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Plants consist of distinct cell types dis-
tinguished by position, morphologi-

cal features and metabolic activities. We 
recently developed a method to extract 
cell-type specific mRNA populations by 
immunopurification of ribosome-associ-
ated mRNAs. Microarray profiles of 21 
cell-specific mRNA populations from 
seedling roots and shoots comprise the 
Arabidopsis Translatome dataset. This 
gene expression atlas provides a new tool 
for the study of cell-specific processes. 
Here we provide an example of how 
genes involved in a pathway limited to 
one or few cell-types can be further char-
acterized and new candidate genes can 
be predicted. Cells of the root endoder-
mis produce suberin as an inner barrier 
between the cortex and stele, whereas the 
shoot epidermal cells form cutin as a bar-
rier to the external environment. Both 
polymers consist of fatty acid derivates, 
and share biosynthetic origins. We use 
the Arabidopsis Translatome dataset to 
demonstrate the significant cell-specific 
expression patterns of genes involved in 
those biosynthetic processes and suggest 
new candidate genes in the biosynthesis 
of suberin and cutin.

Introduction

Plants consist of numerous specialized cell 
types with defined functions. For example, 
leaf mesophyll cells perform photosynthe-
sis, whereas phloem cells transport sugars. 
Some cell types establish barriers within an 
organ or to the external environment, such 
as the root endodermis and leaf epidermis, 

respectively. To obtain insight into the genes 
involved in cell-specific specialization and 
function, plant scientists have labored to 
isolate specific cell-types to observe the reg-
ulated expression of cell-specific mRNAs. 
The methods that enable this are based 
on mechanical separation (i.e., epidermal 
peels,1 phloem isolation2), laser microdis-
section of organs3-5 or fluorescence-activated 
sorting of GFP-marked protoplasts.6-10 
However, these methods may not enable 
monitoring of rapid responses to chemi-
cals or environmental cues. To success-
fully profile dynamic responses to hypoxia, 
we developed a non-invasive method to 
immunopurify polysome-bound mRNAs 
from specific cells by expressing a FLAG-
tagged ribosomal protein under control of 
cell- and region-specific promoters.11 This 
technique uses flash-frozen material to iso-
late the subset of cellular mRNAs associ-
ated with polysomes, the majority of which 
are likely to be undergoing translation. The 
profile of the ribosome-associate mRNAs 
or “translatome” is distinct from that of 
the transcriptome,12,13 because mRNA 
abundance and translation are regulated by 
distinct processes. Hence, translatome pro-
filing can provide a more precise readout of 
gene expression.

The Arabidopsis Translatome atlas 
can be used to study specific processes 
in one of the targeted cell types of con-
trol grown and hypoxia-treated seedlings. 
The data are accessible for individual 
genes via an eFP (electronic fluorescent 
pictograph) platform (efp.ucr.edu/).11,14 
This atlas of translatome profiles can be 
readily extended to the analysis of other 
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(1) the absolute signal value for a given 
mRNA, or mRNA abundance; (2) the 
fold enrichment of an mRNA in a cell 
type/population relative to non-overlap-
ping cell types or cell populations evalu-
ated for the same organ. The data can be 
displayed for individual genes, as shown 
for three endodermal and shoot epidermal-
enriched mRNAs (Fig. 1). The mRNAs 
enriched in specific cell types are likely to 
be involved in cell specific processes. By 
use of GO term annotations, we recog-
nized that mRNAs involved in suberin or 
cutin biosynthesis were significantly over-
represented in the endodermis (pSCR, i.e., 
peroxidase activity, adj. p-value 9.76E-09; 
lipid binding, 6.89E-03; fatty acid meta-
bolic process, 1.47E-09; lipid transport, 
3.17E-03; acetyl-CoA biosynthetic pro-
cess from pyruvate, 3.68E-03) and the 
shoot epidermis (pCER5, i.e., carboxy-
lesterase activity, 3.82E-09; fatty acid 
(omega-1)-hydroxylase activity, 7.15E-
03; lipid metabolic process, 4.60E-09; 
cuticle development, 2.91E-05; cellulose 
and pectin-containing cell wall modifi-
cation, 6.08E-03) (reviewed in ref. 11). 
This motivated us to further explore the 
cell-specific expression of known genes of 
suberin biosynthesis.

and unsubstituted fatty acids, as well as 
glycerol and ferulic acid.15 Suberin barriers 
differ in composition due to intricacies in 
the biosynthetic pathway that are not yet 
known in detail.17 Cutin contains similar 
monomers, but also displays variations in 
composition.16 Cuticular waxes are a third 
group of lipid polymers, produced in part 
by the monomer biosynthesis pathways 
common to cutin and suberin. Recent 
progress has been made in elucidation of 
single steps involved in oxygenated fatty 
acid synthesis, elongation and modifica-
tion through recognition of the participant 
enzymes. A number of genes have been 
associated with suberin and/or cutin bio-
synthesis by use of Arabidopsis mutants. 
Here, we use the Arabidopsis Translatome 
dataset to confirm the localized expression 
of genes involved in suberin and cutin bio-
synthesis and identify genes that are likely 
to be involved in lipid monomer biosyn-
thesis associated with production of these 
lipid biopolymers in the endodermis or 
epidermis of Arabidopsis.

The Arabidopsis Translatome dataset 
consists of 21 mRNA profiles including 
root and root tip endodermis (pSCR) and 
shoot epidermis (pCER5) mRNA popula-
tions. The dataset includes two readouts: 

transformable organisms or additional 
Arabidopsis cell types, such as the root 
pericycle and epidermis, cell types of the 
developing embryo, root, shoot and floral 
meristems and pollen. We demonstrate 
here how the Arabidopsis Translatome 
dataset can be used to study genes involved 
in the synthesis of lipid monomers that are 
precursors for the formation of the poly-
mers suberin and cutin by the root endo-
dermis and leaf epidermis, respectively.

Recent Advances in Suberin  
and Cutin Biosynthesis

Suberin and cutin are extracellular lipid 
polymers that provide barriers against 
water, ions and gases.15,16 While cutin is 
present in the outer layers of the leaves, 
suberin is present at the outside of the 
roots (rhizodermis), where it influences 
water uptake and provides protection 
from pathogen and insect attack. Suberin 
also forms within organs, such as the bor-
der between bundle sheath cells and vas-
culature in C4 leaves and the endodermis 
in roots, controlling water and ion flux 
between the cortex and the vasculature.

The suberin polymer is composed of 
oxygenated fatty acid derivatives, alcohols 

Figure 1. three genes involved in suberin and cutin biosynthesis and their mrna in translatomes of different cell populations of arabidopsis, visual-
ized via the eFP platform (efp.ucr.edu/). absolute signal values of transcripts in translatomes isolated from cell populations.
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potential candidate for this enzymatic 
step (Table 1).

Suberin and cutin are oligomers of 
fatty acids, esterified with either glycerol 
or ferulic acid. This oligomer formation 
requires the activity of acyl transferases 
(ACTs), such as acyl-CoA:glycerol-3-
phosphate acyltransferase (GPAT) and 
aliphatic suberin feruloyl transferase 
(ASFT). Arabidopsis contains nine puta-
tive GAPT and two putative ASFT 
genes. Of the GAPTs, four are involved 
in suberin and cutin synthesis (GAPT4,25 
GAPT5,33 GAPT6,28 GAPT8,25). GAPT3 
is also enriched among shoot epidermis 
mRNAs and could therefore be involved 
in cutin biosynthesis (Table 1). The 
recently described ASFT is involved in 
modification of suberin composition,31,34 
and is specifically expressed in root endo-
dermis (Table 1). A second ASFT candi-
date, At5g63560, is also slightly enriched 
in this cell type.11

Outlook

In addition to biosynthetic pathways, 
several other processes are required for 
the formation and deposition of suberin, 
including fatty acyl or wax exporters 
(ABC transporters, i.e., CER5, WBC11), 
extracellular lipid transfer proteins, and 
signaling components (i.e., WIN1). 
With the available dataset, confirmed 
and potential new candidates can be 
selected for further in-depth studies. 
The 260 endodermis-specific and the 
511 epidermis-specific genes identified 
in the Translatome atlas provide a large 
resource for the further exploration of 
genes associated with suberin and cutin 
synthesis, transport and deposition.11 
Of the 15 genes highly enriched in 
both mRNA populations, only 11 have 
assigned functions. The epidermal data 
is also likely to yield leads in wax bio-
synthesis. Furthermore, the 26 and 24 
transcription factors enriched in the root 
endodermis (pSCR) and shoot epidermis 
(pCER5), respectively, deserve examina-
tion in experiments that couple genetic, 
biochemical and enzymatic approaches. 
In conclusion, the highly cell-specific 
biosynthesis of lipid polymers provides 
one example of the data potential of the 
Arabidopsis Translatome atlas.

One major reaction in early suberin and 
cutin biosynthesis is the fatty acid elonga-
tion via a multi-enzyme complex (FAE).15 
The rate-limiting step of this enzyme 
complex is the β-ketoacyl-CoA synthase 
(KCS), encoded by a family of 21 genes 
in Arabidopsis. Of those, six are involved 
in suberin and cutin biosynthesis (KCS1,18 
KCS2,19,20 KCS6 (CUT1),21 KCS10 
(FDH),22 KCS18 (FAE1),23 KCS20,20). Of 
the remaining KCS genes, several show 
highly specific expression in either the 
root endodermis or the leaf epidermis, 
and are therefore potential targets for 
future studies (Table 1). Another enzyme 
of this complex is the β-ketoacyl-CoA 
reductase (KCR), encoded by two genes 
in Arabidopsis. Whereas KCR1 is essential 
for suberin and wax biosynthesis24 and is 
enriched in the root endodermis (Table 
1), KCR2 is neither essential nor found to 
be expressed in our dataset.

Following the elongation step, the fatty 
acids are hydroxylated at the ω-position 
by NADPH-dependent cytochrome P450 
monooxygenases of the CYP86 and CYP94 
families.15 Six of the 11 putative CYP86 
genes were found to modify suberin or 
cutin composition when knocked out in 
Arabidopsis, of which all have mRNAs 
specifically enriched in either the endoder-
mis or epidermis in the Translatome atlas 
(CYP86A1,25,26 CYP86A2,27 CYP86A4,28 
CYP86A8,29 CYP86B1/CYP86B2,30,31). 
These data affirm the cell-specific impor-
tance of CYP450 genes. The CYP94 gene 
family has only one out of six members, 
which is specific for the leaf epidermis, but 
has not yet been characterized in respect to 
fatty acid hydroxylation. Two additional 
CYP450 genes, CYP705A1 (At4g15330) 
and CYP714A2 (At5g24900) are enriched 
in the endodermal mRNA popula-
tion, and could be also involved in sub-
erin biosynthesis, while eight additional 
CYP450 genes are specifically enriched 
in the leaf epidermis (Table 1). One of 
those, CYP77A6 was recently found to be 
involved in cutin biosynthesis.28

An alternative pathway to modify 
very long chain fatty acids involves alco-
hol (ω-hydroxyacid) dehydrogenases and 
aldehyde (ω-oxo-acid) dehydrogenases.30 
The first enzyme of this pathway was 
characterized in Arabidopsis,32 but the 
second is unknown. Our data suggest a 
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Table 1. Summary of selected gene families associated with suberin and cutin biosynthesis—known members and potential new candidates

AGI ID Gene name Described function
Cell type 
enriched11

SLR R SCR 
 (endodermis)

SLR S CER 
 (epidermis)

3-ketoacyl CoA synthase

at1g01120 KCS1 cutin18 r endo/S epi 2.73 2.32

at1g04220 KCS2 (DAISY) suberin,19 cutin20 n.s. 0.97 0.88

at1g07720 KCS3 potential new target S epi 0.06 2.68

at1g25450 KCS5 potential new target S epi -0.16 2.47

at1g68530 KCS6 (CUT1, CER6) cutin21 n.s. 0.07 1.75

at2g16280 KCS9 potential new target S epi 0.85 2.46

at2g26250 KCS10 (FDH) cutin22 r endo 2.29 2.27

at2g46720 KCS13 (HIC) potential new target S epi 0.03 1.79

at4g34250 KCS16 potential new target S epi 0.27 2.15

at4g34510 KCS17 potential new target r endo 1.68 0.08

at5g04530 KCS19 potential new target S epi 0.04 2.98

at5g43760 KCS20 cutin20 n.s. 1.19 1.93

ketoacyl CoA reductase

at1g67730 KCR1 cutin, suberin24 r endo 1.71 1.58

long-chain acyl-CoA synthetases

at2g47240 LACS1 (CER8) cutin35 S epi 0.11 3.36

at1g49430 LACS2 cutin36 r endo 2.34 2.02

at1g64400 LACS3 potential new target r endo 1.55 1.81

fatty acid omega-hydroxylase

at5g58860 CYP86A1 (HORST) suberin26 r endo 2.33 -0.01

at4g00360 CYP86A2 (ATT1) cutin27 r endo/S epi 2.68 2.62

at1g01600 CYP86A4 cutin28 S epi 1.53 2.37

at2g45970 CYP86A8 (LCR) cutin29 r endo/S epi 1.97 2.65

at5g23190 CYP86B1 suberin30 r endo 2.71 -0.02

at5g08250 CYP86B2 suberin30 r endo 1.90 0.02

at5g63450 CYP94B1 potential new target S epi 0.79 2.04

other CYP450 enzymes

at4g15330 CYP705A1 potential new target r endo 1.94 0.34

at4g22710 CYP706A2 potential new target S epi -0.52 2.10

at2g34490 CYP710A2 potential new target S epi 0.15 2.52

at5g24900 CYP714A2 potential new target r endo 1.24 -0.12

at3g53280 CYP71B5 potential new target S epi 0.08 2.24

at2g26710 CYP734A1 potential new target S epi -0.19 2.54

at3g10570 CYP77A6 cutin28 S epi 0.07 1.82

at1g11600 CYP77B1 potential new target S epi -0.02 1.92

at5g09970 CYP78A7 potential new target S epi 0.13 1.31

at5g52320 CYP96A4 potential new target S epi -0.33 2.11

alcohol dehydrogenase

at1g72970 HTH cutin32 S epi 0.37 2.64

aldehyde dehydrogenase

at4g36250 ALDH potential new target S epi -0.15 2.47

glycerol-acyl-transferase

at4g01950 GPAT3 potential new target S epi 0.32 2.12

at1g01610 GPAT4 cutin25 r endo 3.48 2.88

SLr, mean signal log ratio of pairwise comparisons of a specific cell type (here: pScr or pcer5) to all other non-overlapping cell types of the 
same organ;11 n.s., not significant.
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Table 1. Summary of selected gene families associated with suberin and cutin biosynthesis—known members and potential new candidates

at3g11430 GPAT5 suberin33 r endo 2.80 -0.18

at2g38110 GPAT6 cutin28 r endo 3.01 0.41

at4g00400 GPAT8 cutin25 r endo/S epi 2.37 2.83

feruloyl-acyl-transferase

at5g41040 ASFT (ACT) suberin31, 34 r endo 3.43 0.14

SLr, mean signal log ratio of pairwise comparisons of a specific cell type (here: pScr or pcer5) to all other non-overlapping cell types of the 
same organ;11 n.s., not significant.


