction rate is the same as that of
defector-defector. When r = ρ, we have the bifurcation point at

The frequency of cooperators, x*, at the bifurcation point is independent of any parameter. As
r increases, the interior stable equilibrium point moves closer toward 1, while the unstable
equilibrium moves closer toward 0. So the proportion of cooperators tend to increase
monotonically as r increases. As r → ∞, we recover the case where r2 = 0, and cooperation is
the dominant strategy, C ← D, as defectors can no longer exploit cooperators. See Figure 1.

4. Application to the Snowdrift Game
In a snowdrift game [Hauert & Doebeli, 2004], two drivers who are caught in a blizzard and
trapped on either side of a snowdrift. They can shovel (cooperate) or remain in the car (defect).
If both cooperate, they have the benefit e of getting home while sharing the labor cost f, so the
net payoff to each player is e−f/2. If both defect, they do not get home, and the net payoff is 0.
If one cooperates while the other defects, the cooperator receives e − f, and the defector receives
e.
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If e > f > 0, the payoffs generate the snowdrift game, in which it is best to play the strategy
different from one’s opponent: stay in the car if the other is shoveling, and shovel if the other
is idle in the car. This corresponds the situation outlined in section 2.6. The equilibrium
frequence of cooperators is 1 − f/(2e − f), where f/(2e − f) is the cost-to-benefit ratio of mutual
cooperation. The average payoff of the population at equilibrium is 2e(e − f)/(2e − f), which is
smaller than the average population payoff, e − f/2, if the entire population consists of
cooperators only.

The equilibrium frequency of cooperators, x*, is always an increasing function of r1 and r3.
Hence the equilibrium frequency of cooperators can be maximized by increasing the interaction
rates between players with the same strategies.

5. Conclusion
Evolutionary game theory was pioneered by John Maynard Smith [Maynard Smith & Price,
1973, Maynard Smith, 1982]. His ideas brought game theory to biology and population thinking
to game theory. Maynard Smith invented the important concept of an evolutionarily stable
strategy (ESS), which can resist invasion of other strategies in infinitely large populations.
Evolutionary game theory has been used to study the interaction among genes, cells, viruses,
animals and humans. For a recent review see [Nowak & Sigmund, 2004]. Evolutionary game
theory offers an framework to explore the evolution of altruistic behavior [Trivers, 1971,
Axelrod & Hamilton, 1981, Nowak & Sigmund, 1992, Killingback & Doebeli, 2002] and
human language [Nowak et al., 2002]. Mathematical approaches to evolutionary game
dynamics are based on ordinary differential equations [Taylor & Jonker, 1978, Hofbauer et al.,
1979, Zeeman, 1980, Fudenberg & Tirole, 1991, Weibull, 1995, Tao & Lessard, 2000], partial
differential equations [Hutson & Vickers, 1993], stochastic differential equation [Imhof,
2004, Fudenberg & Imhof, 2004], cellular automata [Nowak & May, 1992, Herz, 1994,
Lindgren & Nordahl, 1994, Killingback & Doebeli, 1996, Mitteldor & Wilson 2000, Irwin &
Taylor 2001, Hauert et al., 2002, Le Galliard et al., 2003], and stochastic processes [Nowak et
al., 2004, Taylor et al., 2004]. There is much current interest to study evolutionary game
dynamics on graphs, which also leads to non-uniform interaction rates. [Ellison, 1993,
Nakamaru et al., 1997 & 1998, Epstein, 1998, Abramson & Kuperman, 2001, Ebel &
Bornholdt, 2002, Szabo & Vukov, 2004, Ifti & et al., 2004, Nakamaru & Iwasa, 2005,
Lieberman et al., 2005] The fundamental Lotka-Volterra equation of ecology is equivalent to
the replicator equation of evolutionary game theory [Hofbauer & Sigmund, 2003].

In this paper, we have studied the effect of non-uniform interaction rates on evolutionary game
dynamics. In the classical approach of the replicator equation, the rate of interaction between
any two individuals is the same and does not depend on the strategies (phenotypes) of these
individuals. Here we assume that the interaction rates are not uniform. For example, players
who use the same strategy might interact more frequently than players who use different
strategies. Non-uniform interaction rates lead to nonlinear fitness functions and therefore allow
richer dynamics than the classical replicator equation, which is based on linear fitness
functions. We have analyzed the evolutionary dynamics of all symmetric two-strategy games.

If strategy A is a strict Nash equilibrium, then it remains uninvadable for positive non-uniform
interaction rates. If A dominates B then non-uniform interaction rates can introduce a pair of
interior equilibria; one of them is stable the other one unstable. If A and B coexist, then non-
uniform interaction rates cannot change the qualitative dynamics, but alter the location of the
stable equilibrium. If A and B are bi-stable, then again non-uniform interaction rates cannot
change the qualitative dynamics, but alter the location of the unstable equilibrium. There is a
new condition for risk dominance that depends on the interaction rates.
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For the non-repeated Prisoner’s Dilemma, coexistence between cooperators and defectors is
possible if the ratio of homogeneous (C − C, D − D) over heterogeneous (C − D) interaction
rates exceeds a critical value. If C − C interactions are as likely as D − D interactions, then the
pair of equilibria v arises at a cooperator frequency of  which is entirely
independent of the payoff matrix, as long as T > R > P > S. Both equilibria are stable, one
consists of defectors alone, and the other consists of a mixture of defectors and cooperators.

For the snowdrift game, the equilibrium of frequency of cooperators is increased if
homogeneous interactions are more likely than heterogeneous ones.

Spatial dynamics of the Prisoner’s Dilemma [Nowak & May, 1992, Killingback & Doebeli,
1999, 2002] leads to clustering of cooperators and therefore always favors cooperators. Spatial
dynamics of the snowdrift game, however, can lead to intricate patterns of cooperators
intermixed with defectors and can therefore enhance heterogeneous interactions. This effect
can reduce the equilibrium frequency of cooperators [Hauert & Doebeli, 2004]. Both
phenomena are in accordance with the findings of the present paper.

The analysis of non-uniform interaction rates should be extended to stochastic game dynamics
of finite populations. Furthermore, we can distinguish the rate, rAB, a strategy A player interacts
with a strategy B player, and the rate, rBA, a strategy B player interacts with strategy A player.
Here we have analyzed rAA = r1, rBB = r3, and rAB = rBA = r2. It would also be interesting to
study evolutionary dynamics for rAB ≠ rBA.
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7. Appendix
We prove our main results concerning non-uniform reaction rates. We first consider the generic
case where none of the reaction rates ri is zero.

Since fA and fB are homogeneous in ri’s, after a change of variable (dividing the denominator
and nominator by r2, assuming r2 ≠ 0), we can write

The replicator equations can be reduced to
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where x is the proportion of A players. and

The equilibrium points are either on the boundary or in the interior.

At x = 0, the Jacobian is

So x = 0 is a stable equilibrium if b < d, and an unstable equilibrium if b > d.

At x = 1, the Jacobian is

So x = 1 is a stable equilibrium if a > c, and an unstable equilibrium if a < c.

At the interior equilibrium x*, where x* is the polynomial root of the nominator of fA − fB, call
it h(x), where

where

At x = x*, the Jacobian is directly proportional to

depending on the root x*.
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For x* to be an interior equilibrium, we require that

This condition and the sign of the Jacobian at x = x* will help us to determine the evolutionary
outcomes of this game.

In order for both roots  to be in (0, 1), α2 > 4βγ must hold. In addition, we find that
either

or

We focus on the case where β and γ are both positive, hence with uniform reaction rates, A is
a strict Nash equilibrium. However, with non-uniform reaction rates, the selection dynamics
depends on the magnitude of r1r3 versus .

Under the conditions that a > c and b > d, β, γ > 0. Hence, we have A ← · → · ← B when a <
2β, 2γ. Since α2 > 4αβ, α < 0 must hold. Since α < 0, we find if a > d, then b < c, so a > c >
b > d; if a < d, since b > d and a > c, we have b > d > a > c. The conditions α < 0 and α2 >
4βγ together imply that A ← · → · ← B if and only if one of the following holds:

1.

2.

The two interior equilibria are located at

In summary, the two-strategy games whose evolutionary outcome could be altered by non-
uniform reaction rates fall in one of the following four categories, where either A or B is a
dominant strategy:

1.

b > d > a > c, and .

2.

a > c > b > d, and .
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3.

a < c < b < d, and .

4.

b < d < a < c, and .

The location of interior equilibria at

depend largely on the reaction rates r1, r2, and r3, as well as the signs of a −d and b − c.

When , we need to compare the payoffs a and d:

1. d > a:

If b > d, we have an interior stable equilibrium at

we can make  by increasing r1.

If a > c, we have an interior unstable equilibrium at

we can make  by increasing r3.

2. a > d:

If c > a, we have an interior stable equilibrium at

we can make  by increasing r3.

If d > b, we have an interior unstable equilibrium at

we can make  by increasing r1.

When , we need to compare the payoffs b and c.

1. b > c:

If c > a, we have an interior stable equilibrium at
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we can make  by decreasing r1.

If d > b, we have an interior unstable equilibrium at

we can make  by decreasing r3.

2. b < c:

If b > d, we have an interior stable equilibrium at

we can make  by decreasing r3.

If a > c, we have an interior unstable equilibrium at

we can make  by decreasing r1.

Finally we consider the special cases when ri = 0 when i = 1, 2, or 3.

If r1 = 0, r2 = 1, then A dominates B if and only if b > c, d. If b < c, d, then B dominates A. If
however, c < b < d, then we have a bi-stable game where x = 0, 1 are both Nash equilibria,
and (d−b)r3/((d−b)r3+(b−c)) is an unstable interior equilibrium. Otherwise, when d < b < c,
we have a mixed strategy game where x = 0, 1 are unstable equilibria, but (d−b)r3/((d−b)r3 +
(b−c)) is a stable interior equilibrium.

Similarly, if r3 = 0, r2 = 1, we have A ← B when c < a, b; A → B when c > a, b; A ← · → B
when b < c < a; and A → · ← B when a < c < b. The interior equilibrium is at (c−b)/(c−b +
(a−c)r1). Here, the greater r1 is, the closer the interior equilibrium is to x = 0.
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Figure 1.

TAYLOR and NOWAK Page 20

Theor Popul Biol. Author manuscript; available in PMC 2010 June 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


