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Many see fruit flies as an annoy-
ance, invading our homes with a 

nagging persistence and efficiency. Yet 
from a scientific perspective, these tiny 
animals are a wonder of multisensory 
integration, capable of tracking frag-
mented odor plumes amidst turbulent 
winds and constantly varying visual con-
ditions. The peripheral olfactory, mecha-
nosensory, and visual systems of the fruit 
fly, Drosophila melanogaster, have been 
studied in great detail;1-4 however, the 
mechanisms by which fly brains inte-
grate information from multiple sensory 
modalities to facilitate robust odor track-
ing remain elusive. Our studies on olfac-
tory orientation by flying flies reveal that 
these animals do not simply follow their 
“nose”; rather, fruit flies require mecha-
nosensory and visual input to track odors 
in flight.5,6 Collectively, these results 
shed light on the neural circuits involved 
in odor localization by fruit flies in the 
wild and illuminate the elegant complex-
ity underlying a behavior to which the 
annoyed and amazed are familiar. 

We used a free-yaw magnetic tether flight 
simulator surrounded by a circular LED 
arena and equipped with a spatially discreet 
odor plume6,7 to determine the influence 
of multiple sensory stimuli on olfactory 
orientation: a hungry fly actively turning 
toward an attractive apple cider vinegar 
stimulus. When flies are positioned, for 
example, 90 degrees to the right of an odor 
plume they execute a series of left turns, or 
saccades, directed toward the plume5 (Fig. 
1A) indicating that these animals are capa-
ble of detecting and responding to a spatial 

odor gradient in flight. This seemingly 
simple task requires the perception of the 
odor gradient and a resulting asymmetri-
cal activation of thoracic steering muscles 
underlying saccades. However, it is cur-
rently unclear whether olfactory circuits 
influence steering behavior independently 
and parallel to other sensory modalities or 
if pre-motor neurons controlling olfactory 
mediated saccades receive multi-modal 
sensory input. 

Olfactory orientation begins when odor 
molecules bind to olfactory receptors in the 
dendritic membranes of olfactory receptor 
neurons (ORNs, Fig. 2A, orange) housed 
in sensilla on the surface of the 3rd anten-
nal segments (a3) and maxillary palps.8,9 

We found that eliminating olfactory 
input to, for example, the left antennal 
ORNs by occluding the left a3 with glue 
abolishes leftward olfactory orientation5  
(Fig. 1B). This suggests that antennal 
ORNs, rather than maxillary palp ORNs, 
are critical for detecting the spatial odor 
gradient. Although some ORNs project 
unilaterally9 and could theoretically pre-
serve gradient information, the ORNs 
thought to underlie behavioral responses 
to apple cider vinegar project bilaterally 
to both the left and right antennal lobes10 
suggesting that these ORNs might have 
an as yet uncharacterized capacity to relay 
gradient information to second order 
olfactory projection neurons (PNs). PNs 
innervate higher order olfactory process-
ing centers, namely the mushroom body 
(MB) and the lateral horn11 (LH, Fig. 2A, 
orange). However anatomical studies on 
Drosophila have not revealed robust con-
nections between these centers and pre-
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the a3s to mimic a passive wind stimulus  
(Fig. 2C-4) and trigger an ammc medi-
ated saccade (Fig. 2C-5). 

This hypothesis is perhaps not as specu-
lative as it may seem since similar systems 
exist in other insects.22,23 However, little 
is known about the actual motor neurons 
which arise from the Drosophila ammc, 
the muscles in the a2s, and the actual 
antennal movements in flight. Coupling 
of the olfactory and mechanosensory sys-
tems seems ethologically advantageous for 
a fly given that an odor source will gen-
erally be located upwind.24 Additionally, 
upwind flight is enhanced in the presence 
of an odor14 and both a headwind and 
attractive olfactory cues trigger increases 
in wing beat frequency and amplitude.25,26 

Most interesting, however, is that the ven-
tral LH is not only a site of olfactory and 
mechanosensory integration but might 
receive visual input as well.13 

Curiously, flies require visual feedback 
to localize an odor source in free flight27 

and consistent with this study and our 
previous results,6 we found that flies gen-
erally fail to direct saccades toward an 
attractive odor plume in the absence of 
panoramic visual feedback (Fig. 1D). We 
suggest that, despite their unknown polar-
ity,11 this dependence is due to a class of 
neurons in Drosophila that connect the 

and possibly through the subsequent acti-
vation of pre-motor interneurons arising 
in the ammc3,19,20 triggers directed sacca-
des (Fig. 2B-3). 

Likewise, we found that immobiliz-
ing the left JO abolishes leftward olfac-
tory orientation in the absence of wind5  
(Fig. 1C), suggesting that the olfactory 
system recruits the wind sensing mecha-
nosensory system to initiate olfactory 
driven saccades. We propose that the active 
olfactory recruitment of this system is 
mediated through a class of neurons found 
in the Drosophila brain which appear to 
connect the axon terminals of PNs in the 
ventral LH to possible regions of inter-
est in the ammc13 (Fig. 2A, maroon). We 
further believe the comparatively higher 
activation of the left ORNs and PNs, in 
response to an odor on the left (Fig. 2C-1) 
and through LH-ammc interneurons 
(Fig. 2C-2), triggers a leftward saccade 
mediated by the left ammc. However, the 
requirement of the JO ipsalateral to the 
odor stimulus suggests that asymmetri-
cal olfactory cues must activate first-order 
JO neurons to initiate saccades, possibly 
through asymmetrical activation of motor 
neurons arising from the ammc and ter-
minating in muscles in the a2s21 (Fig. 
2A, yellow, and Fig. 2C-3). We speculate 
that these muscles serve to actively rotate 

motor interneurons that relay information 
from the brain to the thoracic motor 
centers.12,13 This suggests that olfactory 
information follows an indirect route to 
influence flight behavior, a route possibly 
mapped by the peculiar requirement of 
the wind sensing mechanosensory system 
for olfactory orientation in flight.

Flying Drosophila readily fly upwind,14 
a behavior mediated through hundreds 
of stretch sensitive neurons housed in the 
second antennal segment (a2) known col-
lectively as the Johnston’s organ (JO).15,16 

JO neurons encode the rotation of a3 rela-
tive to a2 induced by external wind, grav-
ity and sound1,3,17 and project to defined 
stimulus specific regions of the anten-
nal motor and mechanosensory centers 
(ammc).18 Removing input to the left JO, 
for example, by immobilizing the left a3 
relative to a2, impairs upwind orienta-
tion to the left.16 Based on this study and 
existing neural models for wind sensation 
we speculate that wind mediated sacca-
des to the left are elicited by the passive 
clockwise rotation of the a3s by wind 
(Fig. 2B-1) and the resulting activation 
of zones C and E of the ammc ipsilateral 
and contralateral to the wind, respectively1  
(Fig. 2B-2). The requirement of the JO 
ipsilateral to a wind stimulus suggests that 
the activation of zone C by JO neurons 

Figure 1. Olfactory orientation in flight requires multisensory input. (A, top) In a free-yaw magnetic tether flight arena,7 flying flies were positioned 
with an oscillating vertical stripe 90º to the right (blue arrows) of a 20º apple cider vinegar plume (orange triangle). At time = 0, we switched on a 
high contrast visual panorama and recorded the subsequent turning behavior by the fly (data for A-C adapted from5). (A, bottom) Five representative 
flight trajectories, where color is used to distinguish between individuals, reveal flies direct saccades toward the plume. Occluding the left 3rd antennal 
segment with glue (B, top) abolishes leftward olfactory orientation (B, bottom). Immobilizing the left Johnston’s organ (JO) with glue (C, top) abolishes 
leftward olfactory orientation (C, bottom). When presented with a uniform visual panorama (D, top) at time = 0, instead of a high contrast visual 
panorama (A, top), flies fail to orient toward the odor plume (D, bottom). (experimental methods for D as in (A) and;5 visual stimulus as in6)
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idea that each sensory modality influences 
behavior independent of one another via 
separate and parallel descending tracts, 
our results are converging upon the notion 
that olfactory orientation, whether in the 
wild or in the kitchen, relies heavily on 
tightly integrated multi-modal reflexes.
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