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Adventitious roots are distinct from 
primary and lateral roots in that 

adventitious roots develop ectopically 
from aboveground organs. Whole-
genome microarrays in poplar provided 
the first glimpse into the gene networks 
that are remodeled in cells prior to the 
development of adventitious roots. In the 
first 24 hr after removal of stem cuttings, 
over one-half of the transcripts encoded 
in the genome showed evidence of dif-
ferential abundance in the cells that will 
eventually give rise to adventitious roots. 
Major processes that were regulated 
appear related to physiological adapta-
tion of the cutting to acute loss of water 
and nutrients as well as hormone signal-
ing. Comparative transcriptome analysis 
of genotypes that differ in their compe-
tence to form adventitious roots may be 
a generally useful strategy to identify 
genes that regulate adventitious rooting 
efficiency.

Roots can be divided into several catego-
ries depending on their origin and devel-
opmental history. Primary roots originate 
from the embryo in seeds, while lateral 
roots develop as branches of primary roots. 
Adventitious roots are distinct in that they 
develop ectopically from aboveground 
organs such as stems, often in situations 
where there is environmentally imposed 
stress. Research on adventitious rooting has 
a long history in woody perennial species 
that are clonally propagated for forestry 
and horticulture applications.1-3 Within 
the genus Populus there is evidence that 
genetic competence to form adventitious 
roots is ecologically and evolutionarily 
significant, perhaps as an alternative or 

supplement to seed propagation in ecosys-
tems where soil disturbance is frequent.4,5 
Identifying the genes that distinguish 
easy-to-root genotypes from difficult-to-
root genotypes therefore has many prac-
tical applications, and also promises new 
insights into how natural selection has 
sculpted variation in adventitious rooting. 
Some recent discoveries in Populus suggest 
it is feasible to identify genes that regulate 
adventitious rooting and also generate new 
insights into the genes and pathways that 
are remodeled in cells prior to adventitious 
root development.6

Microarrays derived from the reference 
genome sequence of Populus trichocarpa7 
are useful to glimpse the genes and path-
ways associated with adventitious rooting. 
Adventitious root primordia primarily 
arise from ray cells, pericycle or callus 
formed at the base of stem cuttings.1 In 
the initial 48 hr after removal of a stem 
cutting from a donor plant, prior to 
development of root primordia, the base 
of the cutting shows altered endogenous 
hormone pools—while auxin and ethyl-
ene levels are increased, cytokinin con-
tent is reduced.8-10 Whole-transcriptome 
monitoring in the base of stem cut-
tings revealed significant shifts during 
this same time period.6 By contrasting 
expression data from discrete sampling 
times (0–6 hr, 6–24 hr and 24–48 hr) a 
total of 15,134 transcripts (representing 
27% of the predicted gene models) were 
differentially regulated between 0 and 6 
hr; 20,111 (36%) between 6 and 24 hr, 
and 2,474 (4%) between 24 and 48 hr.

Individual genes annotated with roles in 
ethylene biosynthesis, auxin signaling and 
cytokinin signaling showed differential 
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significantly altered genes encoded for 
constituents of ribosomes with the most 
significantly reduced transcript related 
to the 60S ribosomal protein L14. In the 
ATP-dependent RNA helicase activity 
gene-set, all top ten transcripts encode 
DEAD/DEAH box (Asp-Glu-Ala-Asp/
His) helicases that unwind structured 
double-stranded RNA molecules or RNA-
protein complexes.15,16 The overall pattern 
of regulation may reflect high demand 
on translation machinery early after 
shoot excision that returns to steady-state  
at 24 hr. Transcriptome shifts between 24 
hr and 48 hr were comparatively modest 
relative to the earlier contrasts.

Whereas the patterns of transcript 
abundance shifts are complex, compari-
son of genotypes that differ in their com-
petence to form adventitious roots should 
aid in identifying the genes that regulate 
adventitious rooting efficiency. This strat-
egy was used to suggest a role for a tran-
scription factor in the cytokinin signaling 
pathway (the type-B response regulator 
PtRR13)6 in the competence of stem bases 
to form adventitious roots.
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