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Abstract

The KRAS proto-oncogene plays a key role in the development of many human tumors and is commonly activated by
somatic mutation or signaling through specific growth factor receptors. However, the interaction between the micro-
environment and K-ras activity has not been defined. Hypoxia invariably develops as tumors outgrow their supply of
oxygen. A series of well-orchestrated cellular adaptations occur that stimulate angiogenesis and enhance survival of the
tumor in hypoxic conditions. Our previous studies demonstrated that mutant KRAS alleles can interact with hypoxia to
induce vascular endothelial growth factor (VEGF) in colon cancer. We sought to determine whether similar hypoxic
responses are also present in tumors without a KRAS mutation. Hypoxia consistently increased the levels of activated, GTP-
bound K-ras in colon cancer cell lines with a wild-type KRAS gene, and this depended upon the activation of c-Src. Inhibition
of c-Src by PP2 treatment or siRNA knockdown blocked the hypoxic activation of K-ras. This activation of K-ras did not
depend upon EGFR and resulted in the phosphorylation of Akt and induction of VEGF expression. In addition, activation of
K-ras significantly blocked apoptosis in hypoxic conditions. These studies reveal a unique adaptive mechanism in hypoxia
that activates K-ras signaling in the absence of a mutant KRAS oncogene.

Citation: Zeng M, Kikuchi H, Pino MS, Chung DC (2010) Hypoxia Activates the K-Ras Proto-Oncogene to Stimulate Angiogenesis and Inhibit Apoptosis in Colon
Cancer Cells. PLoS ONE 5(6): e10966. doi:10.1371/journal.pone.0010966

Editor: Syed A. Aziz, Health Canada, Canada

Received April 27, 2010; Accepted May 12, 2010; Published June 4, 2010

Copyright: � 2010 Zeng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by National Institutes of Health grant CA92594; Kate J. and Dorothy L. Clapp Fund. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dchung@partners.org.

Introduction

The development of tissue hypoxia is characteristically observed

as malignant tumors rapidly increase in size. Such hypoxic

conditions exert selective pressure on cancer cells, and the ability

of tumor cells to survive in a hypoxic microenvironment has been

associated with a poor prognosis and resistance to therapy [1]. One

of the most critical and best characterized responses to hypoxia is

the induction of vascular endothelial growth factor (VEGF), and

hypoxia-inducible factor-1 (HIF-1) is a well-established mediator of

this process. However, previous studies have demonstrated that

HIF-independent mechanisms can also induce VEGF in hypoxia,

and oncogenic K-ras plays a key role in this process [2,3,4].

K-ras is a small GTPase that cycles between inactive guanosine

diphosphate (GDP)-bound and active guanosine triphosphate

(GTP)-bound conformations (Ras-GDP and Ras-GTP, respective-

ly) [5]. It serves as a signal switch molecule that couples receptor

activation by specific growth factors with downstream effector

pathways including the Ras-MEK-ERK and phosphatidylinositol

3-kinase (PI3K)-Akt cascades that control multiple cellular

responses. Oncogenic mutations in KRAS impair the ability of

K-Ras to hydrolyze bound GTP in a growth factor-independent

manner, and constitutive signaling through these effector pathways

results. The tumor microenvironment can have a profound

influence on cellular behavior, and hypoxia has been shown to

interact with many oncogenic signaling pathways. In particular,

hypoxic activation of the PI3K-Akt, MEK-ERK, NF-kB, and

hypoxia-inducible factor (HIF) signaling pathways has been

described [6,7]. Although K-ras is a central regulator in all these

pathways, it is unknown whether K-ras itself is specifically

activated by hypoxia. Previous studies have demonstrated a strong

synergistic interaction between hypoxia and mutant K-ras in the

regulation of multiple target genes including vascular endothelial

growth factor (VEGF), IL-8, and osteopontin [2,8,9]. However,

fewer than 50% of colon tumors harbor KRAS mutations, and the

relationship between Ras signaling and hypoxia in tumors with

wild-type KRAS remains undefined.

We sought to determine the role of K-ras in the hypoxic micro-

environment in colon cancer, a tumor type that frequently harbors

KRAS mutations. Wild-type K-ras was strongly activated by

hypoxia, and c-Src was necessary for this hypoxic activation of

K-ras. This resulted in the phosphorylation of Akt and induction

of VEGF expression. In addition, hypoxic activation of wild-type

K-ras blocked apoptosis. Collectively, these findings highlight a

new mechanism for the hypoxic activation of oncogenic survival

pathways in the absence of an oncogenic mutation.

Results

Hypoxic activation of K-Ras in colon cancer cells
To determine whether hypoxia activates Ras, we measured

GTP-bound Ras in normoxic and hypoxic conditions in a panel of

colon cancer cell lines. Levels of GTP-bound Ras were barely

detectable in Caco2, HT29, Colo320DM and Colo205 cells in
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normoxic conditions (Fig. 1A). All of these lines have a wild-type

KRAS gene. However, when these cells were incubated in hypoxic

conditions (1% O2), there was a dramatic increase (from 3 to 6.8

fold) in the levels of activated Ras (Fig. 1A). In contrast, the basal

activities of Ras in DLD1, HCT116 (both heterozygous for the

KRASD13 mutation), and SW480 (homozygous for the KRASV12

mutation) cells in normoxia were high, and there was no

subsequent increase in hypoxia (Fig. 1A, right panel). SW480

cells had the strongest levels of Ras activation in normoxic

conditions. Hypoxia is thus a strong activator of Ras in colon

cancer cells, but this induction was observed only in those cells

with a wild-type KRAS gene.

To verify that the K-ras isoform was activated by hypoxia, a K-

ras specific antibody was utilized. As illustrated in Figure 1B, levels

of GTP bound-K-ras were induced by hypoxia in colon cancer

cells with wild-type KRAS (Caco2, HT29) whereas there were no

changes in cell lines with a mutant KRAS oncogene (DLD1,

HCT116, SW480). A role for N-ras in the regulation of apoptosis

has been suggested in colon cancer, but an N-ras specific antibody

failed to detect GTP-bound-N-ras in Caco2, DLD1, and HCT116

cell lines in either normoxic or hypoxic conditions (Fig. S1) [10].

Tumor hypoxia is often accompanied by a switch to anaerobic

glycolysis and a lower pH, so we investigated whether the hypoxic

regulation of Ras activity was mediated through changes in pH.

Incubation of Caco2 cells in acidic conditions (pH 6.5) for 4 hours

did not increase the activity of Ras, suggesting that changes in pH

do not regulate levels of GTP-bound Ras (Fig. 1C).

Upregulation of Ras activity by hypoxia requires c-Src
c-Src lies upstream of K-ras, and we next sought to explore

whether c-Src is also activated by hypoxia. A time-dependent

activation of c-Src, as measured by phosphorylation at Tyr416, was

observed in both Caco2 and HT29 cells after incubation in

hypoxic conditions (Fig. 2A). To determine if c-Src activity

Figure 1. Hypoxia activates Ras in colon cancer cell lines with a wild-type KRAS. The levels of GTP-bound Ras (A) and GTP-bound K-ras (B)
were evaluated in wild-type (left panel) and mutant (right panel) KRAS cell lines grown either in normoxic (N) or hypoxic (H) conditions for 4 hours.
Two milligrams of cell extracts were used for a Ras activation assay, followed by Western blotting with the indicated antibodies. Densitometry values
are expressed as fold change compared with control values normalized to 1. C, Caco2 cells were cultured in DMEM with pH adjusted to 7.5 or 6.5 for
4 hours. Cell lysates were used for a Ras activation assay followed by Western blotting with a Ras-GTP specific antibody. Densitometry values are
expressed as fold change compared with control values normalized to 1.
doi:10.1371/journal.pone.0010966.g001
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Figure 2. Activation of Ras by hypoxia is dependent on c-Src activation. A, Caco2 and HT29 cells were incubated in hypoxic conditions for the
indicated times, and Western blotting for phospho-Src416 and total Src was performed. b-actin confirmed equal loading. Densitometry values are
expressed as fold change compared with control values normalized to 1. B, Caco2 cells were pretreated with the Src inhibitor PP2 (20 mM) or DMSO for
1 hour (left panel), or transiently transfected with c-Src specific siRNA constructs or a non targeting control (right panel), before incubation in hypoxic or
normoxic conditions for 4 hours. Activated Ras was pulled down and SDS-PAGE was performed using a Ras-GTP specific antibody. Total Ras confirmed
equal loading. Densitometry values are expressed as fold change compared with control values normalized to 1. C, Lysates of Caco2pEVX and
Caco2SrcY527F cells were immunostained for p-Src416 and total Src and also used for a Ras activation assay. Densitometry values for Ras-GTP are
expressed as fold change compared with control values normalized to 1. D, left panel, Control cells and cells pretreated with NAC (20 mM) for 20
minutes were exposed for 10 minutes to H2O2 (5 mM). Lysates were then immunoblotted for p-Src416 and total Src. b-actin confirmed equal loading.
Middle and right panels, Control Caco2 cells and cells pretreated with NAC (20 mM) for 1 hour were incubated in hypoxia for 4 hours. Western
blotting for phospho-Src416 (middle panel) and a Ras activating assay (right panel) were then performed. Densitometry values are expressed as fold
change compared with control values normalized to 1. E, Lysates of control Caco2 cells and cells incubated in hypoxia for the indicated times were
subjected to Western blotting to detect p-EGFR (Tyr1068) and total EGFR protein levels. Treatment with EGF (100 ng/mL) served as a positive control.
doi:10.1371/journal.pone.0010966.g002
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contributed to the activation of Ras by hypoxia, we pretreated

Caco2 cells with PP2, a potent and selective Src tyrosine kinase

inhibitor. A 50% reduction in the hypoxic induction of Ras was

detected in Caco2 cells, while there was no effect on the levels of

total Ras (Fig. 2B, left panel). This effect was dose-dependent, with

a maximal effect seen at 20 mM (data not shown).

To more directly assess the role of c-Src, we knocked down

endogenous c-Src in Caco2 cells via RNA interference. Knock-

down of c-Src led to a 33% reduction in the hypoxic activation of

GTP-bound Ras (Fig. 2B, right panel). Furthermore, Caco2 cells

expressing a constitutively active c-Src vector (SrcY527F) exhib-

ited a 70% increase in the level of GTP-bound Ras (Fig. 2C) when

compared with empty vector (pEVX). Western blotting verified

the K-ras isoform was activated by expression of Src (Fig. S2).

Reactive oxygen species (ROS) generated by hypoxia have

previously been shown to activate Src. Exogenous administration

of H2O2 (5 mM) potently induced phosphorylation of Src at

Tyr416 in Caco2 cells (Fig. 2D, left panel). This effect was

significantly reduced by NAC (20 mM), an antioxidant that

inhibits ROS. We then sought to determine whether NAC could

block the hypoxic activation of endogenous Src and Ras. NAC

treatment reduced the induction of p-Src416 in hypoxia by

approximately 30% with a concomitant 17% reduction of GTP-

bound Ras (Fig. 2D). These findings suggest that generation of

ROS may partially contribute to the hypoxic activation of c-Src in

colon cancer cells.

Recent reports have suggested that hypoxia can increase levels

of EGFR and that phosphorylation of EGFR may be an

intermediate step in the signaling from Src to Ras [11,12]. To

determine whether EGFR may play such a role, we measured total

EGFR and phospho-EGFR levels in Caco2 cells incubated in

hypoxia. There was a small increase in total EGFR in hypoxia.

However, there was no increase in EGFR phosphorylation at

Tyr1068 (Fig. 2E). Overall, the data suggest that up-regulation of c-

Src activity by hypoxia is mediated in part through ROS but that

activation of K-Ras by c-Src in hypoxia does not depend upon

EGFR.

Activation of Akt by hypoxia is downstream of c-Src and
K-ras

We next sought to determine which downstream effector

pathways were activated by c-Src and K-ras in hypoxia. Exposure

to hypoxic conditions induced phosphorylation of Akt at Ser473 in

both Caco2 and HT29 cells, while no activation of ERK was

detected under the same conditions (Fig. 3A). Akt was activated in a

time-dependent manner and reached a maximum level at 12 hours.

To determine whether Src was involved in the hypoxic activation of

Akt, we pretreated Caco2 cells with the specific Src inhibitor PP2 for

12 hours before exposure to hypoxia. As shown in Figure 3B, the

hypoxic activation of Akt was reduced by PP2 treatment in a dose-

dependent manner. Consistent with these findings, knock down of c-

Src also completely blocked the hypoxic activation of Akt when

compared to cells transfected with a control siRNA (Fig. 3C).

Because Akt is known to be downstream of K-ras, we tested

whether Akt is also a specific target of K-ras under hypoxic

conditions by utilizing K-ras siRNA oligos. Silencing of K-ras

reduced the levels of Akt in hypoxia when compared to cells

transfected with control siRNA (Fig. 3C). These data indicate that

hypoxic activation of Akt is mediated through both Src and K-ras.

No changes in phospho-Src416 and total Src protein levels were

observed when K-ras was silenced (Fig. 3C), indicating that Src is

indeed upstream of K-ras in this hypoxic signaling pathway.

To independently verify that K-ras was downstream of Src in

this hypoxia-induced phosphorylation of Akt, we performed

experiments in a Caco2 cell line stably expressing the mutant

oncogene KRASV12 (Caco2/pCSGWK-rasV12). The hypoxic

induction of p-Akt was not blocked by silencing of c-Src with

siRNA (Fig. 3D). These findings indicate that c-Src functions

upstream of K-ras in the hypoxic activation of Akt.

K-ras and Src mediate resistance to apoptosis in hypoxia
Akt plays a pivotal role in regulating apoptosis and cell cycle

progression. Since Akt is a downstream target of K-ras in this

hypoxia-triggered intracellular signaling pathway, we sought to

determine whether silencing of K-ras would affect cell survival.

Knock-down of K-ras decreased cell viability even in normoxic

conditions by 20% in HCT116 cells, but there were no significant

changes in DLD1 or Caco2 cells. In contrast, K-ras knockdown in

hypoxic conditions reduced cell counts to a much greater extent: a

40% reduction in HCT116 (P,0.05) and 50% reductions in

DLD1 and Caco2 cells (P,0.01) were observed (Fig. 4A).

Silencing of K-ras in Caco2 cells resulted in a survival rate in

hypoxia comparable to DLD1 and HCT116 cells that harbor a

mutant KRAS gene, suggesting that the wild-type K-ras protein

also plays an important role in the adaptive mechanism in

hypoxia.

We then labeled cells with FITC-conjugated annexin V and

propidium iodide (PI) to measure rates of apoptosis. Another wild-

type KRAS cell line, Colo320DM, was studied because its growth

pattern as single cells permits visualization of apoptotic membrane

changes more clearly. Silencing of K-ras resulted in alterations in

cell morphology, including blebbing, shrinkage, and nuclear

fragmentation, as well as reduced attachment to the tissue culture

dish and increased floating. Silencing of K-ras also increased the

number of Annexin V positive cells compared with control siRNA

(Fig. 4B). To quantify the anti-apoptotic effects of K-ras in

hypoxia, we analyzed apoptotic cell populations by flow cytometry

(FACS). Caco2 cells transfected with either a non targeting control

or K-ras siRNA oligos were incubated in normoxia or hypoxia for

48 hours. Cells without any treatment served as a negative control,

and cells exposed to UV light for 10 minutes and cultured with

TNF-a and Cycloheximide (CHX) served as a positive control

(Fig. 4C, left panel). A histogram of Annexin V-FITC positive cells

revealed that knock-down of K-ras in normoxia did not

significantly alter rates of apoptosis. However, under hypoxic

conditions, loss of K-ras significantly increased rates of cell death

from 22% to 57% when compared with control siRNA treatment

(Fig. 4C, middle and right panel). We further analyzed the

apoptotic cells as two subpopulations: early apoptotic cells

(Annexin V+, PI-) and late apoptotic/necrotic cells (Annexin

V+, PI+). Only when K-ras was knocked-down under hypoxic

conditions was a significant induction of apoptosis observed by

FACS analysis; there was a 1.3-fold increase in the number of

early apoptotic cells (P,0.05) and 2.0-fold increase in the number

of late apoptotic cells (P,0.01) when compared to control siRNA

in hypoxia (Fig. 4D). These studies indicate that K-ras can inhibit

apoptosis in hypoxia.

Our data suggested that Src may also regulate survival pathways

that block apoptosis in hypoxia. We defined the relationship

between Src and cell survival directly by counting viable cells that

excluded trypan blue. Knock-down of Src in DLD1 and HCT116

cells did not alter cell survival in normoxia (1% and 9% reductions

in cell counts, respectively), whereas in hypoxia, cell counts

decreased by 36% and 45%, respectively (Fig. 4E). Similarly,

knockdown of c-Src in Caco2 cells reduced cell counts by 20% in

normoxia compared to a more significant 58% reduction in

hypoxia. Therefore, the activation of K-ras or Src under hypoxic

conditions enhances the survival of colon cancer cells.

Hypoxic Activation of K-Ras
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Hypoxic regulation of VEGF by K-ras
Hypoxia is also a potent stimulus for angiogenesis through the

induction of VEGF. We previously demonstrated that hypoxia and

oncogenic K-ras can synergistically up-regulate VEGF [2]. While

such studies provide invaluable insights into oncogenic K-ras

function, they do not provide insights into mechanisms that colon

cancer cells with a wild-type KRAS may utilize. We therefore

inhibited the endogenous wild-type KRAS in Caco2 cells with

Figure 3. Activation of Akt by hypoxia is downstream of c-Src and K-ras. A, Protein extracts from Caco2 and HT29 cells grown in normoxic
or hypoxic conditions for the indicated times were subjected to immunoblotting for phospho-Akt and phospho-ERK1/2. The blots were then stripped
and reprobed with antibodies against total Akt and total ERK. b-actin was used as a loading control. Densitometry values for p-Akt are expressed as
fold change compared with control values normalized to 1. B, Caco2 cells were incubated for 1 hour with PP2 at the concentrations indicated, before
transfer to normoxic or hypoxic conditions for 12 hours. Western blotting was performed to determine the levels of phospho-Akt, total Akt, phospho-
Src416, and total Src. b-actin was used as a loading control. Densitometry values are expressed as fold change compared with control values
normalized to 1. C, Caco2 cells were transfected with control siRNA, K-ras siRNA or c-Src siRNA oligos (each at 20 nM) before exposure to normoxic
(N) or hypoxic (H) conditions for 12 hours. Immunoblotting with the indicated antibodies was then performed. Densitometry values for p-Akt are
expressed as fold change compared with control values normalized to 1. D, Caco2 cells stably overexpressing K-rasV12 (Caco2pCSGWK-ras V12) were
transfected with c-Src siRNA oligos. Forty-eight hours later, cells were incubated in hypoxia or normoxia for 12 hours and Western blotting with the
indicated antibodies was then performed. Densitometry values for p-AKT are expressed as fold change compared with control values normalized to 1.
doi:10.1371/journal.pone.0010966.g003
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Figure 4. K-ras and Src enhance the survival of colon cancer cells in hypoxia. A, DLD1, HCT116 and Caco2 cells were transfected with
control siRNA or K-ras siRNA, and then incubated in hypoxia for 48 hours. Cell numbers were determined using a hemacytometer after staining with
trypan blue and the results are expressed as percentages of viable cells compared with siRNA control transfected cells in normoxia. The data are from
three independent experiments and shown as mean 6 SD. *, P,0.05; **, P,0.01. B, Colo320DM cells grown on sterile coverslips were transfected

Hypoxic Activation of K-Ras
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siRNA oligos to define the relationship between K-ras activation

and VEGF production. In Caco2 cells transfected with a control

siRNA, hypoxia increased VEGF mRNA levels 4.9-fold. Knock-

down of K-ras resulted in a decrease of VEGF mRNA expression

by 60% and 76% in normoxic and hypoxic conditions,

respectively, when compared to cells transfected with a control

siRNA (Fig. 5A). We next used a VEGF promoter reporter

construct (Fig. 5B). Hypoxic conditions induced VEGF promoter

activity by 2.2 fold. Consistent with our qRT-PCR results,

silencing of K-ras dramatically reduced the hypoxic induction of

VEGF promoter activity by 72%. In normoxia, there was a 38%

reduction in VEGF promoter activity after K-ras silencing. This

decrease in VEGF promoter activity correlated with the changes

seen in K-ras activation. Finally, an ELISA assay demonstrated

that secreted VEGF protein levels were up-regulated 2.6-fold by

hypoxia. Knockdown of wild-type KRAS in Caco2 cells decreased

VEGF protein levels by only 8% in normoxia but reduced VEGF

protein levels more significantly in hypoxia by 51% (Fig. 5C).

These results suggest that a wild-type KRAS gene is also a critical

regulator of VEGF in hypoxic conditions.

Hypoxic induction of VEGF is also Src-dependent
Although previous evidence has indicated that c-Src signal

transduction pathways can regulate VEGF expression, the

relationship between activation of Src by hypoxia and production

of VEGF in colon tumor cells has not yet been clarified. Rather

than overexpressing v-Src, we blocked endogenous c-Src with PP2.

PP2 treatment for 24 hours in Caco2 cells suppressed VEGF

mRNA levels by 87% in hypoxia compared to a 60% decrease in

normoxia (Fig. 6A). PP2 also suppressed VEGF promoter activity

by 85% in hypoxia compared to a 50% reduction in normoxia

(Fig. 6B).

To verify the specific role of c-Src in the hypoxic induction of

VEGF, we utilized Src siRNA oligos. With this approach, mRNA

levels of VEGF were unchanged in normoxic conditions but

reduced by 39% in hypoxia (Fig. 6C), and VEGF promoter

activity decreased 56% compared with a 33% decrease in

normoxia (Fig. 6D). To confirm this effect was not unique to

Caco2 cells, HT29 cells were also analyzed. Treatment with PP2

or Src siRNA oligos in HT29 cells under normoxic conditions had

negligible effects on VEGF mRNA or promoter activity. In

contrast, under hypoxic conditions, PP2 suppressed VEGF mRNA

levels and promoter activity by 67% and 53%, respectively (Fig. 6A

and 6B, right panels); similarly, c-Src siRNA oligos reduced VEGF

mRNA levels and promoter activity by 37% and 76% in hypoxia,

respectively (Fig. 6C and 6D, right panels). Collectively, these

results also implicate c-Src as a critical regulator of VEGF in

hypoxia.

Discussion

Hypoxia is an unavoidable consequence of rapid tumor growth

that outstrips the existing blood supply. A carefully orchestrated set

of adaptive responses ensures survival of the tumor cell in these

hypoxic conditions. The HIF-1 transcription factor is known to

play a role in this hypoxic response [13,14,15]. We sought to

determine whether additional oncogenic pathways may enhance

these adaptive responses. In colon cancer, previous studies have

demonstrated a synergistic interaction between KRAS mutations

and hypoxia in the regulation of multiple genes including VEGF

[2,8,9]. However, KRAS mutations are identified in less than half

of all colon cancers, and the role of wild-type KRAS in the hypoxic

response is less certain. To our knowledge, this is the first

demonstration of the hypoxic activation of K-ras in colon cancer.

Our data demonstrate that hypoxia is a potent activator of wild-

type K-Ras in colon cancer cells. Activation of K-ras resulted in

the downstream activation of Akt, induction of VEGF, and

inhibition of apoptosis. These effects on angiogenesis as well as

apoptosis are both critical for tumor survival in conditions of

sustained hypoxia. The recruitment of the Akt pathway is

consistent with previous reports of hypoxic signaling by mutant

K-ras in the regulation of OPN gene expression [9]. K-ras can

activate hypoxia-inducible factor-1 (HIF-1) through protein

phosphorylation, and some of the observed effects on the

induction of VEGF may potentially be mediated through HIF-1

[16]. However, it is unlikely that HIF-1 is the only mediator of this

process, as K-ras can also regulate VEGF through HIF-1

independent pathways in hypoxia [17].

The activation of K-ras in hypoxia depended upon the

upstream activation of c-Src. There is a precedent for the hypoxic

activation of Src, which has been demonstrated both in vivo and in

vitro in other cell types [18]. There are a number of specific

mediators that link Src to K-ras, and a role for the activation of

EGFR is well-described [11,19,20]. Despite its established link to

colonic tumorigenesis, EGFR does not play a role in the hypoxic

activation of K-ras.

Cellular responses to hypoxia seek to preserve survival in a

hostile microenvironment. The activation of K-ras in hypoxic

conditions implies a key role in the hypoxic response, and our

studies highlight two important functions: inhibition of apoptosis

and stimulation of angiogenesis. The role of K-ras in the

regulation of apoptosis is highly dependent upon context and cell

type. In some cases, K-ras can be pro-apoptotic through the

activation of RASSF1 or Nore1, but in other scenarios it may serve

anti-apoptotic functions through PI3K or Tiam1 [21]. Our studies

in colon cancer cells demonstrate a key role for activation of the

Akt pathway in hypoxia, which has been previously shown to

block apoptosis in other cellular systems [22,23,24]. Interestingly,

ERK was not activated by hypoxia in our system. The role of

ERK activation in colon tumors is not straightforward. Although

expression of oncogenic K-ras in normal colonic epithelial cells

can strongly activate ERK in vivo, only limited ERK signaling was

observed in colon tumors that developed in these animals [10]. In

addition, colon cancer cells carrying a K-ras mutation failed to

demonstrate significant activation of ERK, and no reliable

correlation between KRAS mutation status and ERK activation

has been observed in human colon cancer samples [10,25]. The

specific mechanisms that determine which effector pathways are

with siRNA control oligos (shown in top rows) or siRNA oligos to K-ras (shown in bottom rows) for 24 hours, followed by incubation in hypoxia for
48 hours. Early apoptotic (FITC+PI-) and late apoptotic/necrotic cells (FITC+PI+) were detected. Left panels: 20x phase contrast and 20x fluorescence
green and red channel merged images. Right panels: 20x and 40x fluorescence green and red channel merged images. C, Caco2 cells were
transfected with K-ras siRNA or control siRNA, and then incubated in normoxia or hypoxia for 48 hours. Cell death was determined by FACS as
described in Materials and Methods. D, Early apoptotic (Annexin V+PI-) and late apoptotic/necrotic (Annexin V+PI+) cells were determined by FACS
analysis. Mean 6 SD of three independent experiments is shown. *, P,0.05. **, P,0.01. E, DLD1, HCT116 and Caco2 cells were transfected with
control siRNA or c-Src siRNA oligos (20 nM) for 24 hours and then exposed to hypoxia for 48 hours. Cells excluding trypan blue were counted and
results are expressed as percentage of viable cells compared with siRNA control transfected cells in normoxia. Mean 6 SD of three independent
experiments is shown. *, P,0.05. **, P,0.01.
doi:10.1371/journal.pone.0010966.g004

Hypoxic Activation of K-Ras

PLoS ONE | www.plosone.org 7 June 2010 | Volume 5 | Issue 6 | e10966



engaged by K-ras in hypoxic versus normoxic conditions remain

to be defined and illustrates the plasticity of K-ras function

depending upon specific micro-environmental cues.

Hypoxic conditions can therefore create a milieu in which

proto-oncogenes that are not mutated can mimic activated

oncogenes. Even though wild-type K-ras can be activated by

hypoxia, it is likely that its spectrum of activity does not entirely

overlap with that of mutant K-ras and there are other properties

specific to oncogenic KRAS alleles. Activation of Akt in hypoxia

appears to be a common feature of colon tumors with or without

KRAS mutations, but it has become clear that mutant K-ras and

physiologically activated wild-type K-ras do not function identi-

cally [26]. Nevertheless, these findings indicate a critical role for

wild-type KRAS alleles in hypoxia and provide a potential

explanation for the aggressive behavior of tumor cells that can

survive in the hypoxic microenvironment.

Materials and Methods

Reagents
The antibodies used in this study were purchased from the

following vendors: p-Akt (Ser473), p-MAPK (Thr202-Tyr204), p-Src

(Tyr416), p-EGF Receptor (Tyr1068), total Akt, MAPK, Src, and

EGF receptor, were from Cell Signaling Technology (Beverly,

MA); v-Src (Ab-1, clone327) was from Calbiochem (San Diego,

CA); K-ras and N-ras were from Santa Cruz Biotechnology (Santa

Cruz, CA).

Cell lines and culture conditions
Human colon cancer cell lines were obtained from the

American Type Culture Collection. Cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM; GIBCO-Invitro-

gen, Carlsbad, CA) supplemented with 10% fetal bovine serum

(FBS; HyClone, Ogden, UT) and antibiotics (Penicillin-Strepto-

mycin, Invitrogen). Hypoxic conditions were achieved by culturing

cell lines in a sealed hypoxia chamber (Billups-Rothenberg, Del

Mar, CA) with a mixture of 1% O2, 5% CO2, and 94% N2. Cells

were switched to serum-free UltraCulture (Lonza, Allendale, NJ)

before hypoxia. The Src kinase inhibitor PP2 and antioxidant

NAC (Calbiochem) were added 1 hour prior to exposure to

normoxia or hypoxia. Acidic DMEM was prepared by dissolving

DMEM powder without sodium bicarbonate and sodium pyruvate

(Invitrogen) in distilled H2O, adjusting the pH to 6.5, filtering and

storing at 4uC.

Real Time PCR Assay
RNA was extracted using the ISOGEN kit (Nippon gene,

Tokyo, Japan) and quantitative reverse transcription PCR was

performed using the iScriptTM cDNA Synthesis kit (BIO-RAD,

Hercules, CA). 18S rRNA served as an endogenous control. We

used a Power SYBR Green Master Mix (Applied Biosystems,

Foster City, CA) and iQ5 Real-time PCR detection system (BIO-

RAD) for real-time quantification.

Figure 5. Hypoxic regulation of VEGF by K-ras. A, Relative mRNA
levels of VEGF, as evaluated by quantitative RT-PCR, in Caco2 cells
transfected with a K-ras-specific siRNA construct or a non targeting
control and exposed to normoxia or hypoxia. The data are expressed as
fold change as compared to siRNA control cells in normoxia, normalized
to 1. Columns, average of at least three experiments; bars, SEM. *, P,0.05
as compared to control cells. B, Caco2 cells were transiently transfected
with either siRNA targeting endogenous K-ras or non targeting control
siRNA. After 24 hours, a 2.3 kb VEGF-luciferase reporter construct was co-

transfected with pRL-CMV and cells were incubated in normoxia or
hypoxia for additional 24 hours. The data are expressed as fold change as
compared to siRNA control cells in normoxia, normalized to 1. Columns,
average of at least three experiments; bars, SEM. *, P,0.05 as compared
to control cells. C, Supernatant from cells in (A) was collected, and an
ELISA for VEGF was performed. The data are expressed as fold change as
compared to siRNA control cells in normoxia, normalized to 1. Columns,
average of at least three experiments; bars, SEM. *, P,0.05 as compared
to control cells.
doi:10.1371/journal.pone.0010966.g005
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siRNA analysis
siRNA specific against K-ras (Ambion ID: 6752 and ID:

120702; Austin, TX) and c-Src (on-target plus SMART pool

human c-Src, Dharmacon Inc. ID: L-003175-00 and Ambion ID:

s13414; Lafayette, CO) were utilized. A control siRNA that does

not correspond to any known human gene was also utilized. Cells

were plated to reach 30-50% confluence on the day of transfection

and 20 nM siRNA duplexes were introduced using Lipofectamine

RNAiMAX (Invitrogen).

Establishment of stable cells
Lentivirus vector pCSGW GFP-LC3 was kindly provided by Dr.

Ramnik Xavier (Massachusetts General Hospital, Boston, MA,

USA), and the GFP-LC3 fragment was excised with BamHI and

NotI. The human K-ras cDNA was amplified by reverse

transcription-polymerase chain reaction (RT-PCR) using mRNA

from SW480 cells that have homozygous mutation at codon 12 of

KRAS gene (G12V). pCSGW K-ras V12 or empty vector were

introduced with packaging plasmid pCMV-dR8.91 and envelope

plasmid pMD2.G into HEK293T cells by transfection with the

Fugene6 regent (Roche, Indianapolis, IN). The culture media

containing lentivirus was harvested twice every 24 hours and filtered,

and polybrene was added at 8 mg/mL. Caco2 cells were infected by

culturing with the virus containing medium for 48 hours.

Transfection
Caco2 cells were transfected with empty vector (pEVX) or

constitutively active c-Src plasmid (Src Y527F) using Lipofecta-

mine 2000 (Invitrogen). Forty-eight hours after transfection, cells

were harvested for a Ras activation assay. Plasmids containing c-

Src gene mutants and pEVX vector were kind gifts from Dr.

David Shalloway and Dr. Michael Botchan, respectively (Ad-

dgene, Cambridge, MA).

Reporter assays
Luciferase reporter assays were performed in 24-well tissue

culture plates. Cell were cotransfected with 0.6 mg of a 2.3 kb

VEGF-luciferase reporter construct and 2 ng of pRL-CMV

(Promega, Madison, WI) using Fugene6 (Roche) [17]. Twenty-

four hours later the media was switched to UltraCulture and cells

were exposed to normoxia or hypoxia for additional 24 hours.

Luciferase activity was measured with a dual luciferase reporter

assay system (Promega).

ELISA
Culture media and cellular extracts were collected after

24 hours of normoxic or hypoxic conditions. VEGF protein levels

were assayed using a human VEGF-specific ELISA Kit (Quanti-

kine; R&D Systems, Minneapolis, MN) and measured by a

microplate reader set to 450 nm.

Western blotting
Protein lysates were harvested from cells incubated in normoxia

or hypoxia for the indicated periods. Cells were lysed in chilled

lysis buffer (Cell Signaling) with Protease inhibitor cocktail

(Roche). Lysates (18–50 mg) were resolved on a Bis-Tris poly-

acrylamide or Tris-Acetate gel (Invitrogen) and transferred onto a

polyvinylidene fluoride (PDVF) membrane (Millipore, Bedford,

MA). Membranes were blocked in 5% non-fat milk containing

0.1% Tween 20 (TBS-T) for 1 hour at room temperature and

incubated overnight with relevant antibodies at 4uC. Secondary

antibodies coupled to horseradish peroxidise were visualized using

the Western Lighting Chemiluminescence Reagent Plus (Perki-

nElmer Life Sciences, Boston, MA).

Ras activation assay
The level of active Raf-bound Ras was assessed utilizing a Ras

activation assay kit (Upstate, Lake Placid, NY). Cells were cultured

to 70%–80% confluence in a 15 cm dish and switched to DMEM

with 2% FBS before incubation in normoxia or hypoxia for

4 hours. Two milligrams of each cell extract was mixed with

10 mL of the Ras Assay Reagent (Raf-1 RBD agarose slurry) and

incubated at 4uC for 45 minutes. The agarose beads were

resuspended in 40 mL of 2x Laemmli reducing sample buffer and

boiled. Twenty microliters of lysates were separated by SDS-

PAGE and transferred to a PVDF membrane. Active Ras was

detected using a Ras antibody (kit component) or an isoform

specific antibody to K-ras or N-ras (both Santa Cruz).

Annexin V-PI staining for fluorescence microscopy
An apoptosis assay was performed using ApoAlert Annexin V

kit (Clontech, Palo Alto, CA). Colo320DM cells grown on sterile

coverslips were transfected with control or K-ras siRNA,

incubated in hypoxia for 48 hours, and then incubated with

Annexin V-FITC and Propidium Iodide (PI) in the dark for 10

minutes at room temperature. Coverslips were inverted on glass

slides and cells were visualized with an Olympus AX70

microscope (Olympus, Canter Valley, PA).

Determination of apoptosis by flow cytometry
Caco2 cells were transfected with K-ras or control siRNA

24 hours before incubation in hypoxia. Cells which were

irradiated under UV before incubation with Cycloheximide

(10 mg/mL) and TNFa (100 ng/mL) in normoxia served as a

positive control. Cells were trypsinized and resuspended in 200 mL

binding buffer (ApoAlert Annexin V kit) containing 5 mL of

annexin V-FITC stock and 10 mL of a 50 mg/mL solution of

propidium iodide (PI). After incubation for 15 minutes at room

temperature, the samples were analyzed by FACSCalibur (BD

Bioscience, Bedford, MA) using Flowjo software. For each

measurement, 100,000 cells were collected.

Statistical analysis
Statistical differences were analyzed by the Student’s t test, and

P values,0.05 were considered statistically significant.

Supporting Information

Figure S1 N-ras is not activated by hypoxia.

Found at: doi:10.1371/journal.pone.0010966.s001 (0.15 MB

DOC)

Figure S2 Over-expression of c-Src increases K-ras activity.

Figure 6. Induction of VEGF under hypoxic conditions is suppressed by inhibition of c-Src. A and C, Relative mRNA levels of VEGF, as evaluated
by quantitative RT-PCR, in Caco2 and HT29 cells pretreated with 10 mM PP2 (A) or transiently transfected with a Src-specific siRNA construct (C), and exposed
to normoxia or hypoxia for 24 hours. The data are expressed as fold change as compared to control cells in normoxia, normalized to 1. *, P,0.05. B and D,
VEGF luciferase reporter assays of Caco2 and HT29 cells, pretreated with 10 mM PP2 (B) or transiently transfected with a Src-specific siRNA construct (D), and
exposed to normoxia or hypoxia for 24 hours. The results are from three independent experiments carried out in duplicate and are presented as fold change
as compared with control cells in normoxia normalized to 1. Data are shown as mean 6 SD. *, P,0.05. **, P,0.01.
doi:10.1371/journal.pone.0010966.g006
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