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ABSTRACT

We address the problem of finding evidence of natural selection from genetic data, accounting for the
confounding effects of demographic history. In the absence of natural selection, gene genealogies should all
be sampled from the same underlying distribution, often approximated by a coalescent model. Selection at a
particular locus will lead to a modified genealogy, and this motivates a number of recent approaches for
detecting the effects of natural selection in the genome as ‘‘outliers’’ under some models. The demographic
history of a population affects the sampling distribution of genealogies, and therefore the observed
genotypes and the classification of outliers. Since we cannot see genealogies directly, we have to infer them
from the observed data under some model of mutation and demography. Thus the accuracy of an outlier-
based approach depends to a greater or a lesser extent on the uncertainty about the demographic and
mutational model. A natural modeling framework for this type of problem is provided by Bayesian
hierarchical models, in which parameters, such as mutation rates and selection coefficients, are allowed to
vary across loci. It has proved quite difficult computationally to implement fully probabilistic genealogical
models with complex demographies, and this has motivated the development of approximations such as
approximate Bayesian computation (ABC). In ABC the data are compressed into summary statistics, and
computation of the likelihood function is replaced by simulation of data under the model. In a hierarchical
setting one may be interested both in hyperparameters and parameters, and there may be very many of the
latter—for example, in a genetic model, these may be parameters describing each of many loci or
populations. This poses a problem for ABC in that one then requires summary statistics for each locus, which,
if used naively, leads to a consequent difficulty in conditional density estimation. We develop a general
method for applying ABC to Bayesian hierarchical models, and we apply it to detect microsatellite loci
influenced by local selection. We demonstrate using receiver operating characteristic (ROC) analysis that
this approach has comparable performance to a full-likelihood method and outperforms it when mutation
rates are variable across loci.

THE study of the effects of natural selection at the
genomic level has the potential to uncover hidden

aspects of the causal pathways that relate genotype to
phenotype and the environment (Sabeti et al. 2007). A
challenge for any such research program is to dis-
tinguish signals of selection from those of a myriad
other processes (McVean and Spencer 2006), partic-
ularly those related to the demographic history of the
population. The study of individual candidate loci or
regions of the genome, in isolation, and without regard
to the (generally unknown) demographic history of the
population is unlikely to be fruitful because selection
can generally be mimicked by demographic processes

(Teshima et al. 2006), and, indeed, this forms the basis
of many methods of simulating loci under selection
(Spencer and Coop 2004). As a consequence most
recent studies concentrate on large-scale surveys of
genomic regions, looking for genes that are discrepant
(Teshima et al. 2006). Within this framework there are
two broad strands. One set of approaches is based
around the idea of a ‘‘selective sweep’’ in which an allele
increases in frequency, as a result of either a single
novel mutation or a change in environment, leading to
reduced diversity at linked sites (Kaplan et al. 1989).
Another modeling framework is centered around the
idea of ‘‘local selection’’ (Charlesworth et al. 1997) in
which alternative alleles are favored in different en-
vironments. Unlike the selective-sweep scenario where
the time of onset of the sweep is an important
parameter, the local selection framework is essentially
ahistorical: the allele frequencies within a deme are
typically modeled by assuming migration–selection–
drift balance (Wright 1931; Petry 1983).
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It is unclear at this stage which of the two forms of
selection are most common. Certainly, the selective
sweep scenario is commonly studied and this is unsur-
prising because the two most intensely surveyed species,
humans and Drosophila melanogaster, both have demo-
graphic histories, the invasion of novel environments,
that are conducive to selective sweeps. The model of
local selection envisions a rather static view of the world,
whereas the commonly held perception is of constantly
changing environments and population restructuring.
As always, probably the truth lies in between these two
extremes, and the aim of this study is to continue the
development of methods for detecting local selection,
while recognizing the utility of the selective sweep par-
adigm under many evolutionary scenarios.

Current methods of detecting local selection from
gene-frequency information tend to be based around
FST, which has a variety of interpretations (Weir and
Hill 2002; Balding 2003). Here, it is defined to be the
probability that two gene copies share a common an-
cestor within the deme in which they are sampled
without either of their lineages migrating (Crow and
Kimura 1970, p. 105; Vitalis et al. 2001). Methods
based on FST have a long history (Cavalli-Sforza 1966;
Lewontin and Krakauer 1973). The early methods
were based on moment estimators of FST, as in the above
two studies and also, for example, in Beaumont and
Nichols (1996), Vitalis et al. (2001), and Weir et al.
(2005). More recently, likelihood-based approaches
have been developed (Beaumont and Balding 2004;
Riebler et al. 2008; Foll and Gaggiotti 2008; Guo

et al. 2009). These latter approaches are based on a
theory for the sampling distribution of genes in the
infinite-island or continent-island model of structured
populations. The same distribution, multinomial Di-
richlet in form (a.k.a. Pólya distribution or Dirichlet
compound multinomial), can be derived either from
the diffusion theory of Sewall Wright (Wright 1931;
Rannala and Hartigan 1996) or from coalescent
theory (Balding and Nichols 1994). The key insight
that lies behind the use the multinomial-Dirichlet
distribution in the detection of local selection is the
following result. Marker loci, linked with recombination
rate r to loci in which locally deleterious alleles segregate
with selection coefficient s, have an effectively reduced
migration rate, m, approximated in Petry (1983) as m9¼
m 3 r/(s 1 r) (Barton and Bengtsson 1986; Charles-

worth et al. 1997). Under the structured coalescent with
constant deme size and migration rates, FST ¼ 1/(1 1

2Nm), and hence under local selection there is expected
to be heterogeneity in the estimates of FST among loci.

The multinomial-Dirichlet framework has the advan-
tage of having a simple likelihood function that is
rapidly computed. If the mutation rate is low enough
and the number of demes high enough, then we can
justify this approach by the ‘‘many demes’’ approxima-
tion of Wakeley (1998). Often this may not be an

adequate approximation, and the method then has the
disadvantage that it assumes a simplified demographic
history and cannot easily take into account recombina-
tion and mutational processes. Given that likelihoods in
more general frameworks are computationally in-
tractable for large numbers of loci and recombination,
it is tempting to consider using a likelihood-free
approach (Pritchard et al. 1999; Beaumont et al.
2002; Marjoram et al. 2003; Becquet and Przeworski

2007). Typically these methods require that summary
statistics are computed in a large number of Monte
Carlo simulations and some match is made between
simulated and observed summary statistics. A problem
arises in that information on whether there is selec-
tion comes from considering all the loci jointly, but to
decide whether a specific locus is under selection we
also need information on that particular locus. Thus a
naive approach, given L loci, would be to have L sets
of summary statistics. This could lead to thousands of
summary statistics for an analysis. The probability of
getting a close match for all L simulated loci will be
vanishingly small, and consequently such an approach is
unlikely to succeed.

In this article we develop a general method for
efficiently computing solutions in hierarchical Bayesian
models using a likelihood-free approach. We formulate
a hierarchical Bayesian model for identifying loci that
are subject to local selection and apply our technique,
which is relatively efficient and easy to parallelize on a
computing cluster. We demonstrate through the use of
extensive comparisons that the method approaches the
accuracy of the likelihood-based method of Beaumont

and Balding (2004) in situations where the assump-
tions of the latter hold and exceeds it when there is
variability in mutation rate among genetic markers. We
then apply the method to microsatellite data from
chimpanzees.

A HIERARCHICAL APPROACH TO LIKELIHOOD-
FREE INFERENCE

The likelihood-free approach implemented in this
study uses the regression-based method of conditional
density estimation introduced in Beaumont et al. (2002).
The approximate Bayesian computation (ABC) tech-
nique is currently undergoing quite widespread de-
velopment, and a number of different approaches
have been advocated. While recognizing that these
recent developments should supersede the method of
Beaumont et al. (2002), we justify the use of the
regression method on the grounds that (a) as shown
later, it performs well in a comparison with a full-
likelihood method and (b) it has been widely used and
its advantages and pitfalls are well understood. However,
we note that the algorithms described in this article are
particularly amenable to sequential ABC approaches
(Sisson et al. 2007; Beaumont et al. 2009; Toni et al.
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2009) and improved conditional density estimation
(Blum and Francxois 2009).

Briefly, we assume that we have measured a d-
dimensional vector of summary statistics S(x) from a
data set. Here we make the distinction between the
observed data set x and the random variable, X,
generated by simulation. We have N random draws of a
(scalar) parameter Fi (i ¼ 1, . . ., N ) and corresponding
summary statistics S(Xi) (i ¼ 1, . . ., N ) simulated from
the joint distribution of parameters and summary
statistics P(S(X), F). (The model may have any number
of parameters, which can be considered jointly, but the
regression adjustment described here is applied to one
parameter at a time.) We scale S(x) and S(X) so that each
summary statistic in S(�) has unit variance. We assume a
linear model in which

Fi ¼ a 1 bT ðSðXiÞ � SðxÞÞ1 ei ; i ¼ 1; . . . ;N ;

where the ei are drawn from a distribution common to
all Xi, with a mean of zero. We use least squares to
minimize

XN
i¼1

fFi � a� bT ðSðXiÞ � SðxÞÞg2Keðk SðXiÞ � SðxÞ kÞ;

ð1Þ

where, assuming the model above,

a ¼ EðF j SðX Þ ¼ SðxÞÞ;

k y k¼

ffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

y2
i

vuut ;

with Epanechnikov kernel

KeðtÞ ¼ ce�1ð1� ðt=eÞ2Þ t # e
0 t . e:

�
ð2Þ

Given the estimates â and b̂, we can approximate
posterior densities by using the assumption (above)
that the distribution of errors is constant in the region
where Ke(kS(Xi) – S(x)k) is positive and hence adjust the
parameter values as

F*
i ¼ Fi � b̂

T ðSðXiÞ � SðxÞÞ ð3Þ

(Beaumont et al. 2002). The posterior density for F

can be approximated using some density estimation
method, and in this article the local-likelihood method
of Loader (1996) is used, implemented in Locfit under
R, weighting the points with Ke(kS(Xi) – S(x)k) as above.
It should be noted that the ‘‘tolerance’’ of the method, as
discussed in this article, is not measured directly in terms
of the Epanechnikov bandwidth e, but in terms of Pe, the
proportion of simulated points where kS(Xi) – S(x)k# e.

In the context of the ABC algorithm above the choice
of summary statistics and the choice of metric (implicitly

Euclidean, in the example above through the use of the
Epanechnikov kernel) are intertwined. Ideally one
would choose summary statistics that are of low di-
mension and are also Bayes sufficient (Kolmogorov

1942). That is, we want the summary statistics S(x) to
satisfy the condition

Pðv j xÞ ¼ Pðv j SðxÞÞ ð4Þ

at all points v in the parameter space, for all priors P(v)
(so that we are free to choose whatever prior we want).
In practice, such statistics are rarely available. Many
approaches to ABC (Pritchard et al. 1999; Marjoram

et al. 2003; Sisson et al. 2007) are based on the idea of
‘‘rejection’’ (of observations falling outside a small ac-
ceptance region centered on the observed data), giving
P(F j r(S(X), S(x)) , ¼ e) for some metric r(�). Thus,
particularly for high-dimensional S(�), consideration
should be given as much to the metric as to the summary
statistics. Methods that place more emphasis on condi-
tional density estimation (Beaumont et al. 2002; Blum

and Francxois 2009) aim to estimate P(F j S(X) ¼ S(x))
more precisely. A goal of such methods is to estimate the
density using a larger proportion, possibly all, of the
simulated points (Blum and Francxois 2009).

Application of the ABC method to the situation
addressed in the present study has a number of dif-
ficulties. We wish to make inferences on the demo-
graphic history and also on individual loci. This is a
problem that is suited to a hierarchical Bayesian ap-
proach, and the main contribution of this study is to
devise a method for performing hierarchical Bayesian
analysis in the likelihood-free framework. In simple
models the parameters for each locus are assumed to
be identical, and if a likelihood function is available, it is
simply multiplied across loci. By contrast, taking muta-
tion rate as an example, in a hierarchical model the L
loci each have their own parameter. At one extreme,
identical to the simple case above, if the variability in
mutation rate among loci is zero, then, in the terminol-
ogy of hierarchical models, strength is ‘‘borrowed’’
completely between the loci, and each locus has an
identical posterior distribution for mutation rate, and
this is the same as the posterior distribution for the
hyperparameter specifying the mean of the prior for
each locus (the prior for each locus, having, in this case,
zero variance). This verbal description is made clearer in
the examples below. At the other extreme, the mutation
rates at each locus are inferred independently—they
have independent posterior distributions, and their
prior has a high variance. More typically, the situation
is intermediate.

In a hierarchical model one may be interested only in
the posterior distribution of the hyperparameters (What
is the mean mutation rate among loci? Is there evidence
of nonzero variance in mutation rate among loci?). It is
possible to compute summary statistics that are in-
variant to the ordering of loci such as means, variances,
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and so forth. We refer to these as symmetric summary
statistics. This is a typical use of the ABC method for data
with many loci (e.g., Pritchard et al. 1999 and sub-
sequent likelihood-free articles). The use of means and
variances of summary statistics among loci for the ABC
analysis allows straightforward inference of the
hyperparameters.

By contrast, the focus of the present study is to make
inferences on locus-specific parameters, as well as
inferring the hyperparameters. This leads to difficulty
because one needs summary statistics for each locus.
The problem of a plethora of summary statistics has
been noted in the Introduction. More fundamental is
that, in the absence of missing data, the loci simulated
under the model are exchangeable (their ordering or
labeling is irrelevant to the likelihood). Thus there is no
preferred ordering of the sample loci when compared
with those generated by simulation. This problem is
intrinsic to any hierarchically structured model and
has been encountered before in an ABC setting by
Hickerson et al. (2006) and Hickerson and Meyer

(2008), in which the exchangeable units were taxa
(rather than loci, as here). Since the ordering is
arbitrary, a naive scheme would simply be to match the
summary statistics of the first simulated locus with the
those in the first data locus (given an arbitrarily chosen
order) and so forth. Although correct in principle, such
an approach would be hopelessly inefficient in practice
in situations with many loci. Since the ordering is
arbitrary, one might find a permutation of the simulated
loci that gives the closest match. However, again, with
many loci such a procedure is likely to be highly
computer intensive, and, without exhaustive searching,
not guaranteed to find the optimal match. The method
proposed by Hickerson et al. (2006) was to rank the
taxa by one of the key summary statistics, which makes
the problem computationally tractable. However, there
is then the problem of which summary statistic to use,
and if the statistics are not strongly correlated it may not
be very efficient. Similar issues have also been encoun-
tered in Sousa et al. (2009).

Here our approach is to make use of locus-specific
summary statistics together with symmetric summary
statistics (those that are invariant to locus ordering) in a
computationally efficient way, which we now describe.
Suppose that we have a hierarchical model in which
there are L loci. For the sake of example we concentrate
on loci, but the argument can apply to populations or
other repeated units. Each locus has a vector of
observations (Xi) and (unobserved) parameter vectors
ki and li (i ¼ 1, . . . , L). Here, we treat li as a parameter
of interest and ki as a nuisance parameter. We make this
distinction for ease of exposition: it is not fundamental
to the treatment below. We assume the vector li is of
relatively low dimension, while ki may be of high
dimension. Let k ¼ (k1, . . . , kL) and l ¼ (l1, . . . , lL).
The likelihood function for our model is

PðX j k; lÞ ¼
YL
i¼1

PðXi j ki ; liÞ
" #

; ð5Þ

where X¼ (X1, . . . , XL). We assume that, conditional on
the hyperparameter a, the priors for each locus are
independent, and so

Pðk; l jaÞ ¼
YL
i¼1

Pðki ; li jaÞ: ð6Þ

Thus the joint prior density P(a, k, l) is

Pða; k; lÞ ¼
YL
i¼1

Pðki ; li jaÞ
" #

PðaÞ; ð7Þ

with a prior (hyperprior) P(a). Because of conditional
independence, it is straightforward to show (appendix)
that the joint posterior density can be factorized as

Pða; k; l jX Þ ¼
YL
i¼1

Pðki ; li jXi ;aÞ
" #

Pða jX Þ; ð8Þ

or, marginal to the nuisance parameter k,

Pða; l jX Þ ¼
YL
i¼1

Pðli jXi ;aÞ
" #

Pða jX Þ: ð9Þ

Focusing out attention on a single locus i, the hyper-
parameter a and the locus-specific parameter li have
the joint density

Pða; li jX Þ ¼ Pðli jXi ;aÞPða jX Þ: ð10Þ

This factorization suggests that we need to use two
distinct types of summary statistics in our approximate
Bayesian computation: symmetric summary statistics,
which are functions of all the loci together (e.g.,
means, higher moments, . . .), S(X) ¼ S(X1, . . . , XL);
and unit-specific summary statistics, U(Xi). Rather
than insisting that the complete set of summary statis-
tics is Bayes sufficient (see Equation 4), we can now
make do with the weaker requirement that S(X) and
U(Xi) satisfy

Pða; li jX Þ ¼ Pðli jU ðXiÞ;aÞPða j SðX ÞÞ; ð11Þ

at all points (a, li) for the chosen prior (or family of
priors). We want this to hold exactly or at least as an
adequate approximation. In the terminology of mar-
ginal sufficiency introduced by Raiffa and Schlaifer

(1961, 2000, p. 35) (see also Basu 1977), the factoriza-
tion (11) tells us that the summary statistic S(X) is
marginally sufficient for the parameter a and that the
summary statistic (S(X), U(Xi)) is marginally sufficient
for the locus-specific parameter li. These points moti-
vate two algorithms.
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Algorithm 1:

1. For k ¼ 1 to k ¼ N iterations:
i. Sample (Ak, Kk, Lk) from the prior P(k, l j

a)P(a).
ii. Simulate data Xk (at L loci) from P(Xk j Kk, Lk).

iii. For locus i ¼ 1 to i ¼ L compute U(Xk, i).
iv. Compute S(Xk).

2. Use ABC to condition on S(X) ¼ S(x) (approxi-
mately) to obtain a sample of observations A* from
P(a j S(x)) (marginal to k, l).

3. For locus i ¼ 1 to i ¼ L:

Use ABC to condition on S(X) ¼ S(x) and U(Xi) ¼
U(xi) (approximately) to obtain a sample of observa-
tions Li* from P(li, j S(x), U(xi)) (marginal to a, k).

Providing the summary statistics are sufficient, and in
the limit that the ABC tolerance e/0, this algorithm
should sample from the posterior distribution (9) above
without additional approximation. There is, however, a
practical problem ofcomputer storage associated with this
algorithm. If there are u summary statistics in U(Xi), we
would need to store NLu items. For example, with 103 loci,
10 summary statistics per locus, 106 iterations, and 8 bytes
pernumber, we would have 80 Gbof storage as a binary file
or in computer memory—much larger, if stored as text
files. Thus, although the algorithm may work well with
smaller problems there is a generic problem in scaling up.

The second algorithm is similar to sequential ABC
algorithms (Sisson et al. 2007; Beaumont et al. 2009) in
which the problem is attacked in two bites.
Algorithm 2:
Step 1. For k ¼ 1 to k ¼ N iterations:

i. Sample (Ak, Kk, Lk) from the prior P(k, l j
a)P(a).

ii. Simulate data Xk (at L loci) from P(Xk j Kk, Lk).
iii. Compute S(Xk).

Condition on S(X) ¼ S(x) using ABC, to obtain a
sample of observations A* from

Pða j SðxÞÞ � Pða j xÞ:

Step 2. For locus i ¼ 1 to i ¼ L:
For k ¼ 1 to k ¼ N iterations:

i. Sample Ak** from P(ajS(x)) � P(ajx) by resam-
pling from the observations A* generated in step 1.

ii. Sample ðKk;i**; Lk;i**Þ from the conditional
prior P(ki, li j Ak**).

iii. Simulate data Xk,i (at locus i only) from P(Xk,i

jKk;i**; Lk;i**).
iv. Compute U(Xk,i).

Condition on U(Xi) ¼ U(xi) using ABC, to obtain a
sample of observations (A***, Li***) from an approxi-
mation to P(li j xi, a)P(a j x).

Note that in step 2 above, if sample sizes are identical
at each locus (no missing data), then it is necessary to
iterate only for one locus, rather than for locus i ¼ 1 to
i ¼ L, because the distribution is the same. The advan-
tage of Algorithm 2 over Algorithm 1 is that it scales
easily with increasing numbers of loci. The amount of
storage is 1/L less than Algorithm 1. The time cost of
Algorithm 2 is potentially twice as high, but for, e.g.,
simulated data or data with equal sample size at each
locus it is of the same order as that of Algorithm 1. With
a computing cluster of many nodes, the overall execu-
tion time may be quite low because step 2 in Algorithm 2
can be performed independently for each locus. An
additional advantage is that in the second round of
simulation the hyperparameter a is already sampled
from an approximation to the posterior distribution,
and therefore, as with sequential methods (Sisson et al.
2007; Beaumont et al. 2009; Toni et al. 2009), there is a
potential for increased precision in our approximation
to the posterior distribution of li, ameliorating that
apparent inefficiency of having a second round of
simulation. However, a key point to note is that
Algorithm 2, in contrast to Algorithm 1, involves an
approximation that is in addition to that arising from
the use of summary statistics that do not satisfy the
marginal sufficiency conditions in (11) and nonzero
tolerance e.

To simplify the explanation of this additional approx-
imation, we assume that we are performing ABC on
complete data and that, by whatever means, we can
sample a from the true posterior distribution. Then in
the two-step algorithm, after step 1, we have a sample
from

Pðli jaÞPða jX ¼ xÞ

(marginal to ki), where X 9i is the random variable
corresponding to the data simulated in the second
round. Using ABC we then condition on X 9i ¼ xi. This
gives us a sample of observations (A***, Li***) from

PðX 9i ¼ xi ; li jaÞPða jX ¼ xÞ
PðX 9i ¼ xi jX ¼ xÞ ;

which is not the same as the desired posterior density
P(li, a j X ¼ x).

By contrast, consider a modification of the two-step
algorithm, where we sample from P(a j X–i¼ x–i) at step
1 [instead of P(a j X¼ x)]. (The subscript –i indicates all
the data except that from locus i.) Now we have a sample
from

PðXi ; li jaÞPða jX�i ¼ x�iÞ:

If we condition on X 9i ¼ xi, we obtain a sample of
observations (A***, Li***) from
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PðXi ¼ xi ; li jaÞPða jX�i ¼ x�iÞ
PðXi ¼ xi jX�i ¼ x�iÞ

¼ Pðli ;a jX ¼ xÞ

because

Pðxi ; li jaÞPða j x�iÞ
Pðxi j x�iÞ

¼ Pðxi ; li jaÞ
Pðxi jaÞ

� Pðxi jaÞPða j x�iÞ
Pðxi j x�iÞ

¼ Pðxi ; li jaÞ
Pðxi jaÞ

� Pðxi ;a j x�iÞ
Pðxi j x�iÞ

¼ Pðli j xi ;aÞPða j x�i ; xiÞ
¼ Pðli j x;aÞPða j xÞ
¼ Pðli ;a j xÞ:

When the number of loci L is large, we then expect that
any one locus i will make an almost negligible contri-
bution to the information about the hyperparameter a,
so that

Pða j x�iÞ � Pða j x�i ; xiÞ ¼ Pða j xÞ:

Therefore, in this case our two-step algorithm should
differ very little from the modified algorithm that can be
demonstrated to provide samples from the correct
posterior distribution (with ABC error).

APPLICATION TO GENE FREQUENCY DATA

The model: The primary aim of this study was to
model local selection and compare the results of the
ABC algorithm with the Bayesian method of Beaumont

and Balding (2004), which uses an explicit multinomial-
Dirichlet function for the likelihood. We wished to
investigate the relative efficiency of both methods, using
receiver operating characteristic (ROC) analysis. In one
case microsatellite data are simulated with low variation
in mutation rate among loci, and in the other it is high.
It is expected that the multinomial-Dirichlet likelihood
will behave poorly in the latter case because it assumes
that all genetic variation is ancestral (i.e., it arises in the
‘‘collecting phase’’ of Wakeley 1998). To keep the mod-
els similar, we assume an island model. The multinomial

Dirichlet arises under an infinite-island or continent-
island case (Balding and Nichols 1994; Rannala and
Hartigan 1996), but it is pragmatically easier for the
ABC analysis to assume a finite number of demes equal
to the number of samples. Unlike Beaumont and
Balding (2004) we consider only a model in which
positive local selection is modeled.

Variation in mutation rate and migration rate is
modeled in a hierarchical Bayesian framework, simi-
lar in conception to that described in Storz and
Beaumont (2002). We assume that there are D demes.
The scaled mutation rate at the ith locus is ui ¼ 2Nmi,
where N is the haploid effective size of the deme and mi

is the mutation rate at the ith locus. The scaled mutation
rate, ui, has a prior that is a log10-normal distribution
with (on a log10 scale) mean mu and standard deviation
su. We use a Gaussian hyperprior for mu and a truncated
Gaussian for su (Table 1). Note that we do not use an
inverse gamma for the su, following the recommenda-
tion of Gelman (2006). Variation among loci in
migration rate is modeled in a somewhat different way.
The principal idea is that there is an indicator Zi that
takes the value 0 if the ith locus is ‘neutral’ and 1 if it is
subject to local selection. The prior for this is Bernoulli
with probability rZ that the locus is under selection—i.e.,
the prior expected number of loci under selection is
LrZ. The hyperprior for rZ is beta with parameters given
in Table 1. Using the approximation of Petry (1983)
that local selection acts to reduce the apparent migra-
tion rate, we assume that the ith locus and the jth deme
have scaled migration rate Mij ¼ 2Nmij, where

Mij ¼
N j if Zi ¼ 0
Sij if Zi ¼ 1:

�

The neutral migration rate varies among demes with a
log10-normal prior having (on a log10 scale) mean mM

and standard deviation sM, with Gaussian hyperprior
(Table 1). Note that since we have a constant u across
demes, we implicitly assume that variation in Mn across
demes is through m and N is constant. For local dir-
ectional selection we assume that Sij has a prior given by

TABLE 1

Model parameters and their prior specification

Parameter Description Prior distribution

mM Mean scaled migration rate across populations (log10 scale) N(a1 ¼ 0.869, b1 ¼ 0.521)
sM Standard deviation of scaled migration rate across populations (log10 scale) N(a2 ¼ 0, b2 ¼ 0.2)x . 0
rZ Probability that a locus is under selection b(a3 ¼ 1, b3 ¼ 20)
mu Mean mutation rate across loci (log10 scale) N(a4 ¼ 0.5, b4 ¼ 0.2)
su Standard deviation of mutation rate across loci (log10 scale) N(a5 ¼ 0, b5 ¼ 0.2)x . 0
ui Scaled mutation rate of the ith locus Log10 Normal(mu, su)
Zi Indicator that is 0 if the ith locus is neutral and 1 if it is selected P(Zi ¼ 1) ¼ rZ

Mij Migration rate of the ith locus in population j See text

N(a, b) refers to a normal density with mean a and standard deviation b.
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a scaled beta distribution with density bðx=N j ; 1;
1 � 5Þ=N j . Thus, for a locus under local directional
selection the prior migration rate has a maximum equal
to the neutral migration rate, but is more heavily
weighted toward lower values. The directed acyclic
graph (DAG) for this model is given in Figure 1.

In all our examples below, the point values chosen for
the parameters of the hyperpriors, a1, . . . , a6, b1, . . . , b6,
are given in Table 1.

The likelihood function for our model has the form

PðX j l;aÞ ¼
YL
i¼1

PðXi j li ;aÞ; ð12Þ

where here we implicitly marginalize over the nuisance
parameter, k. Here X ¼ (X1, . . . , XL) with Xi ¼ (Xi1, . . . ,
XiD), and a ¼ ðN 1; . . . ;N D ; rZ ;mM;sM;mu;suÞ. The
locus-specific parameters are li ¼ (ui, Mi1, . . . , MiD, Zi).
The joint prior P(l, a) factorizes as in (7). The factor
P(a) (the hyperprior) is now of the form

PðaÞ ¼
Y

j

PðN j jmM;sMÞ
" #

PðmM; a1; b1ÞPðsM; a2; b2Þ

� PðrZ ; a3; b3ÞPðmu; a4; b4ÞPðsu; a5; b5Þ;
ð13Þ

and each factor P(li j a), of the prior density, is of the form

Pðli jaÞ ¼
Y

j

PðMij jZi ;N j ; a6; b6Þ
" #

PðZi j rZ Þ

� Pðui jmu;suÞ: ð14Þ

Each factor P(Xi j li) of the likelihood function is of the
form

PðXi j liÞ ¼
Y

j

PðXij j ui ;MijÞ: ð15Þ

For a model of this form, with this choice of prior, the
marginal posterior density P(a, l j X) has a factorization of
the form (9), in which a and li are replaced by the pa-
rameters of our genetic model, as specified above. Hence
our model is amenable to the use of Algorithms 1 and 2.

Summary statistics: The main aim of the model is to
characterize the level of genetic differentiation between
populations and differences among loci in their levels of
differentiation and genetic variability. The choice of
summary statistics has then been based on earlier work
relating the expected value of summary statistics to
demographic parameters and also to work that has used
summary statistics of differentiation to identify loci
that are potentially under selection (Beaumont and
Nichols 1996; Vitalis et al. 2001; Excoffier et al. 2009).
The strategy has been to compute a set of locus-specific
summary statistics U(Xi), and then, for the symmetric

summary statistics S(X), the means and other moments of
these statistics over loci have been computed.

Locus-specific summary statistics: For each locus we
computed the following:

1. The observed probability of nonidentity in state of
gene copies between populations, HB, computed as
in Beaumont and Nichols (1996), based on the
estimator of Weir and Cockerham (1984).

2. The Weir and Cockerham (1984) estimator of FST,
computed as in Beaumont and Nichols (1996).

3. The logarithm of the variance in microsatellite length
between populations. The variance in microsatellite
length between populations is Ŝ3 in Rousset (1996).

4. The statistic r̂ST of Rousset (1996), modified from
Slatkin (1995), computed as ðŜ3 � Ŝ2Þ=̂S3, where Ŝ2

is the within-population variance in length, averaged
over populations, without weighting for differences
in sample size.

5. The variance in the Weir and Cockerham (1984)
estimator of FST estimated for individual alleles
(microsatellite lengths). In this case, a locus with Ki

alleles was converted into Ki biallelic loci with allele
frequencies comprising those of the target allele and
all the others combined.

6. In a K 3 D table of presence/absence of an allele
(microsatellite length) in a population, the propor-
tion of pairwise comparisons between populations in
which an allele is observed in at least one of the
populations, averaged over alleles. This summary
statistic has no previous theoretical basis, but was
observed to reduce the mean square error of param-
eter estimates in simulation tests.

7. The variance of the within-population Weir and
Cockerham estimator of FST (Weir and Hill 2002),
computed as in Vitalis et al. (2001).

Figure 1.—DAG for the genetic model. See text for details.
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8. The variance of within-population r̂ST computed
analogously [i.e., as ðŜ3 � Ŝ2jÞ=Ŝ3, where Ŝ2j is com-
puted for each population rather than averaged].

Symmetric summary statistics: To infer hyperpara-
meters we computed 60 symmetric summary statistics
S(X), invariant to locus ordering. These included the
mean, variance, skew, and kurtosis over loci of the 8
summary statistics above, giving 4 � 8 ¼ 32 summary
statistics, and then the covariance over loci of all 28 pairs
of summary statistics.

Transformation of symmetric summary statistics:
Previous studies have suggested the use in ABC of
transformations, including rotations of the summary
statistics (Fagundes et al. 2007; Wegmann et al. 2009).
Because a large number of summary statistics were used,
we considered the use of orthogonal transformations of
the data to reduce dimensionality. There appear to be
two main issues. First, with a large number of summary
statistics, many of which are uninformative, a large
amount of ‘‘noise’’ is introduced into the computation
of distance of simulated data from the observations.
Essentially, summary statistics that are unaffected by the
parameter values should be weighted out of the distance
calculation (Hamilton et al. 2005) or not chosen at all
(Joyce and Marjoram 2008). Second, there may be a
problem of collinearity and resulting instability of the
regression once many summary statistics are introduced.

The use of partial least squares (PLS) in an ABC
context has been suggested by Wegmann et al. (2009).
With PLS the orthogonal axes are ordered by decreasing
covariance with the independent variable, and it is often
used in calibration problems (Gemperline 2007). In
our two-step procedure, we need to sample parameters

from the joint posterior distribution of hyperpara-
meters, which creates a difficulty because standard PLS
assumes a univariate independent variable. A modifica-
tion of the PLS algorithm exists (PLS-2) for use with a
multivariate independent variable. However, we have
chosen to use principal component analysis (PCA), also
commonly used in calibration and typically producing
similar results (Mevik and Wehrens 2007), which
orders the axes by decreasing variance. A potential
disadvantage of PCA is that axes with small eigenvalues
may still have high correlation with the independent
variable (here the parameter of interest). To take into
account possible correlations between eigenvalues and
independent variables, at least marginally, we have
defined the following procedure:

The summary statistics sampled from the prior pre-
dictive distribution were scaled to have unit variance
and rotated (using the R package Prcomp).

A Box–Cox transformation was then applied to the
resulting eigenvectors.

These were then standardized once more to have unit
variance and centered to have zero mean.

The Euclidean distance between these points and the
target was computed.

On the basis of the 5% closest points, for the ith
component and jth parameter value, the squared
correlation coefficient r 2

ij was computed. The compo-
nents were ranked by the proportion Rij ¼ r 2

ij =
P

i r 2
ij .

The set of ranked components in which
P

i Rij $ 0:8 was
retained, for each parameter j.

The union was formed over all parameters of the
above sets.

The 30 components with the highest eigenvalue were
then retained.

TABLE 2

AUC with 95% C.I. for ABC and BayesFst methods under different scenarios

10mu su npop rZ N s �FST AUC (ABC) AUC (BayesFst)

4 0 6 0.05 400 0.02 0.02 0.498 [0.47, 0.525] 0.499 [0.471, 0.527]
4 0 6 0.05 400 0.02 0.1 0.509 [0.485, 0.533] 0.499 [0.472, 0.525]
4 0 6 0.05 400 0.1 0.02 0.646 [0.615, 0.677] 0.657 [0.624, 0.691]
4 0 6 0.05 4000 0.02 0.02 0.82 [0.79, 0.85] 0.811 [0.781, 0.841]
4 0 6 0.05 400 0.1 0.1 0.887 [0.869, 0.905] 0.887 [0.867, 0.906]
4 0 6 0.05 4000 0.02 0.1 0.935 [0.923, 0.947] 0.94 [0.927, 0.952]
8 0.5 6 0.05 4000 0.1 0.17 0.95 [0.939, 0.96] 0.875 [0.852, 0.897]
4 0 3 0.05 4000 0.1 0.1 0.953 [0.942, 0.964] 0.965 [0.955, 0.974]
8 0.5 6 0.05 4000 0.1 0.1 0.958 [0.947, 0.969] 0.886 [0.863, 0.908]
4 0 6 0.05 4000 0.1 0.1 0.959 [0.948, 0.971] 0.932 [0.917, 0.947]
0.4 0 6 0.05 4000 0.1 0.1 0.962 [0.95, 0.974] 0.972 [0.962, 0.982]
4 0 6 0.01 4000 0.1 0.1 0.974 [0.958, 0.989] 0.983 [0.971, 0.996]
4 0 6 0.05 4000 0.1 0.1 0.974 [0.966, 0.982] 0.981 [0.975, 0.988]
4 0 6 0.1 4000 0.1 0.1 0.977 [0.972, 0.983] 0.985 [0.981, 0.989]
4 0 6 0.05 4000 0.1 0.02 0.989 [0.984, 0.994] 0.992 [0.988, 0.996]

Nm, scaled mutation rate; sm, standard deviation of mutation rate across loci (on log10 scale); npop, number of populations; rZ,
proportion of loci under selection; N, subpopulation size; s, selection coefficient. As noted in the text, F

j
ST for population j is drawn

from a beta distribution with parameters (a ¼ �FST=0:02, b ¼ ð1� �FSTÞ=0:02). The immigration rate, N j in the terminology of our
model, is then computed by N j ¼ 1=F j

ST � 1.

594 E. Bazin, K. J. Dawson and M. A. Beaumont



The regression-based ABC method was then applied
(as outlined in Equations 1–3) with Pe ¼ 0.02.

No claim is made that the above procedure is optimal,
and it was obtained through trial and error, on the basis
of simulated data with known parameter values. A parti-
cular feature of the approach is that there appears to
be reduced sensitivity to the addition or removal of
summary statistics. The locus-specific summary statistics
were used in ABC regression without rotation or further
transformation.

The algorithm: Our inference procedure is divided
into two steps. We initially approximate the posterior
distribution of the higher-level parameters using S(X),
and we then approximate the posterior distribution for
locus-specific parameters using U(X), as outlined in the
following ABC algorithm, based on algorithm 2 above:

1. Compute symmetric summary statistics from the
data.

2. Sample the following:
a. rZ, mM, sM, mu, su;
b. ui, Zi, Nj;
c. Mij.

3. Run a coalescent simulation of an island model (de-
scribed in Beaumont and Nichols 1996; Beaumont

and Balding 2004) to obtain data sets Xij.
4. From the simulated data sets, compute the symmetric

summary statistics from the Xij in the same way as for
step 1 above.

5. Return to step 2 until n sets of summary statistics are
obtained.

6. Perform regression ABC (as outlined in the pre-
ceding section) to obtain Pen samples from the
posterior distribution, where Pe is the proportion of
points accepted.

7. For each locus i:
a. Compute locus-specific summary statistics from

the data for this locus.
b. In the following order:

i. Sample with replacement from the Pen sam-
ples generated at step 6, rZ, mM, sM, mu, su.

ii. Sample ui, Zi.
iii. Sample Nj for j ¼ 1, . . ., D.
iv. Sample Mij for j ¼ 1, . . ., D.
v. Sample Xij for j ¼ 1, . . ., D.

vi. Compute the locus-specific summary statistics
as for step 7a above.

vii. Return to step 7b until n sets of summary
statistics are obtained.

c. Perform ABC one locus at a time (this time
measuring locus-specific summary statistics).

PERFORMANCE

To examine the performance of the ABC approach we
simulated groups of 100 data sets for 15 different
combinations of parameters (scenarios), chosen to vary
widely under the assumed prior (Table 1). An archive
(suitable only for running on a cluster) containing
source code, scripts, and input files for repeating and

Figure 2.—Posterior distribution of genome-wide parameters. The data set contains 100 loci and a sample of 100 gene copies
taken from six demes. Five loci are under selection. The data are simulated under the last scenario listed in Table 2.
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checking the results presented here is available at
http://www.rubic.reading.ac.uk/�mab/stuff/ABCsims.
zip. These scenarios included selection coefficients of
0.02 and 0.1. We used ROC analysis, implemented in the
ROCR package (Sing et al. 2005), as in Riebler et al.
(2008), to compare the ABC method with BayesFst
(Beaumont and Balding 2004). In the case of the ABC
method the classifying variable is the posterior proba-
bility of locus i being under selection, P(Zi ¼ 1 j U(Xi),
S(X)), while in the case of BayesFst it is a Bayesian P-
value (Beaumont and Balding 2004). Specifically, for
the case here, the P-value we use is the posterior
probability that the locus effect, a, is less than or equal
to zero and hence is a one-tailed P-value, for consistency
with the ABC model, rather than two tailed as in
Beaumont and Balding (2004). We then compute 1
– P-value so that values close to 1 indicate selection. In
the ROC analysis (see, e.g., Fawcett 2006 for further
information) we determine the proportion of false
positives and true positives for each value of the
threshold that is used to determine whether the
classifying variable indicates a locus under selection.
This yields a monotonic curve with no positives (true or
false) at one end and all positives at the other. If a
method has no classification power, the curve should be
linear with slope 1, and the area under the ROC curve
(AUC) should be 0.5. If a method has perfect classifi-
cation power, the AUC should be 1.

We simulated data sets using the program that was
used to simulate data sets under selection in Beaumont

and Balding (2004). This simulates an island model
and allows a certain proportion of loci to have alleles
that are under selection: either locally positively se-
lected or under balancing selection. We simulated sce-
narios with six demes (as in Beaumont and Balding

2004) and 100 independent loci and with 100 gene

copies taken from each deme. In all simulations the
migration rate varied among demes with individual
population FST’s drawn from a beta distribution (see
Table 2 legend). This leads to an approximately Gauss-
ian distribution of log10Nj , as assumed in the model. We

Figure 3.—Estimates of the posterior probability for a mi-
crosatellite locus to be under selection, P(Zi¼1 j U(Xi), S(X)).
The first five loci in red are effectively simulated under selec-
tion. The other loci in green are neutral. The data are simu-
lated under the last scenario listed in Table 2.

Figure 4.—A comparison of ROC curves for the ABC
method (red) and BayesFst (blue). The curves are based on av-
erage true positive and false positive rates measured on 100 sim-
ulated data sets. The data are simulated under the last scenario
listed in Table 2 (parameter values are also shown in legend).

Figure 5.—A comparison of ROC curves for the ABC
method (red) and BayesFst (blue). The mutation rate varies
across loci. The data are simulated under the 7th scenario
listed in Table 2 (parameter values are also shown in legend).
Other details are as in Figure 4.
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tested 15 scenarios (Table 2). Each scenario consisted of
100 replicates (i.e., the total number of simulated loci in
Table 2 is 150,000). The data sets were analyzed with the
ABC algorithm described above and compared with
BayesFst. In the ABC analysis 500,000 iterations were
used for both the genome-wide parameter estimation
P(a j S(X)) and the locus-specific parameter estimation
P(li j U(Xi), S(X)). For the rejection step, we used the
2% nearest points.

An illustration of the application of the method is
given in Figures 2 and 3, which are based on one of the
data sets generated for the ROC analysis (scenario 15 in
Table 2). Figure 2 shows the posterior distribution of
genome-wide parameters and Figure 3 shows the
posterior probability P(Zi ¼ 1 j U(Xi), S(X)) for each
locus. In this example it can be seen that the loci that
were simulated to be under selection generally have a
higher posterior probability to be under selection, and
the posterior mode of the number of loci inferred to be
under selection,

P
Zi , is close to the true number of 5,

and unsurprisingly rZ has a mode of �0.05. The
demographic parameters are inferred somewhat less
well in this example and reflect the influence of the
chosen prior. The scaled mutation rate is well estimated,
but the inferred value of the scaled migration rate is
generally rather too low and weighted toward the prior.
The posterior distribution for the variance in mutation
rate is broad and tends to follow the prior. The
estimated variance among demes in migration rate is
rather low and strongly influenced by the prior. The
goodness of fit of the model can be examined by seeing
how well the symmetric summary statistics S(X) com-
puted from the data fit within the prior predictive
distribution (see also Ratmann et al. 2009). Since a
principal components rotation is used it is relatively
straightforward to visualize the fit of the model by
plotting the distribution along each axis. An example,

using x–y plots of a selection of axes, is given in
supporting information, Figure S1. Unsurprisingly,
since the data are simulated from the same model used
in the analysis, there is a very good fit.

Overall, in the ROC analysis of the 15 scenarios (Table
2), the performance of the ABC method is quite
competitive with BayesFst for both s ¼ 0.02 and s ¼
0.1. Although the ABC method often has a slightly lower
AUC, the difference is marginal and of the order of the
confidence interval. However, in the two scenarios in
which there is variability in mutation rate there is superior
performance of the ABC method, well beyond the
confidence limits of the AUC estimates. Representative
numbers, corresponding to rows of Table 2, are given in
Figures 4 and 5. The confidence limits are not plotted
because they lie close to the estimates. The difference in
performance for variable mutation rate arises because the
multinomial-Dirichlet model of BayesFst assumes the
mutation rate to have a negligible effect on variance in
gene frequencies between demes. Thus, when the muta-
tion rate is variable, it contributes to additional variance in
gene frequencies between demes, which in BayesFst is
attributed to local selection.

Figure 6 shows that, at least for this scenario for the ABC
method, the precision, which is 1 – (false discovery rate),
initially increases rapidly with the posterior probability
that the locus is under selection (the ‘‘cutoff’’) and then
smooths off with a false discovery rate of ,20% after a
posterior probability of �0.2. By contrast, the BayesFst
classifier shows the inverse behavior—it is most sensitive
to change in the classification threshold nearer 1. This
difference is not surprising, given the different nature of
the methods, but suggests that, with the ABC model,
posterior probabilities .0.2 are potentially ‘‘interesting.’’
It should be noted that unlike, for example, Riebler et al.
(2008), who used a uniform prior, we have explicitly
chosen a prior that gives most weight to P(Zi ¼ 0).

Figure 6.—The precision (1 � false discovery
rate) is plotted against the classification cutoff
(i.e., posterior probability or 1 � P-value) used
in the ABC and BayesFst method. The data from
the last scenario listed are used (see also Figure
4).
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AN EXAMPLE APPLICATION

We analyzed microsatellite data obtained from a
survey of chimpanzee populations from western and
central Africa, published by Becquet et al. (2007).
These data consist of frequencies sampled in 84
chimpanzees that have been genotyped at 309 micro-
satellite loci. The study by Becquet et al. used clustering
methods and identified ‘‘western,’’ ‘‘central,’’ and ‘‘east-
ern’’ groups. Of these, we used 64 individuals that had
precise designations of location (rather than inferred
genetically), giving sample sizes, respectively, of 41, 16,
and 7. The gene frequencies were then analyzed using
BayesFst and our ABC method (Figures 7 and 8).

The goodness of fit of the ABC simulation can be
analyzed by comparing the observed summary statistics
to the prior predictive distribution (Figure S2). In this
case the data are often on the outer edges of the prior
predictive distribution in some projections, but are not
markedly outlying. The marginal posterior distributions
obtained for the hyperparameters (Figure 7) indicate
that gene flow is very low, in line with the conclusions of
Becquet et al. (2007). This is a scenario in which it is
expected that differences in mutation rate among
microsatellites will have a major impact on estimates
of FST. This is indeed observed: the BayesFst analysis
yields a large number of positives (Figure 8), which, on
the basis of the ROC analysis and theoretical expect-
ations, are likely to be mainly erroneous. By contrast, the

ABC analysis suggests that there are possibly two in-
teresting loci, with posterior probabilities .0.2. This
conclusion is based on the results from the simulated
data sets above (see Figure 6 and related text for
rationale). The estimates of posterior probabilities in
the ABC analysis shown in Figure 8 have generally low
standard errors (on the logit scale), which indicates a
reasonable goodness of fit. If the real data are outliers
under the model, then the regression step in ABC is an
extrapolation, and estimates tend to have very large
standard errors. The microsatellites identified by the
ABC analysis are GATA81B01 and ATA28C05. The
former has not been mapped in Pan troglodytes, but is
located on the sixth chromosome in H. sapiens. The
latter has been mapped on the X chromosome of P.
troglodytes and its nearest ORF is LOC739998 of un-
known function.

DISCUSSION

The main contribution of this article has been to
demonstrate how one can apply ABC-based models to
complex scenarios where the number of summary
statistics necessarily scales with the number of parame-
ters in the model. By treating these cases within the
hierarchical Bayesian framework, we show how it is
possible to deal with quite complicated problems in a
computationally feasible way.

Figure 7.—Marginal
posterior distributions of
hyperparameters for the
chimpanzee data.
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We have introduced two algorithms. Both are based
on the idea that two types of summary statistics are
computed from the data: symmetric summary statistics
S(X) used to infer the hyperparameters and those that
are unit specific, U(Xi), used to infer parameters. Al-
though, in our treatment, the S(X) are simple functions
of the U(Xi), it should be noted that there is no necessity
for consistency in, or any formal relationship between,
the summary statistics that are used for inferring the
hyperparameters and those for inferring the parame-
ters. This distinction is essentially irrelevant providing
that the posterior distribution of a is sufficiently
accurately approximated. Algorithm 1 is simpler and
has the theoretical advantage of sampling from the
correct posterior distribution in the limit of zero tol-
erance and sufficient statistics. However, it suffers from
quite significant problems of storage. This may not be
an issue in the longer term as computing resources
become more extensive. At the present time, storage is
certainly an issue to consider when the number of units
(loci, individuals, etc.) is .100. Algorithm 2 avoids this
storage problem. However, this algorithm involves an
approximation (additional to the use of summary
statistics in place of the complete data). In Algorithm
2, the second round of simulation will improve the
precision in estimates of Pðli jU ðXiÞ; SðX ÞÞ ¼

Ð
a

Pðli jU
ðXiÞ;aÞPðajSðX ÞÞda because it samples a from
P(ajS(X)) rather than from P(a). Therefore it may be
possible to accept a high proportion of simulated
observations, while using a relatively small tolerance.
Looking at the problem from the perspective of
importance sampling (as in Beaumont et al. 2009; Toni

et al. 2009), it is inviting to consider the weight necessary
to correct the error in Algorithm 2. It is straightforward
to show that the weight is inversely proportional to

PðXi jaÞ ¼
ð

li

PðXi j liÞPðli jaÞdli :

That is, if each observation k in step 2 (v) of Algorithm 2
is given a weight that is inversely proportional to the
marginal likelihood P(Xi j Ak), the resulting weighted
sample will be drawn from the correct distribution.
Unfortunately the quantity P(Xi j a) is not in general
easy to compute (otherwise there would be no need to
recourse to ABC!). Our main argument in favor of
Algorithm 2 is that the approximation will be very slight
when the number of units (loci) is large, and scenarios
when the number of units is low can be handled by
Algorithm 2. The modification, 2a, to Algorithm 2,
which is exact, would also be infeasible, requiring
separate simulations of step 1 for each locus. Experi-
ments (not shown) with toy simulations based on a beta-
binomial model suggest that even with 2 units the
approximation in Algorithm 2 is good. With the beta-
binomial the ABC can be simulated exactly, the weight
above can be computed, and Algorithms 1, 2, and 2a can
be easily performed and compared.

One potential criticism of the comparison between
our ABC approach and that of Beaumont and Balding

(2004) is that one uses a model-choice framework and
the other is based on Bayesian P-values. Thus it might be
argued that we have confounded an intrinsic advantage
of the model-choice framework with good performance
of ABC. However, with low, nonvariable mutation rates
there appears to be relatively little difference in perfor-
mance of the various approaches to detecting selection
that are based on differences in gene frequency. For
example, Beaumont and Balding (2004) showed that
the difference in performance of the moment-based
method of Beaumont and Nichols (1996) was rela-

Figure 8.—The posterior probability
that a locus in the chimpanzee data is
under selection, under the ABC model.
Inset is the result of an analysis with
BayesFst.
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tively slight. Riebler et al. (2008), who reformulated the
model of Beaumont and Balding (2004) into an ex-
plicit model-choice framework, demonstrated by means
of ROC analysis only a small improvement. Small
improvements are also found in Foll and Gaggiotti

(2008) and Guo et al. (2009). Therefore we argue that
the similar performance of BayesFst and the ABC
approach with low, nonvariable mutation rates and the
better performance of the ABC method with high and
variable mutation rates are not biased by an intrinsic
superiority of the model-choice framework.

An additional criticism of our model is that we have
not included the ability to detect balancing selection,
which is present in the methods of Beaumont and
Balding (2004), Foll and Gaggiotti (2008), and
Riebler et al. (2008). Although it would be straightfor-
ward to implement, it was not an aim of this study. It is
unlikely that by failing to implement a balancing
selection component, we have thereby artificially in-
creased the power of the ABC approach in comparison
with the multinomial-Dirichlet model. Since the signal
of local selection is increased variance in allele frequen-
cies among demes, these would not be placed in a
balancing selection category anyway. We note that the
attempt to use low FSTas a signal of balancing selection is
logically somewhat problematic. If a locus is truly under
balancing selection, it is unlikely that the selection
coefficients will be identical in each population. Thus
we might typically expect the selection coefficients to
vary among populations so the equilibria should vary
among populations. For populations with relatively
high migration rates it is conceivable that loci under
balancing selection may have elevated FST relative to
neutral expectation.

By assuming that the scaled mutation rate u is the
same in all demes (while allowing for varying scaled
migration rate,Nj), we tacitly assumed constant effective
size N in each deme. This may be considered somewhat
unrealistic, and a future improvement to the model
would allow for variation in deme size. This would be
preferable to variable u because then one could include
covariance between N and u through shared N. Vari-
ability in effective size over time could also be consid-
ered. Such improvements may reduce the discrepancies
observed in the fit of the model to the chimpanzee data
(Figure S2). An advantage of the explicit model-based
approach advocated here is that it is relatively easy to
examine model discrepancy (see Ratmann et al. 2009
for detailed discussion).

In addition to the modeling of potential candidates of
balancing selection, further improvements to our de-
mographic model could include, within the island model
framework, the number of demes as a parameter to be
inferred. This is potentially important when considering
the effects of mutation on gene frequencies. For example,
in the case of an infinite-allele, finite-island model with
FST defined as in Rousset (1996) we have

FST �
1

1 1 ðD=ðD � 1ÞÞ4Nm 1 4N m

(for small m and m). A locus with a higher mutation rate
is therefore expected to have reduced FST but the
strength of the effect depends on the deme size, N.
Information about the mutation rate is provided by the
metapopulation heterozygosity, HT, which depends both
on the deme size and on the number of demes because

HT ¼
uM

1 1 uM
;

where

uM � 4DN m 1 1
1

ðD=ðD � 1Þ4NmÞ

� �
:

Therefore we expect that very highly heterozygous loci
will have reduced FST, potentially leading to false
positives for balancing selection (Beaumont 2008;
Excoffier et al. 2009), but the amount that FST is
reduced for a given level of heterozygosity depends on
the number of demes in the metapopulation. If the
number of demes is large, but they have small size, then
an elevated mutation rate may have little effect on FST.

Further extensions of the model may include more
general migration matrices, and range expansion, to
allow for isolation-by-distance effects [necessary to
model human demography (Prugnolle et al. 2005)].
It would also be necessary to consider more general
mutation models to allow analysis of sequence data.
Much of this could be achieved by the use of general-
purpose packages (Rambaut and Grassly 1997;
Hudson 2002; Laval and Excoffier 2004). To demon-
strate the utility of the approach we have applied it to the
problem of detecting loci under selection. It is impor-
tant, however, to emphasize that not all problems can be
handled as straightforwardly by a Bayesian hierarchical
model, for example, when conditional independence
cannot be assumed. There are other areas of application
of our ABC method, including population assignment
in a more realistic genealogical setting. Its use in fields
outside population genetics can also be envisaged.
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APPENDIX: FACTORIZATION OF THE POSTERIOR
DENSITY

In this appendix, we derive the factorization (8), and
hence (9), under assumptions that are slightly more
general than those set out in (6) and hence (5). In fact
we continue to assume that the joint prior P(k, l, a)
factorizes as in (6), but we assume that the likelihood
function P(X jk, l, a) for our model has the factoriza-
tion (12). Note that here, a is also a parameter of the
model. This formulation covers the special case where
the parameter li is simply a function of ki and a.

From the factorization (12) of the likelihood func-
tion, and the factorization (6) of the prior density, it
follows that the joint density P(a, k, l, X) has the
factorization

Pða; k; l;X Þ ¼
YL
i¼1

PðXi j ki ;li ;aÞPðki ; li jaÞ
" #

PðaÞ:

ðA1Þ

The marginal density P(a, X) is therefore

Pða;X Þ ¼
YL
i¼1

PðXi jaÞ
" #

PðaÞ; ðA2Þ

where

PðXi jaÞ ¼
ð

k

ð
l

PðXi jki ; li ;aÞPðki ; li jaÞdkdl: ðA3Þ

Dividing (A1) by (A2) we have

Pðk; l ja;X Þ ¼ Pða; k; l;X Þ
Pða;X Þ

¼
YL
i¼1

PðXi j ki ; li ;aÞPðki ; li jaÞ
PðXi jaÞ

� �

¼
YL
i¼1

Pðki ; li ja;XiÞ: ðA4Þ

Substituting the right-hand side of (A4) into the
factorization

Pða; k; l jX Þ ¼ Pðk; l ja;X ÞPða jX Þ; ðA5Þ

we obtain the factorizations (8) of the posterior density
P(a, k, l j X).
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