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ABSTRACT

It is widely recognized that the mixed linear model is an important tool for parameter estimation in the
analysis of complex pedigrees, which includes both pedigree and genomic information, and where mutually
dependent genetic factors are often assumed to follow multivariate normal distributions of high dimension.
We have developed a Bayesian statistical method based on the decomposition of the multivariate normal
prior distribution into products of conditional univariate distributions. This procedure permits com-
putationally demanding genetic evaluations of complex pedigrees, within the user-friendly computer
package WinBUGS. To demonstrate and evaluate the flexibility of the method, we analyzed two example
pedigrees: a large noninbred pedigree of Scots pine (Pinus sylvestris L.) that includes additive and dominance
polygenic relationships and a simulated pedigree where genomic relationships have been calculated on the
basis of a dense marker map. The analysis showed that our method was fast and provided accurate estimates
and that it should therefore be a helpful tool for estimating genetic parameters of complex pedigrees quickly
and reliably.

MUCH effort in genetics has been devoted to
revealing the underlying genetic architecture of

quantitative or complex traits. Traditionally, the poly-
genic model has been used extensively to estimate
genetic variances and breeding values of natural and
breeding populations, where an infinite number of
genes is assumed to code for the trait of interest (Bulmer

1971; Falconer and Mackay 1996). The genetic
variance of a quantitative trait can be decomposed into
an additive part that corresponds to the effects of indivi-
dual alleles and a part that is nonadditive because of
interactions between alleles. Attention has generally
been focused on the estimation of additive genetic
variance (and heritability), since additive variation is
directly proportional to the response of selection via the
breeder’s equation (Falconer and Mackay 1996, Chap.
11). However, to estimate additive genetic variation and
heritability accurately, it can be important to identify
potential nonadditive sources in genetic evaluations
(Misztal 1997; Ovaskainen et al. 2008; Waldmann et al.
2008), especially if the pedigree being analyzed contains
a large proportion of full-sibs and clones, as these in

particular give rise to nonadditive genetic relationships
(Lynchand Walsh1998,pp.145).Thepolygenicmodel
using pedigree and phenotypic information, i.e., the
animal model (Henderson 1984), has been the model
of choice for estimating genetic parameters in breeding
and natural populations (Abney et al. 2000; Sorensen

and Gianola 2002; O9Hara et al. 2008).
Recent breakthroughs in molecular techniques have

made it possible to create genome-wide, single nucleo-
tide polymorphism (SNP) maps. These maps have
helped to uncover a vast amount of new loci responsible
for trait expression and have provided general insights
into the genetic architecture of quantitative traits (e.g.,
Valdar et al. 2006; Visscher 2008; Flint and Mackay

2009). These insights can help when calculating disease
risks in humans, when attempting to increase the yield
from breeding programs, and when estimating related-
ness in conservation programs. High-density SNPs of
many species of importance to science and agriculture
can now be scored quickly and relatively cheaply, for
example, in mice (Valdar et al. 2006), chickens (Muir

et al. 2008), and dairy cattle (VanRaden et al. 2009).
In the analysis of populations of breeding stock, the

inclusion of dense marker data has improved the
predictive ability (i.e., reliability) of genetic evaluations
compared to the traditional phenotype model, both in
simulations (Meuwissen et al. 2001; Calus et al. 2008;
Hayes et al. 2009) and when using real data (Legarra
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et al. 2008; VanRaden et al. 2009; González-Recio et al.
2009). Meuwissen et al. (2001) suggested that the effect
of all markers should first be estimated, and then
summed, to obtain genomic estimated breeding values
(GEBVs). An alternative procedure, where all markers
are used to compute the genomic relationship matrix
(in place of the additive polygenic relationship matrix)
has also been suggested (e.g., Villanueva et al. 2005;
VanRaden 2008; Hayes et al. 2009); this matrix is then
incorporated into the statistical analysis to estimate
GEBVs. A comparison of both procedures (VanRaden

2008) yielded similar estimates of GEBVs in cases where
the effect of an individual allele was small. In addition, if
not all pedigree members have marker information, a
combined relationship matrix derived from both gen-
otyped and ungenotyped individuals could be com-
puted; this has been shown to increase the accuracy of
GEBVs (Legarra et al. 2009; Misztal et al. 2009).
Another plausible option to incorporate marker in-
formation is to use low-density SNP panels within
families and to trace the effect of SNPs from high-
density genotyped ancestors, as suggested by Habier

et al. (2009) and Weigel et al. (2009). However, fast and
powerful computer algorithms, which can use the mark-
er information as efficiently as possible in the analysis of
quantitative traits, are needed to obtain accurate GEBVs
from genome-wide marker data.

This study describes the development of an efficient
Bayesian method for incorporating general relation-
ships into the genetic evaluation procedure. The method
is based on expressing the multivariate normal prior
distribution as a product of one-dimensional normal dis-
tributions, each conditioned on the descending varia-
bles. When evaluating the genetic parameters of natural
and breeding populations, high-dimensional distribu-
tions are often used as prior distributions of various ge-
netic effects, such as the additive polygenic effect (Wang

et al. 1993), multivariate additive polygenic effects (Van

Tassell and Van Vleck 1996), and quantitative trait
loci (QTL) effects via the identical-by-decent matrix (Yi

and Xu 2000). A Bayesian framework is adopted to
obtain posterior distributions of all unknown parame-
ters, estimated by using Markov chain Monte Carlo
(MCMC) sampling algorithms in the software package
WinBUGS (Lunn et al. 2000, 2009). By performing prior
calculations in the form of the factorized product of
simple univariate conditional distributions, the compu-
tational time of the MCMC estimation procedure is
reduced considerably. This feature permits rapid in-
ference for both the polygenic model and the genomic
relationship model. Moreover, the decomposition al-
lows for inbreeding of varying degree, since the correct
genetic covariance structure can be inferred into the
analysis. In this article, we test the method on two
previously published pedigree data sets: phenotype data
from a large pedigree of Scots pine, incorporation of
information on both additive and dominance genetic

relationships (Waldmann et al. 2008); and genomic
information obtained from a genome-wide scan of a
simulated animal population (Lund et al. 2009).

METHODS

Statistical model: Following Henderson (1984), we
made use of the following linear mixed effect model
under Gaussian assumptions,

y ¼ Xb 1 Zu 1 e; ð1Þ

where y is a vector of size n 3 1 containing phenotypic
records of a continuous trait for all members in the
population; b is a vector of size p 3 1 containing
systematic environmental effects; u is a vector of size
n 3 1 containing genetic effects that follow a multivar-
iate normal distribution with zero mean vector and
covariance structure Gs2

u ; X and Z are known incidence
matrices relating phenotypic records to respective
location parameters included in (1); and e is a vector
containing independent residual errors that follow a
multivariate normal distribution with zero mean vector
and covariance structure Is2

e , where I is the identity
matrix of order n. Note that records can be missing for
some pedigree members (here, yi ¼ NA if individual
i has a missing record). Typically, u contains the additive
polygenic effect, although nonadditive genetic effects
such as dominance, or QTL effects estimated from
marker data, could be included in the model. To make
inferences in model (1), the mixed model equations can
be formed, so that y is associated to Gs2

u . A well-known,
efficient Bayesian technique for the estimation of
genetic parameters in the linear mixed effect model is
MCMC methods (e.g., Wang et al. 1993; Sorensen and
Gianola 2002; Bauer et al. 2009).

The most common distribution used for u in model
(1) is the multivariate normal distribution (Lynch and
Walsh 1998, pp. 194), since u contains n variables (u1,
u2, . . . , un), that on their own are assumed to be normally
distributed. The multivariate normal is, therefore, a
natural choice of distribution for u. For example, the
traditional polygenic model relies on normal distribu-
tion assumptions for the Mendelian inheritance of
genes from parents to offspring (Bulmer 1971). In ad-
dition, when using Bayesian inference to estimate
parameters in model (1), the choice of the multivariate
normal distribution helps to form conditional distribu-
tions, which are of key importance in MCMC sampling
(Sorensen and Gianola 2002; Rue and Held 2005).
The hierarchical structure of model (1) can be usefully
interpreted as a graphical model, which facilitates
computations because this representation allows the
joint distribution of genetic effects and other parame-
ters to be broken down into products of local compo-
nents (Lauritzen et al. 1990). In this article, genetic
effects (u) are assumed to follow a Gaussian distribution
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with an imposed dependency structure given by the
pedigree, estimated relatedness from markers, or both.
The factorization of the dependency structure in the
graph gives (1) a Markov property (Lauritzen et al.
1990), which can be successfully utilized in Bayesian
MCMC methods. See Rue and Held (2005) for a com-
prehensive survey of this topic and see Steinsland and
Jensen (2010) for how to use the Markov property for
making inference in the classical animal model. In
addition, the standard decomposition procedure of
the additive polygenic effect (Thomas 1992; Lin 1999;
Waldmann 2009) utilizes the Markov property of the
animal model, where an offspring is conditioned on its
parents in the analyzed pedigree.

Conditional expressions of multivariate normal
distributions: Drawing samples from multivariate nor-
mal distributions quickly becomes computationally de-
manding as the number of parameters becomes large,
e.g., when performing genetic evaluations of complex
pedigrees. A reasonable alternative, therefore, is to
decompose the multivariate normal distribution into
conditionally dependent parts. If we replace the multi-
variate normal prior, with the product of these (lower
dimensional) distributions, both the mean and the
variance are shifted, for each conditional distribution.
Let us assume that we wish to decompose u into two
subsets of column vectors, uT ¼ ½uT

1 uT
2 ], where u1 and u2

are of length l and n – l, respectively. The mean and
variance can be expressed as

EðuÞ ¼
Eðu1Þ
Eðu2Þ

� �
and

VarðuÞ ¼
Varðu1Þ Covðu1;u2Þ

Covðu1;u2ÞT Varðu2Þ

� �
; ð2Þ

where Var(u)¼Gs2
u is believed to be a positive definite,

symmetric matrix of order n. By decomposing the
multivariate normal distribution ( Jensen 1998), we
obtain:

Eðu2 j u1Þ ¼ Eðu2Þ1 ðu1 � Eðu1ÞÞT Varðu1Þ�1Covðu2;u1Þ; ð3Þ

Varðu2 ju1Þ ¼ Varðu2Þ � Covðu2; u1ÞT Varðu1Þ�1Covðu2;u1Þ: ð4Þ

Hence, the distribution of u2 conditional on u1 is
multivariate normal according to

u2 ju1 � MVN ðEðu2 ju1Þ; Varðu2 ju1ÞÞ: ð5Þ

More generally, for u ¼ fu1;u2;u3; . . . ;uN g, where N is
the number of partitions of u (typically the number of
members in the pedigree, i.e., N ¼ n), we have

pðu1;u2;u3; . . . ;uN js2
uÞ ¼

YN
i¼1

pðui j ui�1; . . . ; u1;s
2
uÞ

¼ pðu1 js2
uÞpðu2 ju1;s

2
uÞpðu3 ju2;u1;s

2
uÞ . . . ;

ð6Þ
where s2

u is the variance component of u. Our target is to
generate u, which is a realization from a multivariate
normal distribution with given mean (vector of zeros)
and covariance structure Gs2

u . The vector u is here
generated by element-wise draws, ui : ði ¼ 1; 2; . . . ;N Þ,
from univariate (lower-dimensional) normal distribu-
tions conditioned on all the elements that have been
drawn so far, i.e., from pðui ju1;u2; . . . ;ui�1;s

2
uÞ. It

should be emphasized that this sequential strategy is
exact and will lead to the correct vector u, drawn from
the full multivariate normal distribution MVN(0, Gs2

u).
First, let us assume individual-wise partitions for u.
Conditional expectation and conditional variance of
pðui ju1; . . . ;ui�1;s

2
uÞ are thought of here as the weighted

mean and the weighted variance for pedigree member i.
To compute weights for the mean (for individual i), the
following general expression can be used:

W ðiÞ ¼
Xi�1

j¼1

wði; jÞuj : ð7Þ

The precalculated weights are then read into WinBUGS
together with the data. The code for the weights in the
model includes only one indexed univariate normal
distribution with conditional mean (Equation 7) and
variance (Equation 4) as a prior for ui. Hence, for every
pedigree member i, we have one vector wði; jÞ : j ¼
1; 2; . . . ði � 1Þ calculated for the mean where most of
the terms are zero; this feature yields a sparse format that
is suitable for storing the weights. The weights for the
mean (w(i, j)) and variance, which specify the condi-
tional prior distribution of each individual, need to be
calculated only once and are thus computed outside the
MCMC estimation (i.e., before compilation of the code).
The order of the weights is important since the drawing
of samples needs to follow the same unique order
throughout the simulation process. Furthermore, it is
also possible to use the same principle to update the
parameters in blocks, sampling from multiple multivar-
iate normal distributions, each of small dimension.
When estimating the additive polygenic effect, the
approach proposed here gives identical results to the
standard decomposition suggested earlier (e.g., Thomas

1992; Lin 1999; Waldmann 2009) for noninbred
pedigrees (nonrelated parents). Our proposed method
could, however, incorporate nonzero covariances be-
tween parents, and inbreeding coefficients greater than
zero, if complex relationships between relatives arising
from dominance are neglected (e.g., Abney et al. 2000).
Two small numerical examples for computing a realiza-
tion of additive and dominance polygenic effects and
illustrating the effect of inbreeding on the additive
polygenic covariance structure are given in the Appendix.
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Bayesian inference of the factorized model: Follow-
ing Waldmann (2009), uniform distributions were
assigned as priors to the standard deviations, since this
prior distribution was shown to be a good and robust
noninformative choice of prior for variance compo-
nents (Gelman 2006). This prior corresponds to a
truncated inverse-x2 distribution with �1 degree of
freedom, that is, p(s2

i ) } si
�1, i ¼ u, e. To obtain an

upper boundary for the uniform distributions, we
performed a preliminary analysis in which uninforma-
tive inverse-gamma distributions were assigned as priors
for the variance components, thereby obtaining esti-
mates of standard deviations; these were then multiplied
by 5 to obtain the upper bounds.The chosen upper
bounds were considerably larger than the upper bounds
of the 95% highest probability density (HPD; Box and
Tiao 1973) regions obtained in the preliminary analysis.
Note that this procedure is a pragmatic solution and
should not be viewed as a strictly Bayesian solution. A
flat, noninformative prior was assigned to the systematic
environmental fixed effect in both examples, as bj�N(0,
106) for systematic effect level j. For u, we used the
common multivariate normal distribution as prior: u �
MVN(0, Gs2

u) (Sorensen and Gianola 2002) and then
used the decomposition of the multivariate normal
distribution into univariate normal distributions, proposed
here as pðu js2

uÞ ¼
Qn

i¼1 pðui ju1;u2; . . . ;ui�1;s
2
uÞ. The

vector y is assumed to follow a Gaussian distribution; thus
the likelihood function is given as

pðy jb;u;s2
e Þ ¼

Yn
i¼1

pðyi j bj ;ui ;s
2
e Þ

¼
Y
i2O

1ffiffiffiffiffiffi
2p
p

se
exp �ðyi � bj � uiÞ2

2s2
e

� �
; ð8Þ

where bj is the corresponding systematic effect level
(covariate) of pedigree member i, connected through
X, and O is the set of members in the pedigree for which
phenotypic records are available. If conditioning on
hyperparameters is neglected, and the location param-
eters are believed to be independent a priori, the joint
distribution of all parameters conditional on the data is
proportional to

pðb;u;s2
u;s

2
e j yÞ} pðbÞpðu js2

uÞpðs2
uÞpðs2

e Þpðy jb;u;s2
e Þ:
ð9Þ

The phenotype model (1) was run in the Bayesian
software package WinBUGS (Lunn et al. 2000) version
1.4.3, which is freely available on http://www.mrc-
bsu.cam.ac.uk/bugs/. WinBUGS exploits a graphical
modeling technique to translate the supplied prior
distributions of the parameters into corresponding full
conditional distributions. The computation of the
weights (7) using (3) and (4) was executed in ANSI C.
The WinBUGS code is available in supporting informa-

tion, File S1, while the computer code used for
calculating weights is available in File S2. Because we
place NA for phenotypes for individuals without a re-
cord, phenotype predictions for them are obtained as a
by-product of the WinBUGS analysis. However, these
predicted values do not influence the estimation of
underlying model parameters. Therefore, random ef-
fects for those individuals are estimated on the basis of
covariance structure only. To check mixing properties of
our implementation in WinBUGS and compare the
mixing to alternative implementations, we calculated
the effective sample size (ESS) of the obtained MCMC
chains (Kass et al. 1998; Waagepetersen et al. 2008). ESS
can be seen as the number of independent samples from
the estimated posterior that contain amounts of in-
formation equivalent to those of our dependent MCMC
samples (i.e., exceed same-estimation accuracy). Low
ESS values indicate poor mixing (i.e., high autocorrela-
tion between consequtive samples) in the MCMC chain.

Polygenic example: To verify our proposed decom-
position method, data acquired from a 26-year-old field
trial of Scots pine (Pinus sylvestris L.), previously pub-
lished by Waldmann et al. (2008), Finley et al. (2009),
Hallander and Waldmann (2009), and Waldmann

(2009), were analyzed to obtain posterior distributions
of additive and dominance polygenic effects for all trees
in the pedigree. The pedigree consists of 52 parents
crossed according to a partial diallel design resulting
in mixed half-sib and full-sib families totaling 4970
surviving offspring. The parents were assumed to be
nonrelated and noninbred. In total, 202 families were
distributed over approximately 4 ha of forest. The field
trial was subdivided into 70 square (or nearly square)
blocks, which were used in the subsequent evaluations as
a systematic environmental effect. Several traits of in-
terest for breeding purposes were measured in 1997,
although for the current study we chose to analyze only
trunk diameter at breast height (DBH). The mean value
of DBH was 114 mm. We made use of the following
covariance structure in the mixed linear model: G1s2

u1
¼

As2
a and G2s2

u2
¼ Ds2

d, where A is the additive relation-
ship matrix; s2

a is the variance component of additive
genetic effects; D is the dominance relationship matrix;
and s2

d is the variance component of dominance genetic
effects. A and D were calculated using standard equa-
tions (Lynch and Walsh 1998, pp. 763 and 768).
Uniform densities were assigned as prior distributions
for sa and sd as described in the previous section. See
Waldmann et al. (2008), Finley et al. (2009), and
Hallander and Waldmann (2009), for a more detailed
analysis of the Scots pine pedigree.

Genomic example: This was a simulated data set,
typical of the data acquired from an animal breeding
protocol, consisting of 5865 pedigree members from
seven generations. The data set is freely available from
the QTLMAS XII workshop webpage, http://www.
computationalgenetics.se/QTLMAS08/QTLMAS/
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DATA.html (Lund et al. 2009). Six thousand loci are
evenly distributed over six chromosomes (1000 markers
per chromosome), with 0.1 cM between markers. Forty-
eight QTL, each of small effect, were assumed to code
for the trait of interest. Pedigree and phenotype in-
formation were available from the first four generations
of animals. The animals from generations five to seven
had no given phenotype, but did have complete marker
information. From each generation, 15 males and 150
females were randomly selected and mated according to
a hierarchical mating design, resulting in a total of 1500
animals being born per generation. Interested readers
are invited to consult Lund et al. (2009) for further
details of the data set. The genomic relationship matrix
(or realized relationship matrix) was computed using
the second method proposed by VanRaden (2008),
which follows G¼ ZDZ9. In this article, Z¼M – P, where
M is a matrix of size n 3 m containing genotypes at all m
loci for all n members of the pedigree; P is a matrix of the
same size containing allele frequencies that differ from
0.5 at all loci; and finally, D is a diagonal matrix of size
m 3 m with diagonal elements 1/m[2pi(1�pi)], where pi

is the allele frequency at locus i. We analyzed a subset
of the complete pedigree consisting of the first four
generations (1014 animals in total) to reduce compu-
tational time. See Table S1 for original identifica-
tion numbers of pedigree members in the analyzed
subpopulation.

RESULTS

Polygenic example: To facilitate a comparison be-
tween the results obtained from our proposed method
and the results reported by Waldmann et al. (2008), we
performed the same procedure as Waldmann et al.
(2008) when analyzing the Scots pine pedigree. One
MCMC was run for a total of 225,000 iterations, from
which the first 25,000 iterations were omitted (burn-in)
from the analysis, and every 10th iteration was saved
(thinned), resulting in an effective sample of 20,000
iterations. Table 1 shows the results of the analysis using

our method, together with the results from Waldmann

et al. (2008) for the trait DBH. Our posterior point
estimates and their 95% HPD regions closely agree with
those obtained by Waldmann et al. (2008), although
slightly different degrees of freedom for the inverse-x2

distributions used as prior to the variance components
(�1 in our method while Waldmann et al. 2008 used�2
in theirs) could cause some differences in the respective
posterior distributions. We believe, however, that the
priors have little influence on the parameter estimates
obtained from the analyzed data, mainly due to both the
large size of the pedigree and the similar parameter
estimates obtained by Waldmann et al. (2008) and
Finley et al. (2009) using different priors.

The additive and dominance covariance structures
resulted in 9940 and 61,247 nonzero weights, respec-
tively. For variance components and heritability, 95%
HPD intervals were estimated using the R library, ‘‘boa’’
(Smith 2007). In WinBUGS, each scan of the MCMC
took 0.4241 sec on an AMD Opteron Dual Core Pro-
cessor (2.39 GHz) with 1 GB of RAM. The corresponding
average time, for each MCMC scan, using the method in
Waldmann et al. (2008) was 1.840 sec. In each iteration
in the MCMC procedure, all nonzero weights for means
need to be multiplied by the corresponding genetic
parameter of the preceding pedigree members (a
matrix–vector multiplication: see Equation 7). The
actual number of nonzero weights depends on the
covariance structure, as more nonzero relationships will
result in a higher number of nonzero weights. For the
Scots pine data, little computational time was needed to
obtain reliable posterior estimates due to the sparseness
of the additive and dominance polygenic relationship
matrices. Consequently, the total computational time is
greatly reduced in the current example because of the
few nonzero weights. Hence, our proposed method
seems to be very beneficial for analyzing polygenic data.

The slightly lower ESS (sample size adjusted for
autocorrelation) obtained by our method reflects the
fact that single-site Gibbs sampling is performed in
WinBUGS, while the hybrid Gibbs sampler, proposed by

TABLE 1

Summary statistics including posterior estimates (mode, mean and median) and effective ESS obtained from the WinBUGS
analysis in the polygenic model example for additive genetic variance (s2

a), dominance genetic variance (s2
d),

residual variance (s2
e ), heritability (h2), and dominance proportion (d2)

Mode Mean Median 95% HPD region ESS REML

Parameter DEC HYB DEC HYB DEC HYB DEC HYB DEC HYB HYB

s2
a 53.16 54.70 63.29 62.52 60.49 59.62 [29.47, 103.1] [27.67, 103.7] 376.4 417.2 55.95

s2
d 77.56 82.88 84.69 88.41 82.5 85.71 [39.86, 136.9] [39.70, 142.2] 399.2 456.8 83.06

s2
e 726.4 722.2 724.3 721.7 725.0 722.6 [670.7, 778.3] [665.3, 776.8] 733.2 756.1 728.5

h2 0.0617 0.0630 0.0724 0.0714 0.0694 0.0685 [0.0340, 0.1158] [0.0327, 0.1170 372.2 420.9 0.0645

d2 0.0894 0.0939 0.0970 0.1014 0.0946 0.0983 [0.0463, 0.1567] [0.0500, 0.1616] 394.5 447.5 0.0957

The results of the decomposition approach are denoted DEC while the results of Waldmann et al. (2008) are denoted HYB
including both MCMC estimates and restricted maximum likelihood (REML) estimates.
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Waldmann et al. (2008), also applies block updating of
parameters, which is known to improve the mixing of the
MCMC chain. In addition, the transformation of genetic
covariance structures applied in Waldmann et al. (2008)
improves the ESS further. However, in this case, the
marginally lower ESS of the current method is well
compensated for by the improved speed. Furthermore,
we tested two additional updating options (block hybrid
and conjugated multivariate) in OpenBUGS version
3.0.3 (Thomas et al. 2006), to see whether the ESS was
improved. Only the ESS of dominance genetic effects
was improved while the ESS of the other parameters was
unaffected or even decreased (results not shown). On
the other hand, the computing time increased markedly:
we therefore believe that the standard updating (mul-
tivariate forward) option in WinBUGS/OpenBUGS
gives acceptable mixing of the MCMC. Furthermore,
we investigated whether changing the sequential order
of conditioning would generate a different number of
weights and, thereby, a difference in computational
time. However, the number of weights remained the
same, regardless of the sequence, and we therefore can
conclude that the order is unimportant from a compu-
tational perspective.

Genomic example: First, a purely additive polygenic
model was used to obtain initial values of the variance
components for all 225,000 iterations. A preliminary
analysis was then conducted to estimate the standard
deviations of the variance components, which were used
to set the upper limit of the uniform prior distributions.
The MCMC procedure was run for 45,000 scans in total,
from which the first 35,000 scans were discarded to give
10,000 saved iterations. The heritability estimates ob-
tained are shown in Table 2. The posterior point es-
timates from our analyzed subset agree closely with the
true corresponding parameter values given in Lund et al.
(2009), both for posterior mean and mode. However,
the additive polygenic model resulted in heritability
point estimate being too large, although with both
models, true value is included within the estimated
95% HPD regions. In addition, in Table 2, it is important
to note that the 95% HPD region obtained by a genomic
model is clearly more narrow than the one given by a
polygenic model, suggesting that the inclusion of the
genomic relationship matrix improves the estimation
accuracyofheritability.Similarconclusionshavebeendrawn
by, for example, Meuwissen et al. (2001), Villanueva

et al. (2005) and Hayes et al. (2009). For a thorough
explanation of improved accuracy, see Xu (2006).

The computational effort in the genomic example was
unfortunately massive, due to the large number of non-
zero weights (in total, 513,591). On the same computer as
that used for the polygenic example, each scan took 39.40
sec. Initially, we truncated small elements in the genomic
relationship matrix to reduce the number of nonzero
elements, but this modification effectively prevented
convergence of the MCMC chain. Truncating small values

in the resulting weight matrix, instead of the genomic
matrix itself, might be a more suitable procedure because
the individual weights for computing the variance of each
genetic parameter (i.e., each normal distribution) are
correctly calculated given the genomic covariance matrix,
and only weights used for computing the mean of each
normal distribution are affected. Conversely, if elements
in the genomic covariance structure are truncated before
the decomposition procedure, then weights for comput-
ing the means and the variances of the normal distribu-
tions of all parameters are affected. By truncating small
elements in the weight matrix, the computational time
could potentially be greatly reduced, although the
accuracy of estimated posterior and 95% HPD regions
would be negatively affected. However, some preliminary
experiments on truncating weights have given promising
results (i.e., the obtained posterior estimates were only
slightly affected), although we chose to include the full-
weight matrix when analyzing the simulated data (other
results not shown).

DISCUSSION

Decomposition of high-dimensional multivariate
normal distributions provides a very flexible Bayesian
method that allows us to make inferences in linear mixed
effect models with a large number of genetic parameters.
For example, the proposed method can be used for the
following: variance component-based linkage and asso-
ciation mapping methods for the estimation of QTL
effects; estimating nonadditive genetic effects, such as
dominance and epistasis; estimation of genomic breed-
ing values; and estimation of maternal and permanent
environmental effects, which are important in breeding
evaluations. The approach was implemented in the user-
friendly computer software WinBUGS and was shown to
be fast and accurate on both real and simulated data. By
using this approach, researchers will be able to perform
advanced genetic evaluations of complex traits and
pedigrees without possessing advanced knowledge in
animal models and programming.

Recently, several studies have shown that the accuracy
of genetic evaluations can be increased by incorporating

TABLE 2

Posterior estimates obtained from the WinBUGS analysis in
the genomic model example for heritability (h2) using a

model including genomic relationship matrix (Gs2
u)

and a model including additive polygenic
relationship matrix (As2

a)

Model Mode Mean Median 95% HPD region

Gs2
u 0.3053 0.3052 0.3052 [0.2675, 0.3433]

As2
a 0.3376 0.3418 0.3397 [0.2191, 0.4691]

The true value of h2 for the entire pedigree should be 0.3
(Lund et al. 2009) .
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the genomic relationship matrix (Villanueva et al.
2005; Hayes et al. 2009; Misztal et al. 2009). For large,
complex pedigrees with a high number of polymorphic
markers, the resulting genomic relationship matrix will
probably be dense, i.e., most pedigree members will have
nonzero, pairwise estimated relatedness. A general
problem with this approach is that when making in-
ferences in animal models, most currently available
methods rely on either sparse solvers (e.g., Schaeffer

and Kennedy 1986; Johnson and Thompson 1995;
Waldmann et al. 2008) or efficient graph model tech-
niques (Wilkinson and Yeung 2004; Rue and Held

2005; Steinsland and Jensen 2010). Compared to
standard, nonsparse methods, these methods will not
result in the same reduction in computational time
when incorporating sparse covariance structures (i.e.,
when using pedigree information only). Unfortunately,
even though our proposed method can handle dense
genetic covariance structures, as demonstrated in the
genomic example, the computational time required is
massive. One way to overcome this hurdle would be to
truncate small elements in the weight matrix obtained
by our approach, thereby obtaining a good approxima-
tion of the genetic covariance matrix. An alternative
method would be to apply transformation on the
covariance matrix to facilitate the inference of parame-
ter estimation as, for example, suggested by Mrode and
Thompson (1989), Wilkinson and Yeung (2004), and
Waldmann et al. (2008). As a result, estimating param-
eters using the linear mixed model does not depend on
the sparsity of the genetic covariance structure.

A good mixing property of the MCMC method is very
important in Bayesian analysis to obtain reliable poste-
rior estimates, especially if parameters are highly corre-
lated in the model. In Gibbs sampling, the updater
samples from the fully conditional posterior distribu-
tion, which is proportional to the likelihood function
and the prior distribution through Bayes theorem. Our
proposed method samples from the multivariate nor-
mal distribution for the prior, but samples from the
likelihood function are taken for one parameter at a
time, which introduces dependencies to the posterior
(i.e., introduces higher correlation between parameters
in the posterior as these are drawn elementwise). Thus,
the mixing property of our algorithm does not match
the mixing properties achieved with block updating of
parameters, where sampling from both prior distribu-
tion and the likelihood are performed in a block
(Garcı́a-Cortés and Sorensen 1996; Roberts and
Sahu 1997). On the other hand, for elementwise or
single-site updating (without decomposition), sampling
from both likelihood and prior are made for each
parameter, which introduces heavy dependencies to the
posterior distribution, resulting in poor mixing proper-
ties of the MCMC chain (Sorensen and Gianola 2002).
Hence, our method should result in better mixing than
single-site updating but should result in less effective

mixing than block updating of parameters. This insight
is confirmed, to some extent, empirically when the
mixing property in our approach was compared to the
mixing property of the standard single-site sampler
(Sorensen and Gianola 2002) implemented in C
(results not shown). However, this comparison should
be interpreted while bearing in mind that WinBUGS
uses an expert system that attempts to utilize the most
appropriate sampling scheme for each stochastic node
(Lunn et al. 2000, pp. 328).

If a better mixing property is warranted, one plausible
alternative might be to combine our suggested decom-
position approach with block updating of parameters
into a hybrid sampler. A similar approach (i.e., combin-
ing single-site and block sampling) was implemented by
Waldmann et al. (2008), which resulted in better mixing
of the MCMC chain than was obtained in pure single-site
updating. However, it would not be possible to imple-
ment the combined sampling approach in WinBUGS, as
the block updating requires a large equation system to
be solved during each iteration in the MCMC procedure.
If only single-site sampling is possible (due to computa-
tional limitations), the parameters can be randomly
updated in each MCMC step and not in the same
sequential order, as suggested by Levine and Casella

(2006). An additional alternative to improve mixing is to
apply transformation of the location parameters in the
model (Vines et al. 1996; Waldmann et al. 2008).

The lack of freely available computer packages
designed for the genetic evaluation of complex pedi-
grees using a Bayesian framework has, unfortunately,
prevented more regular use of these models. The
graphical model representation within the Bayesian
software package WinBUGS is very well suited for
decomposition of joint distributions into products of
local components, i.e., parent and offspring nodes in
a directed acyclical graph (Lunn et al. 2000, 2009).
WinBUGS also applies an intelligent, automatic ap-
proach to the choice of updaters needed in the imple-
mentation of the MCMC procedure. Both Damgaard

(2007) and Waldmann (2009) successfully executed the
animal model in WinBUGS and produced results that
show how evaluating the genetics of complex pedigrees
can be performed smoothly without the need of expen-
sive hardware and software. As an extension to these
studies, we have shown how general relationship struc-
tures can be decomposed and hence can be efficiently
implemented in WinBUGS.

One important improvement offered by our proposed
method, compared to the standard factorization method
of additive polygenic effects (e.g., Thomas 1992; Lin

1999; Waldmann 2009), is the ability to obtain realiza-
tions from the correct additive covariance structure of
inbred populations. If such populations are analyzed
with the standard factorization model, additive variance,
and consequently heritability, can be overestimated,
depending on the level of inbreeding and the size of
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the pedigree. Problems with handling inbred pedigrees
arise with the standard model because the covariances
between parents are assumed to be zero. Since it is not
uncommon to have some degree of inbreeding in both
breeding and natural populations of animals and plants,
the standard factorization of additive polygenic relation-
ships can be erroneous. Differences in the estimated
posterior of the polygenic variance components, obtained
by the standard factorization model and our approach,
need further verification in extensive computer simula-
tions. It should be noted that the nonadditive genetic
relationships, introduced by inbreeding, can have a
considerable influence on the genetic variances (Harris

1964; Abney et al. 2000).
We have, in this study, demonstrated the benefit of

decomposing the multivariate normal distribution,
often used as prior for genetic effects in the standard,
linear mixed effect model. To our knowledge, this
procedure of decomposing the prior distribution has
not been utilized before, in the context of parameter
estimation in genetics. The decomposion approach was
put forward and excecuted successfully in WinBUGS by
Vines et al. (1996); they utilized a random effect model
to analyze clinical data in the context of epidemiology.
However, they did not include covariance between
random effects, which makes the decomposition pro-
cedure more complex. In general, there also exist
alternative procedures for efficiently implementing
the prior distribution, which deserves more attention.
One such alternative, which is likely to be equally as
efficient as the approach presented here, is obtained by
multiplying vector of univariate normal distributed
variables by a Cholesky factor (square root) of the
original covariance matrix (Golub and Van Loan

1996). As in our approach, (Cholesky) weights can be
calculated once, prior to the WinBUGS analysis. Both
procedures involves one matrix–vector multiplication
each iteration in the MCMC process and are, therefore,
likely to be computational equally time consuming for
analysis of large pedigrees.
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APPENDIX: CALCULATION OF WEIGHTS
FOR DOMINANCE RELATIONSHIPS

We calculate conditional prior distributions for dom-
inance genetic effects from the pedigree given in Table
3. The corresponding dominance polygenic relation-
ship matrix, D, can be obtained as described in, for
example, Waldmann et al. (2008) as

D ¼

1 0 0 0
0 1 0 0
0 0 1 0:25
0 0 0:25 1

2
664

3
775:

For individual 1: E(d1 j s2
d)¼ 0, Var(d1)¼ s2

d, and d1 j s2
d

� N(0, s2
d).

For individual 2: Eðd2jd1;s
2
dÞ ¼ Eðd2Þ1 ½d1�½1=s2

d �½0� ¼ 0,
Varðd2jd1;s

2
dÞ ¼ Varðd2Þ � ½0�½1=s2

d �½0� and d2 j d1, s2
d �

N(0, s2
d).

For individual 3:

Eðd3jd1; d2;s
2
dÞ ¼ Eðd3Þ1 ½d1 d2�

1
s2

d
0

0 1
s2

d

" #
0
0

� �
¼ 0;

Varðd3jd1; d2;s
2
dÞ¼Varðd3Þ � ½0 0�

1
s2

d
0

0 1
s2

d

2
4

3
5 0

0

� �
¼ s2

d

and

d3 j d1; d2;s
2
d � N ð0;s2

dÞ:

Finally, for individual 4:

Eðd4 j d1; d2; d3;s
2
dÞ ¼ Eðd4Þ1 ½d1 d2 d3�

1
s2

d
0 0

0 1
s2

d
0

0 0 1
s2

d

2
6664

3
7775

0

0
1
4 s2

d

2
64

3
75 ¼ 1

4
d3;
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TABLE 3

Example pedigree for sampling of dominance polygenic
effects where a 0 indicates that an individual has an

unknown father or mother

Individual Father Mother

1 0 0
2 0 0
3 1 2
4 1 2

Varðd4 j d1; d2; d3;s
2
dÞ ¼ Varðd4Þ � ½0 0

1

4
s2

d �
1

s
2
d

0 0

0 1
s

2
d

0

0 0 1
s

2
d

2
664

3
775

0
0

1
4 s

2
d

2
4

3
5 ¼ s

2
d � 1

16 s
2
d ¼ 15

16 s
2
d

and

d4 j d1; d2; d3;s
2
d � N

1

4
d3;

15

16
s2

d

� �
:

For individual 4, both mean and variance are shifted
(reduced) because individuals 3 and 4 are full sibs.
The following weights for reduction in mean are,
consequently, obtained for individual 4: w(4, 1) ¼ 0,
w(4, 2) ¼ 0, and w(4, 3) ¼ 0.25. Using Equation 7, we
obtain W(4) ¼ 0.25d3. Hence, instead of drawing d
from MVN(0, Ds2

d), we make use of the following
univariate normal distributions: d1 j s2

d � N(0, s2
d),

d2 j d1, s2
d � N(0, s2

d), d3 j d1, d2, s2
d � N(0, s2

d)
andd4 j d1; d2; d3;s

2
d � N 1

4 d3;
15
16 s2

d

	 

.

Inbreeding affects calculation of additive weights as
follows. In Table 4, an example pedigree that includes a
loop is shown; this will cause pedigree member 6 to be
inbred. The corresponding additive relationship matrix is

A ¼

1 0 0 0:5 0 0:25
0 1 0 0:5 0:5 0:5
0 0 1 0 0:5 0:25

0:5 0:5 0 1 0:25 0:625
0 0:5 0:5 0:25 1 0:625

0:25 0:5 0:25 0:625 0:625 1:125

2
6666664

3
7777775
:

When obtaining realization from additive polygenic
effects of pedigree members 1 to 5, our proposed method
and the standard factorization method (e.g., Lin 1999)
give exactly the same mean and variance used in the
normal univariate distributions as a1, a2, a3 � N(0, s2

a),

TABLE 4

Example pedigree for sampling of additive polygenic effects
where a 0 indicates that an individual has an

unknown father or mother

Individual Father Mother

1 0 0
2 0 0
3 0 0
4 1 2
5 3 2
6 4 5

a4 � N
a1 1 a2

2
;
s2

a

2

� �

and

a5 � N
a3 1 a2

2
;
s2

a

2

� �
:

However, for pedigree member 6, the standard factor-
ization method yields

a6 � N
a4 1 a5

2
;
s2

a

2

� �
:

Our proposed method, on the other hand, gives

Eða6 j a1; a2; a3; a4; a5;s
2
aÞ ¼ Eða6Þ1 ½a1 a2 a3 a4 a5�

1 0 0 0:5 0

0 1 0 0:5 0:5

0 0 1 0 0:5

0:5 0:5 0 1 0:25

0 0:5 0:5 0:25 1

2
6666664

3
7777775

s2
a

0
BBBBBB@

1
CCCCCCA

�1 0:25

0:5

0:25

0:625

0:625

2
6666664

3
7777775

s2
a ¼

a4

2
1

a5

2
;

Varða6 j a1; a2; a3; a4; a5;s
2
aÞ ¼ Varða6Þ � ½0:25 0:5 0:25 0:625 0:625�

1 0 0 0:5 0

0 1 0 0:5 0:5

0 0 1 0 0:5

0:5 0:5 0 1 0:25

0 0:5 0:5 0:25 1

2
6666664

3
7777775

�1 0:25

0:5

0:25

0:625

0:625

2
6666664

3
7777775

s2
a ¼

3s2
a

8
:

Using our proposed method, for individual 6, we make
use of the following normal univariate distribution:

a6 j a1; a2; a3; a4; a5;s
2
a � N

a4 1 a5

2
;
3s2

a

8

� �
:

Consequently, the weight for the variance component
differs between our method (3/8) and the standard
method (1/2); this will cause a6 to be sampled from an
incorrect distribution if the standard method is applied
to the current pedigree.
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