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ABSTRACT

Despite the widespread study of genetic variation in admixed human populations, such as African-
Americans, there has not been an evaluation of the effects of recent admixture on patterns of
polymorphism or inferences about population demography. These issues are particularly relevant because
estimates of the timing and magnitude of population growth in Africa have differed among previous
studies, some of which examined African-American individuals. Here we use simulations and single-
nucleotide polymorphism (SNP) data collected through direct resequencing and genotyping to
investigate these issues. We find that when estimating the current population size and magnitude of
recent growth in an ancestral population using the site frequency spectrum (SFS), it is possible to obtain
reasonably accurate estimates of the parameters when using samples drawn from the admixed population
under certain conditions. We also show that methods for demographic inference that use haplotype
patterns are more sensitive to recent admixture than are methods based on the SFS. The analysis of
human genetic variation data from the Yoruba people of Ibadan, Nigeria and African-Americans supports
the predictions from the simulations. Our results have important implications for the evaluation of
previous population genetic studies that have considered African-American individuals as a proxy for
individuals from West Africa as well as for future population genetic studies of additional admixed
populations.

STUDIES of archeological and genetic data show that
anatomically modern humans originated in Africa

and more recently left Africa to populate the rest of the
world (Tishkoff and Williams 2002; Barbujani and
Goldstein 2004; Garrigan and Hammer 2006; Reed

and Tishkoff 2006; Campbell and Tishkoff 2008;
Jakobsson et al. 2008; Li et al. 2008). Given the central
role Africa has played in the origin of diverse human
populations, understanding patterns of genetic varia-
tion and the demographic history of populations within
Africa is important for understanding the demographic
history of global human populations. The availability of
large-scale single-nucleotide polymorphism (SNP) data
sets coupled with recent advances in statistical meth-
odology for inferring parameters in population genetic
models provides a powerful means of accomplishing
these goals (Keinan et al. 2007; Boyko et al. 2008;
Lohmueller et al. 2009; Nielsen et al. 2009).

It is important to realize that studies of African
demographic history using genetic data have come to
qualitatively different conclusions regarding important
parameters. Some recent studies have found evidence
for ancient (.100,000 years ago) two- to fourfold
growth in African populations (Adams and Hudson

2004; Marth et al. 2004; Keinan et al. 2007; Boyko et al.
2008). Other studies have found evidence of very recent
growth (Pluzhnikov et al. 2002; Akey et al. 2004;
Voight et al. 2005; Cox et al. 2009; Wall et al. 2009)
or could not reject a model with a constant population
size (Pluzhnikov et al. 2002; Voight et al. 2005). It is
unclear why studies found such different parameter
estimates. However, these studies all differ from each
other in the amount of data considered, the types of
data used (e.g., SNP genotypes vs. full resequencing),
the genomic regions studied (e.g., noncoding vs. coding
SNPs), and the types of demographic models consid-
ered (e.g., including migration vs. not including migra-
tion postseparation of African and non-African
populations).

Another important way in which studies of African
demographic history differ from each other is in the
populations sampled. Some studies have focused on
genetic data from individuals sampled from within
Africa (Pluzhnikov et al. 2002; Adams and Hudson
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2004; Voight et al. 2005; Keinan et al. 2007; Cox et al.
2009; Wall et al. 2009), while other studies included
American individuals with African ancestry (Adams and
Hudson 2004; Akey et al. 2004; Marth et al. 2004;
Boyko et al. 2008). While there is no clear correspon-
dence between those studies which sampled native
African individuals (as opposed to African-Americans)
and particular growth scenarios, it is clear from previous
studies that African-American populations do differ
from African populations in their recent demographic
history. In particular, genetic studies suggest that there
is wide variation in the degree of European admixture in
most African-American individuals in the United States
and that they have, on average, �80% African ancestry
and 20% European ancestry (Parra et al. 1998; Pfaff

et al. 2001; Falush et al. 2003; Patterson et al. 2004;
Tian et al. 2006; Lind et al. 2007; Reiner et al. 2007;
Price et al. 2009; Bryc et al. 2010). Furthermore, both
historical records and genetic evidence suggest that the
admixture process began quite recently, within the last
20 generations (Pfaff et al. 2001; Patterson et al. 2004;
Seldin et al. 2004; Tian et al. 2006). Recent population
admixture can alter patterns of genetic variation in a
discernible and predictable way. For example, recently
admixed populations will exhibit correlation in allele
frequencies (i.e., linkage disequilibrium) among
markers that differ in frequency between the parental
populations. This so-called admixture linkage disequi-
librium (LD) (Chakraborty and Weiss 1988) can
extend over long physical distances (Lautenberger

et al. 2000) and decays exponentially with time the since
the admixture process began (i.e., recently admixed
populations typically exhibit LD over a longer physical
distance than anciently admixed populations).

While it is clear that African-American populations
have a different recent demographic history than do
African populations from within Africa and that admix-
ture tracts can be identified in admixed individuals
(Falush et al. 2003; Patterson et al. 2004; Tang et al.
2006; Sankararaman et al. 2008a,b; Price et al. 2009;
Bryc et al. 2010), the effect that admixture has on other
patterns of genetic variation remains unclear. For
example, Xu et al. (2007) found similar LD decay
patterns when comparing African-American and Afri-
can populations. It is also unclear whether the recent
admixture affects our ability to reconstruct ancient
demographic events (such as expansions that predate
the spread of humans out of Africa) from whole-
genome SNP data. Most studies of demographic history
have summarized the genome-wide SNP data by allele
frequency or haplotype summary statistics. If these
summary statistics are not sensitive to the recent
European admixture, then the African-American sam-
ples may yield estimates of demographic parameters
that are close to the true demographic parameters for
the ancestral, unsampled, African populations. This
would suggest that the differences in growth parameter

estimates obtained from African populations cannot be
explained by certain studies sampling African-American
individuals and others sampling African individuals
from within Africa. However, if these statistics are
sensitive to recent admixture, then they may give biased
estimates of growth parameters.

Here, we examine the effect of recent admixture on
the estimation of population demography. In particular,
we estimate growth parameters from simulated data sets
using SNP frequencies as well as a recently developed
haplotype summary statistic (Lohmueller et al. 2009).
We compare the demographic parameter estimates
made from the admixed and nonadmixed populations
and find that some parameter estimates are qualitatively
similar between the two populations when inferred
using allele frequencies. Inferences of growth using
haplotype-based approaches appear to be more sensi-
tive to recent admixture than inferences based on SNP
frequencies. We discuss implications that our results
have for interpreting studies of demography in admixed
populations.

METHODS

Demographic model for simulations: For generating
simulated data, we used a demographic model that
qualitatively approximates the history of African, Euro-
pean, and African-American human populations. We
chose to focus on African-American demography as (1)
African-American populations are a significant compo-
nent of the U.S. population (�12%, U.S. Census 2000
Summary File 1, http://factfinder.census.gov) and are,
therefore, heavily studied by population and medical
geneticists in the United States; (2) there is consider-
able understanding of the historical context surround-
ing the recent demographic history of African-
Americans including the trans-Atlantic slave trade, early
American history, and history of African-American
migrations within the United States; and (3) the
admixture process in other human populations is likely
to be more complex.

Figure 1 shows an illustration of the demographic
model considered. Essentially, an ancestral population
of size NB split tsplit generations ago to form an African
population (Pop A) and a European population (Pop
E). The African population expanded from its ancestral
size (NB) to its current size (NA) tcur generations ago.
The European population underwent a bottleneck
(using parameters similar to those inferred by Lohmu-

eller et al. 2009). Note that we assumed no gene flow
between Pop A and Pop E after the split even though
some studies have found evidence for migration be-
tween African and European populations (Schaffner

et al. 2005; Gutenkunst et al. 2009; Nielsen et al. 2009;
Wall et al. 2009). We chose not to include such
migration in our models so that our assessments of the
effects of recent admixture would not be confounded by
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other sources of gene flow. Twenty generations ago, the
African-American population (Pop AA) was formed and
has current size NAA (Pfaff et al. 2001; Patterson et al.
2004; Tian et al. 2006). We assumed 80% of the ancestry
of Pop AA comes from Pop A, with the remainder
coming from Pop E (Pfaff et al. 2001; Patterson et al.
2004; Tian et al. 2006). Since it is unknown whether
there was a founder effect in forming the African-
American population, we allowed NAA to vary. All
simulations assumed an infinite-sites mutation model
and a Wright–Fisher model of reproduction.

Inference on simulated data using the site frequency
spectrum: A useful summary of SNP data that poten-
tially contains information regarding the magnitude of
recent population growth is the site frequency spectrum
(SFS) (Fu 1995; Griffiths and Tavaré 1998; Nielsen

2000; Williamson et al. 2005). Mathematically, the SFS
is defined for a set of n sequenced chromosomes across
S variable sites (i.e., SNPs) as the random vector (X1, X2,
. . . , Xn�1), where Xi represents the number of SNPs
where the n chromosomes are portioned into exactly
i copies of the derived allele and n � i copies of the
ancestral allele. For example, X1 is the number of
singleton SNPs in the data, X2 is the number of SNPs
where exactly two chromosomes carry the derived allele,
and so on. Note that the sum of the entries in the SFS
equals the total number of SNPs in the data set.
Informally, one can think of the SFS as a histogram
consisting of the number of SNPs at different frequen-
cies in the sample where frequencies are binned at 1/n
intervals. To determine the accuracy of parameter
estimates for NA, tcur, and NB/NA when using the SFS
obtained from Pop AA, for each combination of de-
mographic parameters, we simulated 500 data sets, each
consisting of 10,000 unlinked 1-kb regions in n ¼ 24
chromosomes from each population. The size of each

data set was meant to roughly mimic the scope of
resequencing data sets currently in use, such as the
Celera Genomics SNP data set (Bustamante et al. 2005;
Lohmueller et al. 2008). We assumed a per-nucleotide
mutation rate m ¼ 10�8 and a per-nucleotide recombi-
nation rate, r¼ 10�8. For each data set, we calculated the
SFS for both Pop A and Pop AA, which were then used
for inference.

To find the maximum-likelihood estimates (MLEs)
for the three growth parameters, we used a Poisson
likelihood function (see Nielsen 2000; Williamson

et al. 2005; Boyko et al. 2008 for details). Briefly, the
observed number of SNPs in each bin, Xi, of the SFS is
treated as a Poisson random variable,

PrðXi ¼ k jQÞ ¼ e�li lk
i =k!; ð1Þ

where the rate parameter of the Poisson distribution li

is the expected number of SNPs in the particular bin of
the SFS based on the set Q ¼ {u, n, t} of mutation rate
(u ¼ 4NAm) and growth (y ¼ NB/NA; t ¼ tcur/2NA)
parameters. This expectation has the form where the
mutation rate acts as a scaling factor for each data set, so
we can rewrite as the product as

li ¼ EðXi jQÞ ¼ uF ði j y; tÞ; ð2Þ

where F(i j y, t) is proportional to the number of SNPs at
frequency i/n in the sample and can be found either by
coalescent simulations (Nielsen 2000) or via diffusion-
based approximations (Williamson et al. 2005). All
SNPs and bins of the SFS are treated independently and
the final log-likelihood for a given set of growth
parameters is the sum of the Poisson log-likelihoods
for each bin of the SFS as given below:

lðQ j xÞ ¼ �u
Xn�1

i¼1

F ði j t; yÞ1
Xn�1

i¼1

xi logðuF ði j t; yÞÞ: ð3Þ

This is a reasonable approximation to the true log-
likelihood and holds when there is ample recombina-
tion among SNPs. Since the expected values of the SFS
entries are not affected by recombination, when applied
to linked data, the above inference scheme can be
thought of as a composite-likelihood approach (Zhu

and Bustamante 2005; Boyko et al. 2008).
We used the program PRFREQ (Boyko et al. 2008) to

find the expected SFS for a given set of growth
parameters using the Poisson, rather than the multino-
mial, implementation. Here we set m ¼ 0.1, which was
the true value used in the simulations to generate the
data (10�8 per nucleotide 3 103 nucleotides per region 3

104 regions). To optimize the likelihood function, we
found the expected SFS for each parameter combina-
tion on a three-dimensional grid (NA, tcur, and NB/NA)
of parameter values. It should be noted that the grids
used are coarser than those used on real data sets.

Figure 1.—Demographic model for African (Pop A),
African-American (Pop AA), and European (Pop E) popula-
tions used to simulate test data sets. For all simulations con-
ducted here, tsplit ¼ 4000 generations, NA ¼ 20,000, NB ¼
10,000, and Pop E followed the bottleneck model from Loh-

mueller et al. (2009), except for the ancestral population size
(NB), which was set to 10,000. See text for a further descrip-
tion of the parameters.
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Inference on simulated data using the haplotype-
count number statistic: Lohmueller et al. (2009) re-
cently suggested a new summary statistic for genome-
wide SNP data based on haplotype patterns. Their
statistic, termed the haplotype-count number (HCN)
statistic, is a two-dimensional histogram containing the
joint distribution of the number of haplotypes and
count of the most common haplotype in windows across
the genome. To determine whether we could accurately
estimate NA, tcur, and NB/NA when using the HCN
statistic obtained from Pop AA, for each combination
of demographic parameters, we simulated 100 data sets,
each consisting of 7000 unlinked 250-kb regions in n ¼
46 chromosomes from each population. Importantly, as
in Lohmueller et al. (2009), we used only a random
subset of 20 SNPs from each simulated window with
minor allele frequency (MAF) .10%. The size of these
data sets is meant to mimic the large-scale genotyping
surveys currently in use, such as that of Perlegen
Sciences, where only a subset of SNPs in the population
have been discovered and genotyped (Hinds et al.
2005). We assumed a per-nucleotide mutation rate m ¼
10�8 and a per-nucleotide recombination rate r ¼ 10�8.
For each data set, we calculated the HCN statistics
for Pop A and Pop AA, which were then used for
inference.

To find the MLEs of the three demographic param-
eters from each data set via the HCN statistic, we used
the approach of Lohmueller et al. (2009). Briefly, we
used a multinomial approximate-likelihood function
where the observed number of windows with i haplo-
types and where the most common haplotype is at count
j come from a multinomial distribution whose param-
eters are determined by the recombination rate and
demographic parameters. We used coalescent simula-
tions to find the parameters for the multinomial
distribution for a given set of demographic parameters
and recombination rates. Importantly, we fixed the
recombination rate in these simulations equal to the
true value used to generate the test data sets. The
likelihood function was optimized using a grid search.

Analysis of National Institute of Environmental
Health Sciences data: We fitted a growth model to the
SFS of the Yoruba and African-American samples from
the National Institute of Environmental Health Scien-
ces (NIEHS) data (Livingston et al. 2004). The Yoruba
sample contained n ¼ 12 individuals from Ibadan,
Nigeria and the African-American sample contained
15 individuals sampled from the United States. We used
only noncoding SNPs and excluded SNPs that had
genotypes for ,10 individuals in at least one of the
two populations. Since some SNPs did not have a
genotype at every individual, we used the hypergeomet-
ric distribution to find the expected SFS for a sample
size of 20 chromosomes (Nielsen et al. 2004). In total
our analysis included 13,588.4 SNPs in the African-
American population and 13,487.9 SNPs in the Yoruba

population after projection to a sample size of 20
chromosomes. The projection and subsequent analyses
were done on the African-American and Yoruba samples
separately. For the analysis of the NIEHS data, we used
the folded SFS. The folded SFS tabulates the frequency
of the minor allele, rather than the derived allele. The
folded SFS still contains substantial information re-
garding demography without having to accurately infer
the ancestral/derived states of SNPs (Adams and
Hudson 2004).

We estimated the growth parameters for the Yoruba
and African-American data sets using the PRFREQ
program (Boyko et al. 2008). As we did for the analysis
of the simulated data sets, we used the Poisson likeli-
hood function. This procedure required an accurate
estimate of the per-nucleotide mutation rate, m. To
estimate m, we used the level of human–chimp di-
vergence at the regions sequenced and the relationship
K ¼ 2Tm, where K is the number of human–chimp
differences (per nucleotide) and T is the human–chimp
divergence time in units of generations. There were
51,770 differences in the 4,644,887 nucleotides se-
quenced in the builds of the human (hg18) and chim-
panzee (pantro2) genomes, giving K ¼ 0.01114559
per nucleotide. Then, assuming a human–chimp diver-
gence time of 6 million years, and 25 years/generation,
m ¼ ð0:01114559 3 25Þ=ð2 3 6 3 106Þ ¼ 2:32 3 10�8 per
nucleotide/generation. Since before the hypergeomet-
ric projection of the SNP frequencies, 7.83% of SNPs
were excluded because they contained genotypes for
,20 chromosomes in either one population or both
populations, we decreased the total number of nucleo-
tides sequenced by the same amount. This led to
4,281,191 total nucleotides that were used for analysis.
We again used a grid search to optimize the likelihood
function. Profile log-likelihood curves were used to
calculate 95% confidence intervals (C.I.’s) for each
parameter. We note that fixing of m to a particular value
does not alter the coverage properties for scaled
parameters due to the invariance principle of maxi-
mum-likelihood inference (Pawitan 2001).

Analysis of the Perlegen data: We fitted a growth
model to the African-American sample analyzed by
Perlegen Sciences (Hinds et al. 2005) using the HCN
statistic. We chose to use the Perlegen data rather than
other data sets, such as HapMap, because Perlegen
genotyped all SNPs that they discovered, without regard
to LD status, making subsequent analyses simpler
(Lohmueller et al. 2009) and relatively free of the
ascertainment biases in HapMap.

We divided the genome into nonoverlapping 0.25-cM
windows and selected 20 SNPs from each window to
construct the HCN statistic. Note that we selected only
SNPs with MAF .10% in both the African-American
and European-American data sets. Additionally, SNPs
that were discovered using fewer than eight chromo-
somes were not included in the analysis. In total, the
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HCN statistic contained 8174 windows. As in Lohmueller

et al. (2009), we used Clark’s phasing algorithm (Clark

1990) to infer haplotype phase of the SNP data.
In the coalescent simulations used to generate the

expected HCN statistic for a given demographic model,
we also phased the simulated data using Clark’s phasing
algorithm and drew the recombination rate for each
simulated region from a gamma distribution to allow for
errors in the estimated genetic map (Lohmueller et al.
2009). Finally, we used the Schaffner recombination
hotspot model (Schaffner et al. 2005) as implemented
in Lohmueller et al. (2009).

RESULTS

Effect of admixture on patterns of polymorphism:
Figure 2 shows the expected SFS for Pop A with twofold
growth as well as for Pop AA under two different values
of NAA. First, we note there is an excess of low-frequency
SNPs in Pop A compared to the neutral prediction. This
result is expected since an excess of low-frequency SNPs
is a signature of the population expansion (Tajima

1989a; Slatkin and Hudson 1991). For Pop AA, when
NAA ¼ NA, there is an even more pronounced excess of
singleton and doubleton SNPs over what is seen in Pop
A. However, the remaining bins of the SFS are similar for
Pop A and Pop AA. When NAA ¼ 0.1NA, we observe a
decrease in the number of singleton SNPs compared to
when NAA¼NA. However, the number of singleton SNPs
with NAA¼ 0.1NA is still slightly greater than that for Pop
A alone. We also examined the SFS when Pop AA was
formed 7 generations ago (Price et al. 2009) instead of
20 generations ago, corresponding to more recent
admixture (supporting information, Figure S1). When

NAA¼ NA, the SFS for the two different admixture times
are indistinguishable. When NAA ¼ 0.1NA, more recent
admixture results in a slight increase in the number of
singletons, presumably since the more recent founding
of Pop AA results in less drift in Pop AA. However, the
number of singletons here is still lower than that seen in
Pop AA when NAA ¼ NA. Thus, for the parameter
combinations investigated here, the SFS for Pop A and
Pop AA all appear to have an excess of low-frequency
SNPs, with the excess being more pronounced in Pop
AA.

We also investigated the effect of recent admixture on
the HCN statistic. Figure 3 shows the HCN statistics for
simulated data under the three models described above
(Pop A; Pop AA, NAA ¼ NA; and Pop AA, NAA ¼ 0.1NA).
For Pop AA, when NAA ¼ NA, there is a slight excess
(compared to Pop A) of windows that have few
haplotypes and a more pronounced excess (again,
compared to Pop AA) of windows having the most
common haplotype at higher frequency. This pattern
likely stems from the fact that some individuals in the
admixed population have haplotypes that recently came
from Pop E. Since Pop E underwent a bottleneck, it
contains less haplotype diversity than Pop A. Thus, the
Pop E haplotypes create a shift toward more windows
with fewer haplotypes and where the most common
haplotype is at higher frequency in the HCN statistic
from Pop AA. When NAA ¼ 0.1NA, the difference
between the HCN statistics in Pop A and Pop AA
becomes even greater due to the loss of haplotypes
during the founding of Pop AA. We also examined the
HCN statistic when Pop AA was formed 7 generations
ago (Price et al. 2009) instead of 20 generations ago
(Figure S2). When NAA ¼ NA, the HCNs for the two

Figure 2.—Expected SFS in a sample size of 24
chromosomes for Pop A and Pop AA under pop-
ulation growth. Note the excess of low-frequency
SNPs relative to the neutral prediction (Fu 1995)
in all populations as well as the more pro-
nounced excess of low-frequency SNPs in Pop
AA relative to Pop A. NA ¼ 20,000; NB/NA ¼
0.5; tcur ¼ 2400 generations.
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different admixture times are nearly identical. When
NAA ¼ 0.1NA, overall haplotype diversity is still lower
than that seen in Pop AA when NAA ¼ NA; however, the
shift is less pronounced than when the admixture and
founding occurred 20 generations ago. In summary, the
admixture process alters the HCN statistic in a manner
that is heavily influenced by the current size of Pop AA
and the relative duration of the founder effect forming
Pop AA.

Inference of demography from simulated data: To
determine whether the differences in the SFS and HCN
statistics from Pop A and Pop AA (Figures 2 and 3 and
Figure S1 and Figure S2) are meaningful, we estimated
the parameters for a population growth model using the
SFS and HCN statistics from Pop A and Pop AA (see
methods). The purpose of this analysis was to see if,
using data from Pop AA, we could accurately estimate
the current population size of Pop A (NA), the time of
population growth in Pop A (tcur), and the magnitude of
population growth (NB/NA).

Figure 4A shows the distribution of MLEs inferred
using the SFS for the three growth parameters when
tcur ¼ 2400 generations. For Pop A, the MLEs for all
three parameters are clustered at the true parameter
values. For Pop AA, when NAA ¼ NA, NA is slightly over-
estimated and NB/NA is underestimated. The reverse
pattern is seen when NAA ¼ 0.1NA. Here, NA is slightly

underestimated, but NB/NA is slightly overestimated.
Importantly, in both cases, when using the SFS from Pop
AA, all the estimates for NA are within 10,000 of the true
value and all the estimates for NB/NA are within 0.15 of
the true value. The estimates of the timing since the
instantaneous growth event (tcur) present a different
pattern. For both models of Pop AA, tcur is severely
overestimated (see below).

Figure 4B shows the distribution of the MLEs inferred
using the HCN method. Again, the MLEs from Pop A
are clustered around the true parameter values. Unlike
the estimates made using the SFS, the MLEs from Pop
AA are now quite far from the true parameter values.
For example, when NAA ¼ NA, NA is severely over-
estimated, and NB/NA is underestimated. When NAA ¼
0.1NA, haplotype diversity is lost, leading to the un-
derestimation of NA when using individuals sampled
from Pop AA. Interestingly, tcur is underestimated in
both cases.

We also analyzed additional simulated data sets where
tcur ¼ 4000 generations. Figure 5 shows the distribution
of the MLEs inferred using the SFS (Figure 5A) and the
HCN statistic (Figure 5B). Note that when estimating
parameters using the SFS, the estimates made from Pop
AA again approximate the true parameter values for
Pop A. In particular, tcur is not as severely overestimated
compared to the case where tcur ¼ 2400 generations.

Figure 3.—Expected HCN statistics for Pop A and Pop AA. Each cell in the matrix is colored according to the proportion of
simulation replicates (windows) having the particular configuration of the number of haplotypes and count of the most common
haplotype. For example, red cells contain ,2.5% of windows and medium-blue cells contain 20–22.5% of simulated windows. Note
the excess of windows with fewer haplotypes and where the most common haplotype is at higher frequency in Pop AA relative to
Pop A. This is most pronounced when NAA ¼ 0.1NA. Note that the simulations assume NA ¼ 20,000, NB/NA ¼ 0.5, and tcur ¼ 2400
generations.

616 K. E. Lohmueller, C. D. Bustamante and A. G. Clark

http://www.genetics.org/cgi/data/genetics.109.113761/DC1/2
http://www.genetics.org/cgi/data/genetics.109.113761/DC1/3


This is especially noticeable when NAA ¼ NA. Thus, part
of the explanation for the overestimate of tcur using Pop
AA when tcur¼ 2400 generations is that the estimate was
heavily influenced by the population ‘‘expansion’’ that
occurred at tsplit, when Pop E and Pop A split (Stadler

et al. 2009). When tcur ¼ tsplit, this overestimate is less
pronounced, although it is still present.

Figure 5B shows that the MLEs inferred using the
HCN statistic on individuals from Pop AA are again very
far from the true growth parameter values in Pop A.
Interestingly, the MLEs of the growth parameters
inferred from Pop AA when tcur ¼ 4000 are very similar
to those inferred when tcur ¼ 2400 (compare Figure 4B
to Figure 5B). This suggests that the admixture process
has such a profound influence on the haplotype
patterns that changes in the timing of growth in the
parental population cannot be detected using individ-
uals from Pop AA. The current size of Pop AA (NAA), on
the other hand, has a large impact on the haplotype

patterns (compare Pop AA, NAA¼NA, to Pop AA, NAA¼
0.1NA in Figure 4B). These results, taken together,
indicate that recent admixture affects haplotype sum-
mary statistics more than it affects the SFS.

Frequently when researchers fit a demographic
model to the observed SFS, they will also perform a
goodness-of-fit (GOF) test to determine if the best-
fitting model can explain the observed SFS (see, for
example, Adams and Hudson 2004; Caicedo et al. 2007;
Boyko et al. 2008; Nielsen et al. 2009). Given that the
simple growth model is the wrong model for Pop AA
(the true model involves growth and admixture), we
assessed how well the MLEs of the growth parameters
generated SFS that fit the observed SFS. Put another
way, if a researcher were to fit a growth model to the SFS
from an admixed population, how likely is it that the
researcher would reject the simple growth model as an
explanation for the observed SFS? We performed a
simple chi-square GOF test for a particular demo-

Figure 4.—Distribution of MLEs for the three growth parameters inferred using (A) the SFS and (B) the HCN method (see
text). Solid horizontal bars denote the true parameter values (NA ¼ 20,000; NB/NA ¼ 0.5; tcur ¼ 2400 generations).
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graphic model where we compared the observed SFS in
each of the 500 simulated data sets to the expected SFS
at the MLEs. Figure S3 shows a quantile–quantile (Q-Q)
plot comparing the GOF P-values from Pop AA to those
for Pop A. When tcur ¼ 2400, there is a shift toward
smaller P-values in Pop AA compared to Pop A (Figure
S3). This effect is less pronounced when tcur ¼ 4000
(Figure S4). We find that when tcur ¼ 2400, 5% of the
simulated data sets in Pop A have a P-value ,0.014.
Note that the fraction of data sets with P , 0.014 is
.1.4% due to the fact that some SNPs are linked, thus
reducing the effective number of SNPs. Thus, we use
0.014 as an �5% rejection region for the GOF test.
Using this calibration, we find that 8.8 and 5.8% of data
sets for Pop AA have a P-value ,0.014, for NAA¼ NA and
NAA ¼ 0.1NA, respectively. When tcur ¼ 4000, 5% of the
simulated data sets from Pop A have a P-value ,0.0117
compared to 5.6 and 4.8% for NAA ¼ NA and NAA ¼
0.1NA, respectively. These results suggest that there is a

slightly worse GOF for the admixed population (Pop AA)
than for the nonadmixed population, but we cannot
exclude the possibility that some of this pattern may be
due to differences in how accurately we optimized the
likelihood function across different models. Neverthe-
less, for the data sets simulated here (containing�17,000
SNPs), the vast majority (91–95%) of data sets from Pop
AA will be unable to reject the pure growth model.

Inference of demography from human data: We
estimated the three growth model parameters (tcur, NA,
NB/NA) for the African-American and Yoruba popula-
tions using the SFS generated from the NIEHS
resequencing data set (Livingston et al. 2004). We
chose to use this data set since it was generated by
complete resequencing of the same genomic regions in
both African-American and Yoruba individuals. As such,
we can directly measure the effect that admixture has on
estimates of the growth model parameters estimated
from the SFS by comparing the parameter estimates

Figure 5.—Distribution of MLEs for the three growth parameters inferred using (A) the SFS and (B) the HCN method (see
text). Solid horizontal bars denote the true parameter values (NA ¼ 20,000; NB /NA ¼ 0.5; tcur ¼ 4000 generations).
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from the two populations. Importantly, since the same
regions were studied and the resequencing was done by
the same laboratory for the two populations, any differ-
ences in the estimates should not be attributable to
differences in selective pressure or laboratory errors.

As expected on the basis of the analysis of simulated
data described above, the folded SFS of the African-
American and Yoruba samples are fairly similar to each
other (P ¼ 0.09; x2 ¼ 15:02; 9 d.f.; Pearson’s chi-square
test), but the African-American SFS has slightly more
low-frequency SNPs and more SNPs overall (see also
Figure S5). Using the SNPs in the folded SFS,
Wattersons’s u ¼ 8.88 3 10�4 per nucleotide in the
Yoruba sample and 8.95 3 10�4 per nucleotide in the
African-American sample. The average number of
pairwise differences (p) per nucleotide is 7.99 3 10�4

in the Yoruba sample and 7.93 3 10�4 in the African-
American sample. We then estimated the three de-
mographic parameters for the African-American and
Yoruba data sets (see methods). Figure 6 shows the
profile-likelihood curves for the three parameters. The
estimate of NA is slightly higher in the African American
population (15,732) compared to the Yoruba popula-
tion (14,647). However, NB/NA is slightly lower in the
African-American (0.46) than in the Yoruba (0.5)
sample. The profile-likelihood curves overlap substan-
tially for tcur, with a MLE of 5208 generations in the
African-American sample and 5425 generations in the
Yoruba sample. Importantly, for all three parameters,
the�95% C.I.’s from the profile-likelihood curves (,1.92
log-likelihood units) overlap between the African-American
and Yorbua estimates, suggesting that the parameter
estimates from the two populations are not significantly
different from each other.

We then estimated the growth parameters for the
Perlegen African-American data set (Hinds et al. 2005),
using the HCN approach (see methods). Figure 6 also
shows the profile-likelihood curves for the three param-
eters. The estimate of NA (12,500) is slightly smaller
than the estimates obtained from the SFS-based analysis.
However, the estimates of the other two parameters
using the HCN method are quite discordant with the
estimates found using the SFS. NB/NA is much larger
(0.94) when estimated using the HCN than the SFS
(0.46). The timing of growth, tcur is also estimated to be
much more recent when using the HCN compared to
the SFS. Thus, as predicted by the analysis of simulated
data sets described above, the HCN method gives
different growth parameter estimates than the SFS
method when the population has an admixed demo-
graphic history.

DISCUSSION

We have examined how recent admixture affects esti-
mates of population growth when using the SFS and
the HCN statistic for inference. For certain parameter

combinations, we find that growth parameter estimates
made using the SFS in the admixed population are
qualitatively similar to the true growth parameters from
the unadmixed population. This pattern holds more
often for the current population size (NA) and magni-
tude of growth parameter (NB/NA) than for the timing
since the growth parameter (tcur) and seems to be little
affected by whether or not the admixed population
experienced a reduction in size during its founding. If
growth occurs at the time the ancestral populations split
from each other (e.g., tcur ¼ tsplit in Figure 1), then
estimates of tcur from the admixed population exhibit
smaller bias. The HCN approach, on the other hand, is
severely affected by recent admixture for all parameters
investigated.

Our simulations provide some intuition as to why the
SFS and the HCN statistic are differently affected by
recent admixture. This difference stems from the
manner in which the 20% of ancestry from Pop E affects
the SFS and the HCN statistic. The SFS from the
admixed population (Pop AA) contains more SNPs
and more low-frequency SNPs than does the SFS from
the nonadmixed population (Pop A). This is due to the
fact that Pop E contains some population-specific SNPs
not present in Pop A that are then brought into Pop AA
during the admixture process. On the basis of the
model assumed here, as well as the analysis of the
NIEHS resequencing data, the extra SNPs brought into
the admixed population from Pop E do not substantially
alter estimates of the population growth parameters.
Conversely, the HCN statistic from the admixed pop-
ulation (Pop AA) is shifted toward a higher proportion
of windows with fewer haplotypes and where the most
common haplotype is at higher frequency than in the
nonadmixed Pop A. Essentially, this suggests that there
is less haplotype diversity in Pop AA than in Pop A. This
pattern arises because �20% of chromosomes in Pop
AA are from Pop E, rather than from Pop A. Since Pop E
has undergone a population bottleneck, it has less
haplotype diversity than Pop A does. Consequently,
Pop AA has lower haplotype diversity than Pop A simply
because it contains �20% of its chromosomes from the
populations with lower haplotype diversity (Pop E)
while Pop A contains 0% of its chromosomes from the
population with lower diversity. Put another way, a single
chromosome sampled from Pop A is more likely to
represent a new haplotype in a sample from Pop A than
a single chromosome sampled from Pop E would. This is
the opposite of what was seen for single SNPs, where
sampling chromosomes from a mixture of Pop A and
Pop E results in an increase in the number of SNPs com-
pared to sampling only Pop A (Ptak and Przeworski

2002; Stadler et al. 2009). This difference indicates
that these two summaries of SNP data capture differ-
ent and complementary aspects of ancestral history.

Due to the sensitivity of haplotype-based approaches
to the admixture process, these methods may be more
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informative than SFS-based methods for inferring the
extent of recent admixture and detecting founder
effects associated with admixture. However, when using
haplotype-based approaches, researchers need to ex-
plicitly model the admixture process, rather than fitting
a simplified growth model. Fitting a simple growth
model to an admixed population using haplotype
patterns will likely give erroneous results. This conclu-
sion does not imply that one method of inference is
superior to the other. Instead, the two methods are
complementary and the best approach to be used
depends then on what one wishes to learn from the data.

Another interpretation for the lack of sensitivity of
the SFS-based method to recent admixture is that the
SFS-based approach does not have sufficient power to
detect when data were drawn from a more complex
model. Our results suggest that LD and haplotype
patterns as summarized by the HCN statistic are
especially sensitive to recent admixture and may provide
better diagnostics for detecting ill-fitting models than
the SFS alone. Pairwise LD patterns have recently been
used by Hernandez et al. (2007) and Gutenkunst et al.
(2009) on large-scale macaque and human resequence
data sets to assess the fit of the demographic models
estimated from the SFS. A similar approach may also
provide a means of rigorously assessing model fit for
demographic inference from admixed populations.

Since a plethora of genome-wide resequencing data
will soon be available from a variety of human popula-
tions, we explored the performance of the SFS to
estimate growth parameters using a larger data set from
Pop AA. We found that increasing the number of
chromosomes sampled from 24 to 100 in Pop AA still
gave parameter estimates qualitatively similar to those
from the smaller data sets (Figure S6), albeit with lower
variance. Applying GOF tests to these data, 21% of data
sets rejected GOF for the best-fitting model when we
thinned the number of SNPs to match that in the
smaller data set and 33% rejected GOF when we did not
thin the number of SNPs. Thus, not surprisingly, the SFS
generated from larger samples increases the power to
reject GOF for an incorrect model. However, our results
caution that as data sets grow, many may reject GOF due
to minor model misspecifications, while still providing
qualitatively reasonable estimates of important param-
eters. Since all models are simplifications of reality, and
the sizes of genetic variation data sets are rapidly
expanding, this may be an important practical problem
in the near future. GOF tests based on the SFS from
large data sets should be carefully interpreted while
keeping this fact in mind.

While we examined complex demographic models
involving population splits, bottlenecks, growth, and
admixture, our models are still an oversimplification of
the true demography of African and African-American
populations. Due to the many parameters in our model,
we examined only a few illustrative examples and did
not evaluate systematically the effect of changing
different parameters. For example, we assumed that
the admixture event occurred 20 generations ago and
that all Pop AA individuals have, on average, 80% of
their ancestry from Pop A. In reality, both these
parameters vary among individuals (Pfaff et al. 2001;
Patterson et al. 2004). Thus, our models should be
taken as illustrative examples of the effect of admixture
on inference of ancient growth. It is unclear if the
general trends seen from our simulations will hold
under more complex models of demography. However,
a more recent admixture time (7 generations instead of

Figure 6.—Profile log-likelihood curves for the three
growth model parameters estimated using the SFS from the
NIEHS resequencing data for the African-American (AA)
and Yoruba (YRI) samples and the HCN statistic from the Per-
legen SNP genotype data for the African-American (AA) sam-
ple. Note that the two estimates based on the SFS (solid
curves) are very similar to each other. The horizontal line
in each part denotes the approximate asymptotic 95% C.I.
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20 generations) gave SFS that were qualitatively similar
to those found when admixture occurred 20 genera-
tions ago (compare Figure 2 to Figure S1), suggesting
that our conclusions may apply even if some of the true
parameters differ slightly from those used in our
models.

Nevertheless, due to these inherent complexities in
trying to jointly model African, African-American, and
European population history, we also analyzed empiri-
cal data from African and African-American popula-
tions. The analyses of the NIEHS and Perlegen data
allow us to test whether the predictions made from data
generated under our simplified demographic models
hold for data generated under the true demographic
model of these populations. The fact that the growth
parameters estimated using the SFS from the NIEHS
data in the Yoruba and African-American populations
were similar to each other, as predicted by our simu-
lations, suggests that our simple models provide a
reasonable guide to reality. Furthermore, the finding
that the estimates of growth parameters using the HCN
statistic from African-American data significantly differ
from those estimated using the SFS is again consistent
with the observations from our simulations.

These findings have implications for reconciling
differences in estimates of population growth parame-
ters made using African and African-American popula-
tions. Our finding from the NIEHS data of similar growth
parameters for both the African-American and Yoruba
individuals suggests that using African-American indi-
viduals as opposed to West African individuals should
not lead to large differences in parameter estimates.
Instead, we propose that the differences in estimates of
growth parameters in different studies are likely to be
due to differences in the amounts of natural selection in
different data sets, systematic differences in laboratory
protocols leading to different SFS among data sets, or
differences in modeling methods (e.g., whether or not
migration is included) across studies. Consistent with
this hypothesis, Wall et al. (2008) found that a summary
of the SFS, Tajima’s D (Tajima 1989b), significantly
differed among different data sets consisting of West
African populations. Further studies using more exten-
sive resequencing data with similar laboratory protocols
and more advanced demographic models will help
obtain more consistent parameter estimates.
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FIGURE S1.—Expected SFS in a sample size of 24 chromosomes for Pop A and Pop AA under population growth when 

admixture occurs 20 or 7 generations ago.  Note in both cases, the SFS when admixture occurs 20 generations ago is similar to 

that when admixture occurs 7 generations ago.  (A) NAA = NA and (B) NAA = 0.1NA. Overall there is a slight excess of singletons 

when admixture occurs 7 generations ago as opposed to 20 generations ago, since there is less drift in Pop AA with the more 

recent founding.  However, the number of singletons in Pop AA when NAA = 0.1NA is still less than that when NAA = NA.  NA = 

20,000; NB/NA = 0.5; tcur = 2400 generations.

A 

B 



K. E. Lohmueller et al. 3 SI 

 
FIGURE S2.—Expected HCN statistic for population growth (Pop A) and for growth with admixture (Pop AA) when admixture occurred 7 generations ago (instead of 20 

generations).  Each cell in the matrix is colored according to the proportion of simulation replicates (windows) having the particular configuration of the number of haplotypes and 

count of the most common haplotype. For example, red cells contain <2.5% of windows and medium-blue cells contain 20-22.5% of simulated windows.  Note the excess of 

windows with fewer haplotypes and where the most common haplotype is at higher frequency in Pop AA relative to Pop A.  This is most pronounced when NAA = 0.1NA.   Note, the 
simulations assume NA = 20,000; NB/NA = 0.5; tcur = 2400 generations. 
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FIGURE S3.—Quantile-Quantile (Q-Q) plot comparing the chi-square goodness of fit test P-values from data simulated from 

Pop A (x-axis) and Pop AA (y-axis).  Note the excess of lower P-values in Pop AA relative to Pop A for both values of NAA.  These 

results suggest that the best-fitting growth parameters tend to fit Pop AA (where the true demographic model involves admixture) 

slightly worse than they do for Pop A (where the true demographic model is a growth model).  Here tcur = 2400 generations.   
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FIGURE S4.—Quantile-Quantile (Q-Q) plot comparing the chi-square goodness of fit test P-values from data simulated from 

Pop A (x-axis) and Pop AA (y-axis).  Note that there is not as much of an excess of low P-values for Pop AA as there was in 

Supplementary Figure 2.  Here tcur = 4000 generations.   
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FIGURE S5.—The folded SFS for the Yoruba (YRI) and African American (AA) samples in the NIEHS data set.  The folded 

SFS presents the number of SNPs where the minor allele has a given frequency.  Note, to allow for missing data, we projected the 

SFS to a sample size of 20 chromosomes. 
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FIGURE S6.— Distribution of MLEs for the three growth parameters inferred using the SFS from Pop AA using different size 

data sets.  “Original” denotes the original data sets presented in Figure 5 using a sample size of n = 24 chromosomes.  “Filtered” 

denotes data sets consisting of a sample size of n = 100 chromosomes.  Here we filtered SNPs so that the number of SNPs per 

data set was approximately equal to the mean number of SNPs in the original data sets.  “Full” denotes the data sets consisting of 

a sample size of n = 100 without filtering any SNPs.  Solid horizontal bars denote the true parameter values for Pop A (NA = 
20,000; NB /NA = 0.5; tcur = 4000 generations). 
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