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Abstract
Purpose—To compare the performance of automated diabetic retinopathy (DR) detection, using
the algorithm that won the 2009 Retinopathy Online Challenge Competition in 2009,
(‘Challenge2009’) against that of the one currently used in EyeCheck, a large computer-aided early
DR detection project.

Design—Evaluation of diagnostic test or technology.

Participants—Fundus photographic sets, consisting of two fundus images from each eye, were
evaluated from 16,670 patient visits of 16,670 people with diabetes who had not previously been
diagnosed with DR.

Methods—The fundus photographic set from each visit was analyzed by a single retinal expert;
793 of the 16,770 sets were classified as containing more than minimal DR (threshold for referral).
The outcomes of the two algorithmic detectors were applied separately to the dataset and compared
by standard statistical measures.

Main Outcome Measures—The area under the Receiver Operating Characteristic curve (AUC),
a measure of the sensitivity and specificity of DR detection.

Results—Agreement was high, and exams containing more than minimal DR were detected with
an AUC of 0.839 by the ‘Eyecheck’ algorithm and an AUC of 0.821 for ‘Challenge2009’, a
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statistically non-significant difference (z-score 1.91). If either of the algorithms detected DR in
combination, AUC for detection was 0.86, the same as the theoretically expected maximum. At 90%
sensitivity, the specificity of the ‘EyeCheck’ algorithm was 47.7% and the ‘Challenge2009’
algorithm, 43.6%.

Conclusions—DR detection algorithms appear to be maturing, and further improvements in
detection performance cannot be differentiated from best clinical practices, because the performance
of competitive algorithm development has now reached the human intra-reader variability limit.
Additional validation studies on larger, well-defined, but more diverse populations of patients with
diabetes are urgently needed, anticipating cost-effective early detection of DR in millions of people
with diabetes to triage those patients who need further care at a time when they have early rather
than advanced DR.

Introduction
Diabetic retinopathy (DR) is the most common cause of blindness in the working population
of the United States and of the European Union. 1. Early detection (‘screening’) and timely
treatment have been shown to prevent visual loss and blindness in patients with retinal
complications of diabetes.2–4 In the next decade, projections for the United States are that the
average age will increase, the number of people with diabetes in each age category will increase,
and there will be an undersupply of qualified eye care providers, at least in the near-term5. This
“perfect storm” of healthcare trends will challenge the public health capacity to care for both
patients with DR and people with diabetes at risk for this complication. 6 If the previous
scenario plays out, it will be necessary to either screen (perform early detection on) large
numbers of people with diabetes for DR, ration access to eyecare, or both.

Several European countries have successfully instigated diabetic retinopathy early detection
programs using digital photography and reading of the images by human experts in their health
care systems. In the United Kingdom 1.7 million people with diabetes were screened for
diabetic retinopathy in 2007–2008. 7 In the Netherlands, over 30,000 people with diabetes were
screened since 2001 in the same period through an early detection project called EyeCheck
(www.eyecheck.nl, last accessed March 7, 2010). 8 The United States (US) Department of
Veterans Affairs (VA) has deployed a successful photoscreening program in the VA medical
centers, through which 120,883 patients were screened in FY 2008. (A. Cavallerano, personal
communication)

Over the last decade, many computer image analysis methods based on image processing and
machine learning have been proposed to interpret digital photographs of the retina in order to
increase the efficiency of early detection of DR. 9–23 Few of these methods have been assessed
on a large-scale in a population with a low incidence of DR which would mimic screening
populations. 15, 24–25

We have continued to develop new approaches to improve the performance of our algorithms,
originally with good success. More recently, we have achieved only limited performance
improvements by making the algorithms more sophisticated. (Invest Ophthalmol Vis Sci 47
[Suppl]: ARVO E-Abstract 2735, 2008; Invest Ophthalmol Vis Sci 48 [Suppl]: ARVO E-
Abstract 3268, 2009)26. We expect that given the known intra- and inter-observer variability
in human readers, against which such algorithms are compared, small improvements in
performance, even though real, are less and less measurable. Another approach we chose to
maximize performance was the organization of a worldwide online DR detection algorithm
competition, the Retinopathy Online Challenge (http://roc.healthcare.uiowa.edu, last accessed
March 7, 2010), to allow investigators to compare their algorithms on a common dataset. The
Challenge’s intent was to allow the maximum number of research groups and individuals from
around the world to participate, and twenty-three groups were willing to participate. The final
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winners were announced recently, as discussed at a 2009 Association for Research in Vision
and Ophthalmology (ARVO) special interest group, and the methods and algorithms have been
accepted for publication27. As organizers, we recused our algorithm from participating in this
competition. The best performing algorithm in the Challenge was developed by Dr. Quellec,
then at INSERM 650 in Brest, France, which is termed ‘Challenge2009’ algorithm in this
paper21.

Before translation into clinical use, it is essential to know whether these algorithms approach,
or even surpass, the sensitivity and specificity of human detection of DR. This question cannot
be answered directly, as there exists no single sensitivity and specificity – these vary for
different readers, based on training, background and other factors. However, we can determine
whether the algorithms have performance comparable to a single or a small number of readers,
and we can also test whether they are mature, in other words, whether additional performance
improvement can be expected, or not. Our hypothesis is that DR detection algorithms are close
to the sensitivity and specificity of a single human expert, and are mature, i.e., close to the
measurable performance limit.

The automated algorithms introduced above are optimized to recommend referral for a patient
with any form of DR to an ophthalmologist, and they were optimized to detect early DR,
because in our opinion, this is the main burden. Nevertheless, they could be modified to
diagnose vision threatening DR, i.e., detect those patients with significant non proliferative
DR, extensive CSME, or any form of proliferative DR. However, this category is small in
existing – but not newly started - early detection programs. In addition, the algorithms were
limited to detection of so-called red lesions only (microaneurysms and small hemorrhages), to
make the comparison more valid, though we have previously designed and evaluated systems
that also detect exudates and cotton-wool spots26, 28(Invest Ophthalmol Vis Sci 47 [Suppl]:
ARVO E-Abstract 2735, 2008). The automated algorithms are thus optimized to recommend
referral for a patient with any form of DR to an ophthalmologist29.

To test this hypothesis, we compared our algorithm26 (‘EyeCheck’) to an independently
derived one, (‘Challenge2009’ algorithm), on the same large single reader dataset of people
with diabetes who were previously known not to have DR8, 15.

Methods
Study population

The study was performed according to the tenets of the Declaration of Helsinki, and
Institutional Review Board, (IRB), approval was obtained. The researchers had access only to
the de-identified images and their original diagnoses, and the study was Health Insurance
Portability and Accountability Act (HIPAA) compliant. Because of the retrospective nature of
the study and de-identification, informed consent was judged not to be necessary by the IRB.
We retrospectively selected 16670 first time visits (four images, one centered on the disc and
one on the fovea for each eye) from 16670 people with diabetes who were previously not known
to have DR, (66,680 color retinal images). These images came from the EyeCheck project for
online early detection of DR in the Netherlands (www.eyecheck.nl)8. The exams were read by
one of three retinal fellowship trained ophthalmologists utilizing a strict protocol for the
presence or absence of more than minimal DR8, 15, the referral threshold for DR, as well as
for sufficient quality. If no more than minimal DR was found, exams were also evaluated for
obvious non-DR abnormalities.
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Imaging Protocol
As published in detail elsewhere, patients were photographed with “non-mydriatic” digital
retinal cameras by trained technicians, at 10 different sites, using either the Topcon NW 100,
the Topcon NW 200 (Topcon, Tokyo, Japan), or the Canon CR5-45NM (Topcon, Tokyo,
Japan) cameras8. Across sites, four different camera settings were used: 640×480 pixels and
45° field of view (FOV), 768×576 pixels and 35° FOV, 1,792×1,184 pixels and 35° FOV or
2,048×1,536 pixels and 35° FOV. Images were JPEG compressed at the minimum compression
setting available, resulting in image files of approximately 0.15 to 0.5 MB. After automatic
cropping of the black border, all retinal images were automatically resampled to 640×640
pixels.

Training the algorithms on the same training dataset
Both algorithms were applied to all four retinal fundus images. Optimal algorithm performance
is reached when they are tuned to the image acquisition protocol(s) used in the early detection
programs. To exclude any potential influence on performance from the training data, we used
the same training data for both algorithms. We used one hundred images with red lesions
segmented manually by two retinal specialists, these images were also from the EyeCheck
project, but were not in the dataset used for testing. Fifty-five of these images contained a total
of 852 red lesions, consisting of 36,379 pixels for training.

Brief descriptions of the algorithms
For a better understanding of how the algorithms work, brief descriptions are given here, and
for more detail, the reader is referred to the original publications15–16, 26, 28, 30–39 (Abramoff
MD, Staal JJ, Suttorp MS, Polak BCP, Viergever MA. Low level screening of exsudates and
haemorraghes in background diabetic retinopathy. First Computer Aided Fundus Image
Analysis Conference. Aarhus, Denmark, May 2000). Our original algorithm, (‘EyeCheck’
algorithm), first detects all pixels that appear like they might be in a red lesion based on pixel
feature classification. Clusters of these candidate pixels are clustered in candidate lesions, and
features are then extracted from each candidate lesion. These are processed with a kNN
classifier in order to assign it a probability and indicating the likelihood that it is a red lesion.
37 We previously published this algorithm’s performance on a dataset obtained from 7,689
retinal exams as part of a complete DR screening system, obtaining an area under the ROC
curve (AUC) of 0.8415. More recently, we were able to obtain a performance of AUC=0.88 on
a set of 15,000 similar exams26.

The ‘Challenge2009’ algorithm in this study was developed by Dr. Quellec, et al., then at
Inserm U650, in Brest University Hospital in France, and now at Iowa. The algorithm uses a
parametric template defined for microaneurysms. Candidate lesions are then searched for in
an adapted wavelet domain, where the classification performance of template matching is
found optimal. Based on the distance to the parametric model, a probability is assigned to each
candidate lesion, indicating the likelihood that it is a microaneurysm. A sensitivity and a
positive predictive value of 89% were reported for the detection of microaneurysms in 120
retinal images of several imaging modalities21. Unlike the ‘EyeCheck’ algorithm, the
‘Challenge2009’ algorithm was designed to detect microaneurysms only, although some other
red lesions such as pinpoint hemorrhages can be detected.

Both of these algorithms calculate a DR risk estimation for an exam consisting of four images
within minutes on a standard desktop personal computer.

The ‘EyeCheck’ algorithm is capable of detecting exudates and cotton-wool spots, though this
did not result in a substantial performance improvement26, 28. Because the ‘Challenge2009’
algorithm cannot detect these bright lesions, we switched detection of exudates and cotton-
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wool spots off in the ‘EyeCheck’ algorithm in this study for comparison purposes. The
‘EyeCheck’ algorithm is also capable of discarding images of insufficient quality26, 32.
Because the ‘Challenge2009’ does not have an image quality component, only images of
sufficient quality, as determined by the first reader, were used in this study.

Data Analysis
There is a lack of consensus in the scientific literature on measuring reader agreement, and
limited guidance on comparing algorithms to human readers40. Therefore, we used two
commonly used approaches. For both algorithms, a probability was assigned to each extracted
candidate lesion, reflecting its likelihood of being a microaneurysm or red lesion16. While
varying the threshold on the maximum probability for normal/abnormal cutoff, the sensitivity
and specificity of each method was compared to the human expert as a standard. The resulting
multiple sensitivity/specificity pairs are used to create a receiver operating characteristic (ROC)
curve. The ROC curve shows the sensitivity and specificity at different thresholds, and the
system can be set for a desired sensitivity/specificity pair by simply selecting a desired
threshold. The Area Under the ROC Curve (AUC) is considered the most comprehensive
measure of system performance, where an area of 1 has sensitivity=specificity=1 and represents
perfect detection, and an area of 0.5 represents a system that essentially performs a coin
toss41 The level of agreement between the two detection methods was also assessed by a κ
(kappa) statistic for several sensitivity settings 42.

Calculating the theoretical limit of AUC for a given dataset
Early in our analysis we realized that by using a single human expert as our reference standard,
would implicitly incorporate an error rate related to the human κ statistic. Therefore we
calculated the theoretical limit for AUC based on the κ statistic. In a previous study, we
determined the intra- and inter- observer variability of three experts reading the photographs
by analyzing the performance of three retinal specialists15, compared to each expert’s first
reading, on a different sample of 500 exams from the EyeCheck dataset. These experts
evaluated the 500 exams for more than minimal DR. We found their sensitivity/specificity to
be 73%/89%, 62%/84%, and 85%/89%, respectively, while their κ were 0.71, 0.55, and 0.41
respectively, and their average κ thus 0.55. This κ =0.55 is within the range of κ (0.34 to 0.63)
in two other studies on interobserver agreement of reading images for DR 43–44. Assume a
perfect algorithm, with zero false negatives and zero false positives, compared to the true state
of disease in the patients. Also assume that this algorithm reads 500 exams of which 50 truly
have more than minimal DR (a fairly typical 10% of cases). By definition, this algorithm always
gives the correct read, and therefore has an AUC of 1.0 (compared to the true state of disease)
on this dataset.

Assume human readers with a κ statistic of 0.55 (see above15). These human readers, when
reading the same dataset of 500 exams, will make errors compared to the true state of the
disease, according to their κ. The resulting number of errors y can be calculated from κ and the
prevalence of true disease, P, in the dataset, as y = n(1 − A)(1 − κ), with A = P2 + (1 − P)2 and
n=500 the size of the dataset45. Under the above assumptions the human reader will make
y=40 errors (total of false positives and false negatives).

The performance of any algorithm can only be compared to the human reads, because we do
not have access to the true state of disease in the dataset. We only have access to the human
reads, which is erroneous to some degree as explained, but which has to be the ‘reference
dataset’. In the real world, there is no manner in which we can know better what the ‘true state
of disease’ is, than this ‘reference dataset’.
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Potential for Combining Both Algorithms
If both algorithms achieve a similar performance in terms of AUC, but produce different
outcomes as measured by κ, the algorithms are complementary. On the other hand, if they
produce similar outcomes, then we would simply use the method leading to the highest
performance. We combined the output of the two algorithms, by selecting the lesion candidates
that were detected by at least one of the two methods (“OR” combination), which is expected
to lead to a system that is more sensitive than either, but at the same specificity26

Results
A single reader identified 690 out of the 16,670 subjects in the dataset to have one or more
images of insufficient quality, and found 793 of 15980 subjects with sufficient quality to have
more than minimal DR on one exam. Thus, the lower bound of the prevalence of more than
minimal DR in this population, assuming none of the patients with insufficient quality images
had DR, was 4.7%, while the upper bound, assuming all patients with insufficient quality
images had DR, was 8.9%. Only the 16,670 exams of the subjects with sufficient quality images
were used as the dataset to compare the algorithms. The reading by the single reader was used
as the ‘reference standard’ for this study to evaluate the performance of the two algorithms.
The percentage of more than minimal DR was low because some patients were referred not
for DR but for other abnormalities. In the dataset, 8,192/16,670 (51.2%) were women, the
average age was 71 years ± standard deviation (SD) 7.4 years, and the average HbA1c within
3 months of the exam was 6.78% ± SD 1.34%.

Examples of images with more than minimal DR are shown in Figure 1, and the locations
where the ‘EyeCheck’ algorithm and the ‘Challenge2009’ algorithm, or their combination,
found microaneurysms are indicated for comparison. ROC curves obtained for ‘EyeCheck’
and ‘Challenge2009’ algorithms are shown in Figure 2; the AUC for the ‘EyeCheck’ algorithm
was 0.839, and for the ‘Challenge2009’ algorithm, 0.821, as presented in Table 1. The pairwise
z scores of the differences in AUC between these are reported in Table 2, showing that there
was no significant performance difference between ‘EyeCheck’ and ‘Challenge2009’. At 90%
sensitivity, the specificity of the algorithms for ‘EyeCheck’ was 47.7% and for
‘Challenge2009’, 43.6%.

In order to better contrast these results to human performance and inter-reader variability we
calculated the κ statistic of agreement between the ‘EyeCheck’ algorithm and ‘Challenge2009’
algorithm for three different sensitivity settings, as presented in Table 3. At a sensitivity setting
of 83.7% for each algorithm, for example, the κ statistic was 0.304. At this sensitivity setting
both algorithms correspondingly missed 129/793 abnormal exams (false negatives); 62/793
were missed by both algorithms, 67/793 by ‘EyeCheck’ but not by ‘Challenge2009’, and
67/793 by ‘Challenge2009’ but not by ‘EyeCheck’. This difference in output shows that these
algorithms are truly different in how they detect DR. The combination of both algorithms (OR
fusion) gave an AUC of 0.86, which was significantly larger than either the isolated ‘EyeCheck’
or ‘Challenge2009’ algorithm, see Table 2 and Figure 2. At a sensitivity setting of 90%, the
specificity of the combined algorithm (OR fusion) was 54.7%.

As noted in the Methods, we calculated the performance AUC limit achievable for an algorithm
on this dataset. We based this performance limit on the average κ statistic 0.55 for three human
readers who had examined all images (not in this study), of the exams of 500 people with
diabetes from the ‘EyeCheck’ project, and the P (prevalence of true disease) =4.7%. The AUC
limit given these numbers is 0.86 for a perfect algorithm. Any AUC over 0.86 is thus not
meaningful, and it is not possible to measure any performance improvement over this AUC on
this dataset with these expert readings.
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Discussion
These results show that the performance of the independently derived ‘Challenge2009’ (AUC
0.82) was not different from our ‘EyeCheck’ algorithm (AUC 0.84) when tested on the same
dataset. AUC of each of these algorithms and for the combination of both (AUC 0.86) is now
close to or at the mathematical limit of detection for this dataset. Given that equal AUC was
reached by two totally independently developed algorithms and this AUC is close to the
theoretical limit, makes it unlikely that a potential third algorithm can improve on this
performance. As noted in the Methods, we calculated the performance AUC limit achievable
for an algorithm on this dataset. We based this performance limit on the average κ statistic 0.55
for three human readers who had examined all images (not in this study), of 500 people with
diabetes from the ‘EyeCheck’ project, and the P (prevalence of true disease) = 4.4%. The AUC
limit given these numbers was 0.86 (for a perfect algorithm). Any AUC over 0.86 is thus not
meaningful, and it is not possible to measure any performance improvement over this AUC.

Though the algorithms led to similar results they are clearly unique and do not produce the
same outcomes at the patient level, as the algorithms’ κ statistic in Table 3 shows. Combining
both methods therefore led to small but significant increases in performance over either system
alone For example, at a sensitivity setting of 90%, the combined algorithm had a specificity of
54.7%, while the individual algorithms achieved either 47.7% (‘EyeCheck’ algorithm) or
43.6% (‘Challenge2009’ algorithm).

The current “best practices” standard for the evaluation of DR is seven-field stereo fundus
photography read by trained readers in accordance with the Early Treatment Diabetic
Retinopathy Study (ETDRS).46 However, no such “best practice” standard has ever been
available for large populations, which would allow it to be used to evaluate the performance
of an automatic detection system.15 In most large-scale screening systems, only a single
expert’s reading is available for screened images, as is the case for the patient’s exams in this
study, and this establishes a statistical limit of measure of performance15, 24–25.

We believe that for the anticipated use of an automated system, for triage, either online, or
incorporated into the fundus camera, a high sensitivity is a safety issue, and more important,
than a high specificity, which is an efficiency issue. Therefore if we adjust the sensitivity of
the combined algorithm to 90% which is higher than the 73% or 62% sensitivity of the human
readers, we retain a specificity of 54.7%, lower than the 89% or 84% of the human experts.
Based on achieved performance, the algorithm would miss fewer patients with DR but increase
the number of false positive patients. Methods to increase the specificity might include human
review of all positives – 10% of all exams, a reduction of 90% compared to human review of
all exams.

In the US, the impending limitation in the availability of eye care providers coupled with
demographically-driven increases in age and the number of people with diabetes are starting
to exceed the capacity to take care of this population. The Centers for Disease Control and
Prevention indicate that physician undersupply will reach 20% by 201547–48. U.S. eye care
providers only examine about 50% of the 23 million people with diabetes. 6 In order to meet
an examination rate of 90% rather than the current 50%, would required an estimated additional
10 million annual patient visits. Such a goal would tax the limited resources available for eye
care greatly, a problem that would be aggravated with increasing numbers of people with
diabetes. Private and public health carriers, or state or federal authorities may then consider
alternative methods of screening for DR. We propose that the adoption of digital camera
technology with automated detection systems, such as presented in this study, may fulfill the
current and future needs of DR screening.
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The application of digital cameras and especially computer reading of these images for early
detection of rather than an office visit to an eye care provider remains controversial. 49 There
is a concern about quality of care, because a visit to an eye care provider involves more than
the evaluation of the retina for the presence of DR, and may result in detection of other
pathology, such as glaucoma or cataract. Some may be comfortable with digital photography
and reading of the images by eye care providers, but not by a computer algorithm. Nevertheless,
this study shows that computer algorithms appear to be at least as good as a human reader and
have potential to address the needs of the almost 50% of people of diabetes who currently do
not undergo regular any form of dilated eye exam.

This study has several limitations. First, we wanted to compare these two algorithms on DR
detection performance only, and therefore did not consider image quality when randomly
selecting 17,877 exams from as many people with diabetes (excluding the training dataset). In
practice, a complete automated system would have to ensure adequate image quality before
proceeding. We and others have previously tested and published image quality assessment
algorithms that perform at this level and can be used to exclude insufficient quality images
15, 32. In our experience, approximately 10% of patients have exams judged to be of insufficient
quality by the human reader, which leads to either re-imaging or referral to an eye care provider.

Second, the incidence of DR in this population (4.4%) is somewhat low and is most likely due
to excellent metabolic control reflected by an average HbA1C of 6.78% ±1.34%8. Other
populations with less optimal metabolic control are likely to have a higher incidence of DR,
and we have not yet been able to test the algorithms on such a dataset of meaningful size.

Third, and most important, a single reader assessment of more than minimal DR is not the
comparative (“gold”) standard, even though the examination of a single field retinal photograph
per eye has been shown to be sensitive and specific enough to detect early signs of DR. 29 This
can be seen from the relatively low κ between experts as reported, and this also limits our
ability to measure algorithm performance. We obtained this κ on expert reading from 500
exams, and not on the entire dataset, because rereading tens of thousands of images was not
yet feasible. However, κ =0.55 is within the range of κ (0.34 to 0.63) in a study on interobserver
agreement of reading images for DR in a recent paper in this journal 43, and also in an older
study on the same subject44. We are currently collecting a dataset according to a stricter imaging
standard with the goal of increasing the agreement between human readers, as measured by
κ. Especially for a system that may potentially be used as a triage system for large populations,
in which some images are never read by human experts, validation to an existing standard such
as the 7-field stereo photograph evaluation according to the ETDRS levels is important.

Fourth, as mentioned in the Introduction, the algorithms as tested were limited in that they only
detected early DR, because in our opinion, this is the main burden29. They are also limited in
that they detect red lesions only (microaneurysms and small hemorrhages), but not exudates,
cotton-wool spots, or isolated retinal thickening without associated exudates, though still
capable of detecting the vast majority of early DR 26, 28.

In summary, DR detection algorithms achieve comparable performance to a single retinal
expert reader and are close to mature, and further measurable improvements in detection
performance are unlikely. For translation into clinical practice sooner rather than later,
validation on well-defined populations of patients with diabetes, with variable metabolic
control and racial and ethnic diversity, are more urgent than further algorithm development.
We anticipate that automated systems based on algorithms such as discussed here, will allow
cost-effective early detection of DR in millions of people with diabetes, and allow triage of
those patients who need further care at a time when they have early rather than advanced DR.
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Figure 1.
Three images of patients with more than minimal diabetic retinopathy. In image (a), the
‘EyeCheck algorithm’ and the ‘Challenge2009 algorithm’ both agreed that the patient has more
than minimal diabetic retinopathy. In image (b) only the ‘EyeCheck algorithm’, and in (c) only
‘Challenge2009’ detected more than minimal diabetic retinopathy. Black circles indicate
lesions detected by both methods, blue circles lesions only detected by the ‘EyeCheck
algorithm’, and white circles indicate lesions only detected by the ‘Challenge2009 algorithm’.
Because the dataset is diverse in image size, resolution and field of view, these are different
for all three images.
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Figure 2.
Receiver Operating Characteristic curves for the ‘EyeCheck algorithm’ and the
‘Challenge2009 algorithm’, and their combination (indicated with ‘OR’).
Computer algorithms that detect diabetic retinopathy from retinal color images have reached
a performance comparable to retinal specialists, allowing cost-effective triage of millions of
people with diabetes currently not receiving standard of care eye exams.
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Table 1

Area under the Receiver Operating Characteristics Curve and standard error obtained for ‘EyeCheck’ and
‘Challenge2009’ algorithms and the combined algorithm.

EyeCheck Challenge2009 Combined algorithm

AUC 0.839 0.821 0.86

SE 0.0089 0.0092 0.0084

AUC=area under the receiver operating characteristics curve; SE=standard error
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Table 2

Z-test on the differences between Area under the Receiver Operating Characteristics Curve for the ‘EyeCheck’
and ‘Challenge2009’ algorithms and the combined algorithm.

EyeCheck Challenge2009 Combined algorithm

Algorithm 1 0 1.91 2.33

Algorithm 2 0 4.25

Combined algorithm 0

Bold italic characters indicate statistical difference with a 95% confidence level.
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Table 3

κ statistic of agreement between the ‘EyeCheck’ and ‘Challenge2009’ algorithms for specific sensitivity settings.

Sensitivity 61.7% 70.6% 83.7%

κ 0.374 0.343 0.304
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