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Abstract
We have shown previously that cruciferous vegetable constituent benzyl isothiocyanate (BITC)
suppresses viability of cultured MCF-7 and MDA-MB-231 human breast cancer cells and retards
mammary cancer development in MMTV-neu mice by causing apoptosis, but the mechanism of cell
death is not fully understood. We now demonstrate that while p53 is dispensable for BITC-induced
cell death, proapoptotic response to this promising chemopreventive agent is mediated by suppression
of X-linked inhibitor of apoptosis (XIAP) protein expression. The BITC treatment increased levels
of total and Ser15 phosphorylated p53 protein in MCF-7 cells, but the proapoptotic response to this
agent was maintained even after knockdown of the p53 protein level. Exposure of MCF-7 and MDA-
MB-231 cells to BITC resulted in a marked decrease in protein level of XIAP as early as 8-hours
post-treatment. Ectopic expression of XIAP conferred statistically significant protection against
BITC-mediated cytoplasmic histone-associated apoptotic DNA fragmentation in both cell lines.
Moreover, inhibition of MDA-MB-231 cell growth in vivo in female athymic mice by BITC
administration correlated with a modest but statistically significant decrease in XIAP protein level
in the tumor xenograft. The BITC treatment also resulted in induction as well as nuclear translocation
of survivin only in the MCF-7 cells. The BITC-induced apoptosis was modestly but statistically
significantly augmented by RNA interference of survivin in MCF-7 cells. In conclusion, the present
study provides novel insight into the molecular circuitry of BITC-induced apoptosis to indicate
suppression of XIAP expression as a critical mediator of this process.
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Introduction
Despite remarkable progress towards screening efforts and targeted therapies (1,2), breast
cancer continues to be a leading cause of mortality among women around the world (3,4). Risk
factors implicated in mammary carcinogenesis include family history, Li-Fraumeni syndrome,
atypical hyperplasia of the breast, late age at first full-term pregnancy, and early menarche and
late menopause (5–7). Because some of these risk factors are not easily modifiable, other
strategies to reduce mortality associated with this malignancy are attractive. This objective is
partially fulfilled with the advent of selective estrogen-receptor modulators such as tamoxifen
and raloxifene, but this approach is ineffective against estrogen receptor negative breast cancers
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(8–10). Moreover, long-term administration of selective estrogen-receptor modulators inherits
risk of severe side effects including increased risk of uterine cancer, thromboembolism, and
perimenopausal symptoms (8–10). Therefore, agents that are relatively safe but could offer
protection against mammary carcinogenesis regardless of the estrogen receptor status are
desirable. Dietary plants have attracted increasing momentum in recent years for the discovery
of potential cancer chemopreventive agents (11,12).

Benefit of a diet rich in cruciferous vegetables (e.g., broccoli, watercress, garden cress etc.) as
a modifier of the breast cancer risk can be appreciated by the results of population-based case-
control studies. A case-control study involving >300 breast cancer cases and matched controls
showed an inverse association between urinary levels of isothiocyanates (ITCs) as a biological
indicator of cruciferous vegetable intake and the risk of breast cancer (13). Broccoli
consumption was shown to be inversely correlated with the risk of mammary cancer in
premenopausal women in another population based case-control study (14). Antineoplastic
effect of cruciferous vegetables is ascribed to organic ITCs that occur naturally as thioglucoside
conjugates (15). Benzyl isothiocyanate (BITC) is one such compound that appears promising
for prevention of mammary cancer (16). For example, our own work has revealed that dietary
administration of 3 mmol BITC/kg diet inhibits mammary hyperplasia and carcinoma
incidence and/or burden in MMTV-neu mice without causing weight loss or any other side
effects (16). The BITC-mediated prevention of mammary cancer in MMTV-neu mice
correlated with suppression of cellular proliferation, increased apoptosis, and enhanced
infiltration of T cells in the carcinoma (16).

Previous studies including those from our laboratory have demonstrated that BITC treatment
effectively inhibits growth of cultured human breast cancer cells by causing apoptotic cell death
(17–20). Interestingly, a spontaneously immortalized non-tumorigenic human mammary
epithelial cell line (MCF-10A) is highly resistant to growth inhibition and apoptosis induction
by BITC in comparison with breast cancer cells (17). We also demonstrated that the molecular
circuitry of BITC-induced apoptosis in human breast cancer cells entails production of reactive
oxygen species due to inhibition of complex III of the mitochondrial respiratory chain leading
to c-Jun N-terminal kinase-dependent activation of multidomain proapoptotic protein Bax
(20). The present study builds on these observations and identifies molecular determinants of
BITC-induced apoptosis downstream of the reactive oxygen species production. Here, we
demonstrate that while p53 tumor suppressor is dispensable for BITC-induced cell death,
proapoptotic response to this promising dietary chemopreventive agent is mediated by
suppression of XIAP protein expression.

Materials and Methods
Reagents

BITC was purchased from LKT Laboratories. The RPMI 1640 medium and Minimum
Essential Media were purchased from Cellgro. Antibody against X-linked inhibitor of
apoptosis (XIAP) was from BD Biosciences; anti-survivin antibody was from Novus
Biologicals; anti-p53 antibody was from Calbiochem; antibodies against cIAP1 and p-p53
(Ser15) were from Cell Signaling Technology; and anti-actin antibody was from Sigma. The
p53 and survivin-targeted small interfering RNA (siRNA) were purchased from Santa Cruz
Biotechnology. A nonspecific control siRNA was from Qiagen. FuGENE6 transfection reagent
and a kit for quantification of cytoplasmic histone-associated apoptotic DNA fragmentation
were procured from Roche Applied Sciences.
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Cell lines
The MCF-7 and MDA-MB-231 cells were obtained from the American Type Culture
Collection and maintained as described by us previously (17,20). Cell line authentication was
performed by analysis of known genetic markers or response (e.g., expression of estrogen
receptor and p53 and estrogen-responsiveness). Stock solution of BITC was prepared in
dimethyl sulfoxide (DMSO) and an equal volume of DMSO (0.1%) was added to the controls.

Western blotting and detection of apoptosis
After treatment with DMSO (control) or the desired concentrations of BITC for specified time
intervals, floating and attached cells were collected and lysed as described by us previously
(21). Cytosolic and nuclear fractions from control and BITC-treated cells were prepared using
a kit from Pierce. Immunoblotting was done as previously described by us (17,20,21).
Apoptosis induction was measured by analysis of cytoplasmic histone-associated DNA
fragmentation (22).

RNA interference
The MDA-MB-231 (5×104) and MCF-7 cells (1.5×105) were seeded in 6-well plates and
transfected at ~50% confluency with 100 nmol/L of p53- or survivin-targeted siRNA using
Oligofectamine. Twenty-four hours after transfection, the cells were treated for 24 h with either
DMSO (control) or 5 µmol/L BITC. Subsequently, the cells were collected and processed for
immunoblotting and measurement for cytoplasmic histone-associated DNA fragmentation.

Ectopic expression of XIAP by transient transfection
The MDA-MB-231 (5×104) and MCF-7 cells (1.5×105) were transiently transfected at ~50%
confluency with the empty pcDNA3.1 vector or pcDNA3.1 encoding for XIAP (Addgene)
using FuGENE6 transfection reagent. Twenty-four hours after transfection, the cells were
treated with DMSO (control) or BITC for specified time period. Cells were collected and
processed for immunoblotting and measurement for apoptosis.

Immunohistochemical analysis of XIAP expression in MDA-MB-231 xenografts
We have shown previously that BITC administration retards growth of MDA-MB-231 cells
implanted in female athymic mice (23). We used tumor sections from the same study to
determine effect of BITC administration on expression of XIAP protein by
immunohistochemistry. Briefly, mice were randomized into two groups of five mice per group.
The mice were injected intraperitoneally with either vehicle or vehicle containing 7.5 µmol
BITC/mouse on Monday-Friday for 2 wk before tumor cell injection (23). Exponentially
growing MDA-MB-231 cells were suspended in phosphate-buffered saline (PBS) and mixed
in a 1:1 ratio with Matrigel. A 0.1-mL suspension containing 2.5×106 cells was injected
subcutaneously on flank of each mouse above the hind limb. A portion of the tumor tissue
removed from the control and BITC-treated mice was fixed in 10% neutral-buffered formalin,
dehydrated, embedded in paraffin, and sectioned at 4- to 5-µm thickness. Representative tumor
sections from control and BITC-treated mice were processed for H&E staining and
immunohistochemical analysis of XIAP expression as described previously by us for other
proteins (16,24,25). At least four non-overlapping representative images of each tumor section
from 5 mice of each group were captured and analyzed using Image ProPlus 5.0 software for
quantitation of XIAP expression.

Reverse transcription-PCR
Total RNA from MCF-7 and MDA-MB-231 cells treated for 16 h with DMSO (control) or
BITC (2.5 and 5.0 µmol/L) was extracted with the use of the RNeasy kit (Invitrogen). The
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cDNA was synthesized with the use of 1 µg of total RNA using SuperScript III reverse
transcriptase (Invitrogen) with Oligo dT primer. PCR was done with specific primers
(survivin forward primer- 5’-AGGACGGCCCTTCTTGGAGG-3’; survivin reverse primer-
5’-CTTTTTATGTTCCTCTATGGGGTC-3’) with the use of the following amplification
conditions; 94°C 2 min, 40 cycles at 94°C for 15 s, at 60°C for 20 s, and at 68°C for 15 s.
Human GAPDH was used as a control as in our previous studies (26).

Immunocytochemical localization of survivin
The MCF-7 cells were cultured on coverslips, and treated with DMSO (control) or 5 µmol/L
BITC for 16 h. The cells were treated with 200 nmol/L MitoTracker Red at 37°C for 30 min
to stain mitochondria. After washing with PBS, the cells were fixed with 4% paraformaldehyde
and permeabilized using 0.1% Triton X-100. The cells were incubated with anti-survivin
antibody overnight at 4°C. The cells were then washed with PBS, incubated with Alexa Fluor
488-conjugated secondary antibody (1:2000 dilution, Molecular Probes) for 1 h at room
temperature. After washing, cells were stained with DAPI (10 ng/mL) for 5 min at room
temperature. The cells were visualized using a Leica DC300F fluorescence microscope.

Statistical analysis
Each experiment was repeated at least twice with triplicate measurements for quantitative
comparisons. Statistical significance of difference in measured variables between control and
treated groups was determined by t-test or one-way ANOVA. Difference was considered
significant at P<0.05.

Results
p53 tumor suppressor was dispensable in BITC-induced apoptosis

We have shown previously that BITC treatment causes apoptotic cell death in MCF-7 cell line,
which expresses wild-type p53 (17). In the present study we used the same cell line to test
whether BITC-induced apoptosis was influenced by the p53, which is a well-accepted
facilitator of apoptotic cell death by different stimuli (27). As can be seen in Fig. 1A, BITC
exposure caused a concentration- and time-dependent increase in the levels of total as well as
Ser15 phosphorylated p53. The Ser15 phosphorylation of p53 has been implicated in apoptosis
(27). Next, we utilized siRNA technology to directly test possible involvement of p53 in
regulation of BITC-induced apoptosis. Transient transfection of MCF-7 cells with a p53-
targeted siRNA resulted in complete silencing of the p53 protein expression (Fig. 1B).
Moreover, the BITC-mediated induction of p53 protein was abolished in MCF-7 cells
transfected with the p53-specific siRNA (Fig. 1B). However, enrichment of cytoplasmic
histone-associated apoptotic DNA fragmentation resulting from BITC exposure (5.0 µmol/L
for 24 h) over DMSO-treated control was comparable in MCF-7 cells transfected with the
control nonspecific siRNA and p53-targeted siRNA (Fig. 1C). Collectively, these results
indicated that the BITC-induced apoptosis was not influenced by the p53 status at least in the
MCF-7 cell line.

BITC treatment down-regulated expression of XIAP protein
Inhibitor of apoptosis (IAP) proteins, including cIAP1, XIAP and survivin, have emerged as
critical regulators of apoptotic cell death (28–30). We raised the question of whether the BITC-
induced apoptosis in breast cancer cells was accompanied by alterations in expression of IAP
family proteins. Level of cIAP1 protein was increased on BITC treatment in both MCF-7 and
MDA-MB-231 cell lines especially at the 5.0 µmol/L concentration, but this effect was not
sustainable (Fig. 2). For example, BITC-mediated induction of cIAP1 protein was nearly
completely abolished at the 24 h time point in the MCF-7 cell line. The XIAP protein expression
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was markedly decreased on treatment of MCF-7 and MDA-MB-231 cells with BITC at both
2.5 and 5.0 µmol/L concentrations. The BITC-mediated decline in XIAP protein level was
evident as early as 8 h after treatment, and this effect was maintained for the duration of the
experiment (24 h post-treatment) in both cell lines (Fig. 2). The BITC treatment elicited a cell-
line specific response on survivin protein expression (Fig. 2). The BITC treatment resulted in
up-regulation of survivin protein in the MCF-7 cells especially at the 16 and 24 h time points
(Fig. 2). The BITC-mediated induction of survivin in MCF-7 cells was preceded by ~40%
decrease in its level at the 8 h time point. On the other hand, the BITC treatment did not have
an appreciable effect on survivin protein level in the MDA-MB-231 cell line. Collectively,
these results indicated that BITC treatment caused a sustained decrease in level of XIAP protein
in both cell lines, and caused induction of survivin selectively in the MCF-7 cells.

Ectopic expression of XIAP conferred protection against BITC-induced apoptosis
Because BITC treatment exhibited most striking effect on XIAP protein expression in both
cell lines (Fig. 2), we designed experiments to determine functional significance of these
observations. Transient transfection of MCF-7 cells with a vector encoding for XIAP resulted
in about 2-fold increase in its protein level compared with empty-vector transfected cells (Fig.
3A). The BITC treatment (5.0 µmol/L for 24 h) caused a decrease in level of XIAP protein in
both empty-vector transfected MCF-7 cells as well as in XIAP overexpressing cells (Fig. 3A).
In addition, overexpression of XIAP conferred significant protection against BITC-induced
cytoplasmic histone-associated DNA fragmentation in MCF-7 cells (Fig. 3B). Statistically
significant inhibition of BITC-induced cytoplasmic histone-associated DNA fragmentation by
forced overexpression of XIAP was also observed in the MDA-MB-231 cell line (Fig. 3C,D).
These results indicated that XIAP was a target of BITC-induced apoptosis in breast cancer
cells.

BITC-mediated inhibition of MDA-MB-231 cell growth in vivo correlated with suppression of
XIAP expression in the tumor xenograft

We have shown previously that BITC administration significantly retards growth of MDA-
MB-231 cells implanted in female athymic mice without causing weight loss or any other side
effects (23). For example, 50 days after tumor cell injection the average tumor volume in
vehicle-treated control mice (1581 ± 240 mm3) was approximately 2.5- to 3-fold higher
compared with mice intraperitoneally administered with 2.5 and 7.5 µmol BITC, five times
per wk (23). In the present study, we used tumor sections from the same experiment to
determine if BITC-mediated growth inhibition of MDA-MB-231 cells in vivo was
accompanied by suppression of XIAP expression. Fig. 4 depicts H&E staining and
immunohistochemical analysis for XIAP expression in representative MDA-MB-231 tumor
section of a control mouse and a 7.5 µmol BITC-treated mouse. Tumors from BITC-treated
mice exhibited a modest but statistically significant decrease in XIAP protein expression
compared with control tumors (Fig. 4). These observations indicated that, similar to cultured
cells, BITC administration caused suppression of XIAP protein level in the MDA-MB-231
xenografts in vivo.

BITC treatment caused nuclear translocation of survivin in MCF-7 cells
Reverse transcription-PCR was performed to determine if the BITC-mediated induction of
survivin in MCF-7 cells (Fig. 2) was due to transcriptional up-regulation. As can be seen in
Fig. 5A, exposure of MCF-7 cells to 2.5 and 5.0 µmol/L BITC for 16 h resulted in a marked
increase in the levels of survivin mRNA. Consistent with the results of immunoblotting, BITC-
mediated increase in survivin mRNA was not observed in the MDA-MB-231 cells (Fig. 5A).

Checkpoint kinase 2 (Chk2)-dependent release of survivin from mitochondria has been shown
to counteract cell death in tumor cells induced by chemotherapeutic agents (31). We next asked
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whether BITC treatment affected survivin localization by activating Chk2. This was a strong
possibility in light of our previous findings demonstrating activation of Chk2 by sulforaphane,
a structural analogue of BITC (32). Initially we explored this possibility by determining the
effect of BITC treatment (2.5 and 5.0 µmol/L for 8, 16, and 24 h) on activating phosphorylation
of Chk2 (Thr68). Treatment of MCF-7 cells with 2.5 and 5.0 µmol/L BITC resulted in increased
Thr68 phosphorylation of Chk2 at 16 and 24 h time points (results not shown). We used
immunocytochemistry to determine localization of survivin in control (DMSO, 16 h) and
BITC-treated MCF-7 cells (5.0 µmol/L, 16 h). As shown in Fig. 5B, a small fraction of cells
exhibited mitochondrial localization of survivin in DMSO-treated control MCF-7 cells
(identified by an arrow) as judged by merging of the mitochondria-associated red fluorescence
and survivin-associated green fluorescence around DAPI-stained nuclei (blue color). Nuclear
localization of survivin was also observed in some DMSO-treated control MCF-7 cells.
Interestingly, BITC treatment resulted in a robust increase in nuclear as well as cytosolic levels
of survivin in comparison with DMSO-treated control (Fig. 5B). We confirmed these
observations by immunoblotting of survivin using isolated cytosolic and nuclear fractions
prepared from control (DMSO, 16 h) and BITC-treated MCF-7 cells (5.0 µmol/L, 16 h). In
agreement with the results of immunocytochemistry (Fig. 5B), the level of survivin protein
was increased in both cytosolic and nuclear fractions on treatment of MCF-7 cells with BITC
(Fig. 5C). The blots were stripped and reprobed with anti-poly-(ADP-ribose) polymerase
(PARP) and anti-α-tubulin antibodies to normalize for differences in protein loading as well
as to rule out cross-contamination of cytosolic and nuclear fractions (Fig. 5C). These results
indicated that BITC treatment caused an increase in cytosolic and nuclear levels of survivin in
MCF-7 cells.

Survivin knockdown modestly augmented BITC-induced apoptosis in MCF-7 cells
Next, we proceeded to experimentally test functional significance of survivin induction in
proapoptotic response to BITC using MCF-7 cells. The MDA-MB-231 cell line was included
as a negative control. Similar to untransfected cells (Fig. 2), exposure of nonspecific siRNA
transfected MCF-7 cells to 5.0 µmol/L BITC for 24 h resulted in about 3-fold increase in
survivin protein level compared with DMSO-treated control (Fig. 6A). The level of survivin
protein was decreased by >90% in MCF-7 cells transfected with a survivin-targeted siRNA
(Fig. 6A). Moreover, the BITC-mediated induction of survivin protein expression was nearly
completely abolished in survivin siRNA transfected cells. As shown in Fig. 6B, the cytoplasmic
histone-associated DNA fragmentation enrichment resulting from BITC exposure over
DMSO-treated control was modestly but statistically significantly greater in survivin silenced
cells in comparison with nonspecific siRNA transfected MCF-7 cells (Fig. 6B). On the other
hand, knockdown of survivin protein level (Fig. 6C) did not have an appreciable effect on
BITC-induced apoptosis in the MDA-MB-231 cell line (Fig. 6D). We conclude that induction
of survivin is marginally cytoprotective against BITC-mediated cell death in the MCF-7 cells.

Discussion
BITC is a highly promising cancer chemopreventive constituent of edible cruciferous
vegetables (e.g., garden cress) with inhibitory effect in various chemically-induced rodent
cancer models and transgenic mice prone to spontaneous cancer development (15,16,33–35).
Recent studies have provided convincing evidence to implicate apoptosis induction as the main
mechanism in cancer chemoprevention by BITC (16,35). For example, prevention of mammary
cancer development in MMTV-neu mice by dietary administration of BITC correlates with
increased apoptosis in carcinoma lesions (16). The main objective of the present study was to
gain insight into mechanism of BITC-induced apoptosis, which is not fully understood.
Intrinsic value of defining the mechanism of proapoptotic response to BITC can eventually be
appreciated during rational design of novel BITC-based preventive interventional regimens.
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Our initial inquiry focused on possible role of p53 in execution of BITC-induced apoptotic cell
death for two main reasons. First, the p53 tumor suppressor was shown to be essential for
apoptosis induction by phenethyl isothiocyanate, which is a close structural analogue of BITC
(36). Conversely, p53 has been shown to be a negative regulator of apoptosis induction by
BITC in human colon CCD-18Co cells (37). The present study reveals that p53 tumor
suppressor is dispensable for apoptosis induction by BITC because its knockdown has no
influence on proapoptotic response to BITC in MCF-7 cells. Lack of p53 dependence should
be viewed as a therapeutic advantage for BITC as loss of function mutation of this tumor
suppressor is quite frequent in human cancers (27).

The IAP family of proteins has emerged as critical regulator of apoptosis in response to different
stimuli, including death receptor activation, growth factor withdrawal, radiation, and genotoxic
insults (30,38,39). The IAPs play important roles in adaptive response to cellular stress,
differentiation, motility, and immune response (39). This family of proteins is characterized
by the presence of baculovirus IAP repeat (BIR) domains (40). Of the eight IAP members
identified to date, XIAP is the best characterized and most potent inhibitor of caspase-3 and
-7 (38). Anti-caspase activity of XIAP is attributed to its BIR domains; BIR3 domain inhibits
caspase-9 whereas the BIR2 linker region is implicated in inhibition of caspase-3 and -7 (38).
Moreover, XIAP overexpression correlates with poor prognosis in some (e.g., childhood acute
myelogenous leukemia and bladder cancer), but not all cancers (38,41,42). The present study
reveals that BITC exposure decreases protein level of XIAP in breast cancer cells. In addition,
the BITC-mediated inhibition of MDA-MB-231 cell growth in vivo is accompanied by
suppression of XIAP protein expression in the tumor xenograft (Fig. 4). The BITC-mediated
suppression of XIAP expression is not a cell-line specific response because BITC treatment
decreases protein level of XIAP in both MCF-7 and MDA-MB-231 cells (Fig. 2). Moreover,
RNA interference of XIAP confers statistically significant protection against BITC-mediated
DNA fragmentation in MCF-7 as well as in MDA-MB-231 cells (Fig. 3). We have shown
previously that the BITC treatment causes proteolytic cleavage (activation) of procaspase-3
and procaspase-9 in MDA-MB-231 cells and pharmacological inhibition of caspase-9
attenuates BITC-mediated apoptosis (17). It is possible that caspase activation by BITC is
facilitated by suppression of XIAP protein level.

Precise mechanism by which BITC treatment suppresses expression of XIAP protein is yet to
be determined, but several possibilities exist. One such possibility relates to the BITC-mediated
proteasomal degradation of XIAP, which is capable of auto-ubiquitination and can be stabilized
by inhibition of the proteasome (43,44). It is also plausible that BITC treatment inhibits
transcription of XIAP. Finally, BITC-mediated inhibition of XIAP translation is another
possibility deserving attention. Previous studies have shown that MDM2 physically interacts
with the internal ribosome entry segment (IRES) of the 5’-untranslated region of XIAP, and
positively regulates XIAP IRES activity (45). The XIAP IRES-dependent translation is
increased in cells transfected with MDM2 (45). However, further studies are needed to
systematically explore these possibilities.

Survivin is another IAP family member that contains a single BIR domain and an extended C-
terminal helical coiled-coil domain. However, unlike other IAPs, survivin is devoid of the
RING-finger domain (28,30,39). Recent studies have pointed towards important roles of
survivin in both cell cycle regulation and apoptosis control (46). Subcellular localization of
survivin in mitochondria seems important for its anti-apoptotic function (31,46,47). Survivin
expression is absent or low in most terminally differentiated normal tissues, but this protein is
overexpressed in different tumor types (46,47). Furthermore, survivin overexpression in
tumors correlates with clinical pathologic variables of the aggressive disease (46,48) and
confers treatment resistance in cancer cells (48). We found that BITC treatment results in
transcriptional up-regulation of survivin in MCF-7 cells, but not in the MDA-MB-231 cell line.
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While the mechanism behind cell-specific transcriptional up-regulation of survivin by BITC
treatment is not yet clear, silencing of survivin renders MCF-7 cells modestly more sensitive
to BITC-induced apoptosis. We conclude that survivin induction is marginally cytoprotective
against BITC-induced apoptosis, and this correlation is cell-specific.

In conclusion, we provide experimental evidence to demonstrate that the BITC-induced
apoptosis in human breast cancer cells is independent of p53, but mediated by suppression of
XIAP protein level irrespective of the estrogen receptor status. The BITC-mediated
suppression of XIAP is also observed in MDA-MB-231 xenograft in vivo. Accordingly, XIAP
expression may be a viable biomarker of BITC response.
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Fig. 1.
A, immunoblotting for total and phospho-(Ser15)-p53 using lysates from MCF-7 cells treated
with DMSO (control) or BITC (2.5 and 5.0 µmol/L) for the indicated time periods. B,
immunoblotting for p53 using lysates from MCF-7 cells transfected with a control nonspecific
siRNA or a p53-targeted siRNA, and treated for 24 h with DMSO (control) or 5.0 µmol/L
BITC. C, cytoplasmic histone-associated apoptotic DNA fragmentation in MCF-7 cells
transiently transfected with a control nonspecific siRNA or a p53-targeted siRNA, and treated
for 24 h with DMSO (control) or 5.0 µmol/L BITC). Columns, mean (n= 3); bars, SD.
*Significantly different (P<0.05) compared with nonspecific siRNA transfected cells treated
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with DMSO by one-way ANOVA followed by Bonferroni’s test. The results were consistent
in two independent experiments, and representative data from one such experiment are shown.
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Fig. 2.
Immunoblotting for cIAP1, XIAP, and survivin using lysates from MCF-7 and MDA-MB-231
cells treated with DMSO (control) or BITC (2.5 or 5.0 µmol/L) for the indicated time periods.
Numbers above bands represent densitometric quantitation relative to corresponding DMSO-
treated control. Immunoblotting for each protein was performed at least twice using
independently prepared lysates. Representative data from one such experiment are shown.
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Fig. 3.
Immunoblotting for XIAP protein using lysates from MCF-7 (A) and MDA-MB-231 cells
(C) transiently transfected with empty pcDNA3.1 vector or pcDNA3.1 vector encoding for
XIAP, and treated for 24 h with DMSO (control) or 5.0 µmol/L BITC. The numbers above the
immunoreactive bands represent change in protein level relative to empty vector-transfected
cells treated with DMSO (first lane). Cytoplasmic histone-associated apoptotic DNA
fragmentation in MCF-7 (B) and MDA-MB-231 cells (D) transiently transfected with empty
pcDNA3.1 vector or vector encoding for XIAP, and treated for 24 h with DMSO (control) or
5.0 µmol/L BITC. Columns, mean (n= 3); bars, SD. Significantly different (P<0.05) compared
with empty vector-transfected cells treated with DMSO (a), and empty vector-transfected cells
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treated with BITC (b) by one-way ANOVA followed by Bonferroni’s test. Comparable results
were observed in two independent experiments. Representative data from one such experiment
are shown.
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Fig. 4.
H&E staining and immunohistochemical analysis for XIAP expression in representative tumor
section of a control mouse and a mouse treated with 7.5 µmol BITC (magnification 400X).
Bar diagram shows quantitation of XIAP protein expression in tumors from control and BITC-
treated mice. At least four randomly selected fields on each tumor section from 5 different
mice of each group were scored for XIAP expression. Columns, mean (n= 5); bars, SD.
*Significantly different (P<0.05) compared with control by t-test.
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Fig. 5.
A, Reverse transcription-PCR for survivin and GAPDH (loading control) mRNA levels in
MCF-7 and MDA-MB-231 cells treated for 16 h with DMSO (control) or the indicated
concentrations of BITC. Number above band represents quantitation relative to corresponding
DMSO-treated control. B, immunocytochemical analysis for survivin localization in MCF-7
cells following 16 h treatment with DMSO (control) or 5.0 µmol/L BITC. Staining for survivin,
mitochondria, and nuclei is indicated by green, red and blue fluorescence, respectively. C,
immunoblotting for survivin using isolated cytosolic and nuclear fractions prepared from
MCF-7 cells following 16 h treatment with DMSO (control) or the indicated concentrations
of BITC. The blots were stripped and reprobed with anti-PARP and anti-α-tubulin antibodies.
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Fig. 6.
Immunoblotting for survivin using lysates from MCF-7 (A) and MDA-MB-231 cells (C)
transiently transfected with a control nonspecific siRNA or a survivin-specific siRNA, and
treated with DMSO (control) or 5.0 µmol/L M BITC for 24 h. Cytoplasmic histone-associated
DNA fragmentation in MCF-7 (B) and MDA-MB-231 cells (D) transiently transfected with a
control nonspecific siRNA or a survivin-specific siRNA, and treated with DMSO (control) or
5.0 µmol/L BITC for 24 h. Columns, mean (n= 3); bars, SD. Significantly different (P<0.05)
compared with control nonspecific siRNA transfected cells treated with DMSO (a), and control
nonspecific siRNA transfected cells treated with BITC (b) by one-way ANOVA followed by
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Bonferroni’s test. Results were consistent in two experiments, and representative data from
one such experiment are shown.
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