
[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i71 i71–i78

BIOINFORMATICS Vol. 26 ISMB 2010, pages i71–i78
doi:10.1093/bioinformatics/btq173

Using semantic web rules to reason on an ontology of
pseudogenes
Matthew E. Holford1,∗, Ekta Khurana2, Kei-Hoi Cheung1,3,4,5 and Mark Gerstein1,2,3,∗
1Program in Computational Biology and Bioinformatics, 2Department of Molecular Biophysics and Biochemistry,
3Department of Computer Science, 4Center for Medical Informatics and 5Department of Genetics, Yale University,
New Haven, CT 06520, USA

ABSTRACT

Motivation: Recent years have seen the development of a wide
range of biomedical ontologies. Notable among these is Sequence
Ontology (SO) which offers a rich hierarchy of terms and relationships
that can be used to annotate genomic data. Well-designed formal
ontologies allow data to be reasoned upon in a consistent and
logically sound way and can lead to the discovery of new
relationships. The Semantic Web Rules Language (SWRL) augments
the capabilities of a reasoner by allowing the creation of conditional
rules. To date, however, formal reasoning, especially the use of SWRL
rules, has not been widely used in biomedicine.
Results: We have built a knowledge base of human pseudogenes,
extending the existing SO framework to incorporate additional
attributes. In particular, we have defined the relationships between
pseudogenes and segmental duplications. We then created a series
of logical rules using SWRL to answer research questions and to
annotate our pseudogenes appropriately. Finally, we were left with
a knowledge base which could be queried to discover information
about human pseudogene evolution.
Availability: The fully populated knowledge base
described in this document is available for download from
http://ontology.pseudogene.org. A SPARQL endpoint from which to
query the dataset is also available at this location.
Contact: matthew.holford@yale.edu; mark.gerstein@yale.edu

1 INTRODUCTION
In recent years, formal ontologies have been suggested as a solution
to the problem of describing complicated realms of biomedical
knowledge (Rubin et al., 1997). Well-designed ontologies possess
a number of positive aspects including, (i) the ability to define
controlled vocabularies of terms, (ii) the ability to inherit and extend
existing terms, (iii) the ability to declare relationships between
existing terms and (iv) the ability to infer new relationships by
reasoning over existing terms. Through the technologies known
collectively as the Semantic Web, most especially the Web Ontology
Language (OWL) (OWL2, 2009), researchers are able to share and
extend ontologies throughout the scientific community. Although
biomedical ontologies have existed for a number of years, scientists
are far from realizing the full benefits of their use. There is still
room for considerable advancement in this area, especially in the
application of formal reasoning.

A unique strength of formal ontologies in the area of knowledge
representation is their ability to be reasoned upon in a logically
provable way. This reasoning is performed using Description Logic

∗To whom correspondence should be addressed.

(DL) , a form of logic developed to reason on objects, both individual
objects and classes of objects. Software called reasoners [examples
include Pellet (Sirin et al., 2007), Fact++ (Tsarkov and Horrocks,
2006) and KAON (KAON, 2010)] use the rules of DL to perform
particular operations on knowledge bases. The most important of
these are: (i) consistency checking: the adherence of the ontological
model to the rules of DL; (ii) satisfiability checking: the ability
for classes described to be realized by actual individuals; and
(iii) classification: the expansion of relationships between objects
inferred from explicitly stated relationships. The DL version of the
OWL language assures that DL reasoners can perform these services
in a computationally tractable manner. While the first two services
are imperative for ensuring the integrity of data, the third, the ability
to infer new relationships, is especially appealing to scientists as it
hints at the possibility of new discovery. Moreover, the relationships
discovered are instantly provable, given the reasoner’s adherence
to the rules of formal logic. The OWL language offers a rich set
of properties for inference, including class subsumption, property
subsumption, transitivity of properties and inverse properties. We
consider a simple example. We define a class Father as a subclass
of a class Ancestor and a class Son as a subclass of a class
Descendent. We also define a property has_father as a sub-property
of has_ancestor with an inverse property has_son that is a sub-
property of has_descendent. Now, if say that Matt has_father Ted,
the reasoner can automatically infer that Ted has_descendant Matt.
Taken in isolation, such examples seem trivial and obvious but they
can be very helpful when sifting through huge amounts of data.

Despite the richness of OWL’s set of relational properties, it
does not cover the full range of expressive possibilities for object
relationships that we might like. For example, it is often useful
to declare data relationships in terms of conditional statements or
production rules. For this purpose, a specialized rule language is
useful. The Semantic Web Rule Language (SWRL) incorporates
an existing rule language (RuleML) with OWL (SWRL, 2005).
Rules are defined in two parts: antecedents and consequents. If all
statements in the antecedent clause are determined to be true, then
all statements in the consequent clause are applied. In this way,
new properties can be assigned to individuals in an ontology based
upon the current state of the knowledge base. A popular example
is the ‘Uncle Rule’, which states that if a person’s father has a
brother, that brother is the person’s uncle. So, if Matt has_father
Ted and Ted has_brother Doug, the reasoner can infer that Matt
has_uncle Doug. SWRL also specifies a library of built-in functions
which can be applied to individuals. These include numerical
comparison, simple arithmetic and string manipulation. At present,
SWRL is the most widely used rule language in the Semantic
Web community. The popular ontology development environment

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ontology.pseudogene.org
http://creativecommons.org/licenses/


[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i72 i71–i78

M.E.Holford et al.

Protégé includes a SWRLTab plugin for creating and processing
SWRL rules (SWRLTab, 2010). SWRL is supported by the Pellet
reasoner up to the point where rules can be determined to be
‘DL-safe’, i.e. they may be realized in a computationally tractable
fashion. Firing of SWRL rules is performed by Pellet as part of the
classification process and new entailments thus generated can be
added to an existing ontology.

We wish to exploit these reasoning capabilities in our research
on pseudogenes. For this purpose, we can build upon Sequence
Ontology (SO)(Eilbeck et al., 2005), among the most notable
of ontologies created in the biomedical community. SO aims to
provide the full set of terms and relationships necessary to perform
sequence annotation. Despite its central importance to molecular
biology, sequence annotation has historically been more difficult
than required due to a divergence in naming standards. This makes
the sharing of data a challenge. SO provides a controlled hierarchy
of terms that describe elements that may be found upon a sequence,
referred to as sequence_features. These may represent anything from
genes and pseudogenes to smaller units such as individual bases. A
class sequence_variant describes variable elements on the sequence
such as alleles and copy_number_variations. Annotative tags which
may be attached to elements on the sequence are subclasses
of the sequence_attribute class. Examples include conserved,
retrotransposed and transgenic. In addition to this structured set
of terms, SO defines relationships for how sequence elements
are inter-related. In particular, the authors rigorously define part-
whole relationships employing formalisms from the philosophical
discipline of mereology (Winston et al., 1987).

The most common usage of SO is to label sequence annotations
with appropriate SO terms. Typically this is done by attaching
terms to an annotation in a separate format, such as a flat file or
a database which describes instances of sequence data (Eilbeck and
Lewis, 2004). The developers have created a modular relational
database schema called CHADO for this purpose (Mungall et al.,
2007). Here, notably, sequence elements are not hard-coded with
their location on a particular sequence but are linked to featureloc
elements which contain individual location information. CHADO
and its companion mark-up format CHADO-XML offer a robust
approach to annotating sequences in a formal and logically coherent
manner. Its strengths are particularly evident in the handling of large
volumes of data. We wished to explore an alternative approach.
We decided to create a full knowledge base by populating the SO
ontology with individual instances of sequence features. We would
then perform reasoning using relationships defined as part of SO,
extensions to these relationships and SWRL rules based upon these
relationships. From this. we hoped to discover new relationships
between sequence features and thereby strengthen our pseudogene
annotation.

2 APPROACH
Pseudogenes form an almost ideal subdomain for ontology
development in that they are connected to normal genomic features
while maintaining a large enough number of unique aspects to form
an area for independent description. Pseudogenes represent bits
of genomic sequence that were once functional but have become
inactive. They are often the result of various genomic copying
processes, principally duplication and retro-transposition. There are
two basic types of pseudogenes—processed and duplicated. The

former arise through the process of retro-transposition, the latter
through duplication events. As artifacts of a history of copying,
pseudogenes offer us a glimpse of evolutionary history, both of
individual genes and of the genome as a whole. An understanding
of how and when particular pseudogenes were derived in relation to
other genomic features is significant to our comprehension of both
genomics and evolutionary biology (Zhang and Gerstein, 2003).
To this end, we have been involved in annotating pseudogenes in
collaboration with researchers at the Sanger Institute and at UCSC,
including researchers who were involved in the development of SO.

As SO already defines a number of classes related to pseudogenes,
we were able use these terms to fill our knowledge base with
individuals. For those terms not present, we were able to extend
existing SO classes. SO currently defines a class pseudogene
with several subclasses including processed_pseudogene.
We added additional subclasses duplicated_pseudogene and
unitary_pseudogene for instances of these types of pseudogene.
Pseudogenes whose specific type was ambiguous were left as
instances of the base class pseudogene. All pseudogenes are defined
as non-functional copies of parent genes. These genes are generally
identified using the transcribed protein. For this reason, even
though pseudogenes may derive from any type of gene including
RNA genes, in our ontology all parent genes were instantiated
as instances of the SO’s protein_coding_gene class. We created
a sub-property of SO’s property non_functional_homolog_of to
describe the link between a pseudogene and the parent from which
it derived. This sub-property, has_parent_gene restricts the range
of values to instances of protein_coding_gene and restricts the
maximum cardinality to a single instance. We used identifiers from
the existing pseudogene ontology (PGO), which was created as part
of the Pseudofam project (Lam et al., 2009). We also incorporated
information, where available, about the location of particular exons
and introns within the pseudogenes, noting of course that these no
longer have the same meaning in a non-functional context. Here, we
were able to use existing SO classes, pseudogenic_exon and intron.
To express containment of these features within a pseudogene,
we adopted SO’s recommended usage of the part_of property,
which is defined as a core relationship in the OBO Relationship
Ontology (RO) (Smith et al., 2007). To simplify querying
later, we created sub-properties contains_pseudogenic_exon and
contains_pseudogenic_intron. These constrain the domain of the
property to members of the pseudogene class and the range of
the property to pseudogenic_exons and introns, respectively. We
also defined inverse properties pseudogenic_exon_in_pseudogene
and pseudogenic_intron_in_pseudogene. These constrain the RO’s
has_part property which is the inverse of part_of. These inverse
properties can, of course, be automatically inferred by the reasoner.

One focus of our research is the relation of pseudogenes to
segmental duplications (SDs). SDs are defined as continuous
stretches of DNA that map to multiple locations on the genome.
A common ground rule is that they are 1000 or more base pairs
in length and have sequence similarities of 90% or more. Like
pseudogenes, they are residual artifacts of a history of copying.
Apprehending their origins is similarly important to understanding
the evolutionary history of the genome (Bailey and Eichler, 2006).
To include SDs in our annotation, we defined a class sd_segment as
a subclass of the relatively low-level SO term biological_region. To
keep track of the one or more duplicate segments each sd_segment
has, we defined a property is_sd_pair_of. The sd_segment class acts

i72



[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i73 i71–i78

SWRL reasoning on pseudogenes

as both domain and range of this property which is a sub-property
of the SO term similar_to. We also wanted to determine what if any
pseudogenes or genes were located within a segment in an SD pair.
We used the same technique of constraining the has_part property
that we did for contains_pseudogenic_exons. Properties called
contains_pseudogene and contains_gene were created, as were the
inverse properties pseudogene_in_segment and gene_in_segment.
Finally, we created a property to indicate the number of pseudogenes
(has_pseudogene_count) and the number of genes (has_gene_count)
within a segment. These were necessary for certain SWRL rules we
created later. On the surface it appears a deficiency that we must
specify the size of the lists of genes and pseudogenes as a separate
property. Indeed, the SWRL built-in library provides an operator
to determine the length of a list. However, this is not considered
DL-safe as it would violate the open-world assumption which is a
central tenet of DL and the Semantic Web. Essentially, though we
list certain genes within a segment, it is not automatically guaranteed
that these are the only genes unless we explicitly say so. Knowledge
that is unstated is not presumed to be false; it is merely presumed to
be missing.

Attaching elements of the genome to a particular location is
problematic in sequence annotation, as exact coordinate locations
will always vary between individual members of a species. For
this reason, model sequences have been developed for a number
of organisms. Even where such sequences do exist, however, there
will always be incompatibility between builds or versions of the
model. Previously, sequence annotations using SO terms have
handled the description of individual sequence features outside of
the ontology. CHADO, for example, mitigates the issue of exact
coordinates by abstracting location away from features through the
use of a featureloc object. For our purposes, however, because
we perform reasoning on the locations of features, we must
incorporate coordinates from an individual build into our knowledge
base. Thus, we needed to create a few relationships to specify
exact feature location. We stored genome loci using the SO class
nuclear_sequence. This class served as the domain for five new
properties which help to spell out an exact location: in_build,
on_chromosome, has_start_point, has_end_point and on_strand.
The RO property located_in is then used to link a sequence feature
to its location. The in_build property specifies which version of
the model sequence we are using. We declared custom datatypes to
limit the legal values for chromosomes (1–22, X, Y) and for strands
(positive, negative). Our instances of the classes pseudogene (and its
subclasses), protein_coding_gene and sd_segment all make use of
these properties to specify their precise locations on the genome. An
outline view of the basic classes and relationships in our ontology
is provided in Figure 1.

Using SO, one annotates a feature by assigning it an instance of
one of the subclasses of sequence_attribute. This is accomplished
using the has_quality property. Sequence attributes currently
defined in SO are for labeling conditions that are either present or
absent. We found that many of the attributes we wanted to use took
numerical values, be they counts, ratios or scores. We decided to
create a subclass of sequence_attribute for these types of attributes
called sequence_numerical_attribute. This new class serves as
the domain for a has_numerical_value property which is used to
represent the data value. To help organize our attributes, we created
a pseudogene_attribute class akin to the SO class gene_attribute.
We further subclassed this with a pseudogene_numerical_attribute

Fig. 1. Diagram showing the relationships between some of the base classes
of the ontology. Dashed lines are used to indicate subclass relationships.
Regular lines indicate property relationships. Classes in SO are highlighted in
gray, while those which were added to our ontology have a white background.

Fig. 2. Diagram showing the hierarchy of annotation attributes for our
pseudogene ontology. The dashed lines denote subclass relationships. Classes
from SO are highlighted in gray while classes add by our ontology have a
white background.

class. Specific classes of attribute were created using this hierarchy
for the counts (number_of_insertions, number_of_deletions,
number_of_stops, number_of_shifts, disablements and polyA) and
scores (log_kimura_score, fraction, evalue and identity) we wanted
to track. Figure 2 illustrates the hierarchy of pseudogene annotation
attributes.

With the base relationships of our ontology in place, we created
a set of SWRL rules to infer new relationships based upon them.
Their design was guided by the goals of our research and they will
be discussed in detail in Section 5.

Having defined the terms and relationships of our ontology, we
now populated it with instances of pseudogenes, parent genes and
SDs. We then performed consistency and satisfiability checking
using the reasoner and classified the data. At this point, we

i73



[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i74 i71–i78

M.E.Holford et al.

were able to query the resulting knowledge base to answer
biological questions. Here, we were presented with two options.
We could leave the data in the reasoner and query against it
programmatically. Or we could export an XML document containing
our fully entailed data and import it into a triple store, a piece
of software that functions like a database for relational data.
In both cases, we would be querying the data using a variant
of the SPARQL language (SPARQL, 2008), and RDF query
language comparable with SQL for relational data. Generally, triple
stores do not support the degree of DL reasoning that actual
reasoners do. In fact, the plain SPARQL language does not expect
data to be reasoned upon. Reasoners typically use a reasoning-
enhanced version of SPARQL such as Pellet’s SPARQL-DL. The
tradeoff however is speed; because they do not need to perform
reasoning, triple stores can generally retrieve results much more
quickly.

3 METHODS
Data about pseudogenes were obtained from the pseudogene.org (Karro
et al., 2007) website. These data reference proteins by Ensembl identifiers in
defining parent proteins for the pseudogenes. We obtained the links between
these proteins and the genes that code for them using the Ensembl (Hubbard
et al., 2002) website. To assign an exact location to a parent gene, we used
the lowest start value and the highest stop value for all the transcripts of
the gene. Information on SDs was obtained from the web resources of the
Eichler lab (Duplication, 2010). The data were parsed from flat files using
a custom program written in Java. This program employed the OWLAPI
library (Bechhofer and Philip Lord, 2003) to build an OWL 2 compatible
ontology which included the SWRL rules that we used. The program used the
Pellet reasoner to check the ontology for consistency and satisfiability and
then to classify it. The full set of entailments generated by the reasoner were
serialized into an OWL document. This document was then loaded into the
open-source version of Virtuoso, a universal database which includes a triple
store (Virtuoso, 2010). Because the full set of inferences was pre-created, we
were able to take advantage of Virtuoso’s fast performance without losing the
advantages of reasoning. Virtuoso provides an HTTP interface to a SPARQL
endpoint, which we were able to query through either a web interface or
programmatically.

A key focus of our research is to explore the relationship between
pseudogenes and SDs and determine what this can teach us about the
evolution of the genome. We were particularly interested in finding
examples of two scenarios. In the first (Case 1), we sought to find situations
that would allow us to directly compare the evolution rate of a pseudogene
and its parent gene. To do this, we would need to find cases where a
pseudogene and its parent were located on the separate segments of an
SD pair. Additionally, we needed to verify that no other pseudogenes or
genes were on the same segment as that containing the parent gene. We
could then examine the relative substitution rates between the pseudogene
and its surrounding area and the parent gene and its surrounding area.
We did this using the Kimura score metric. If the log of this value fell
within a specific range of values, we could argue that the pseudogene was
evolving more rapidly, less rapidly or at an equal rate as its parent. In the
second scenario (Case 2), we tried to find pseudogenes that arose not from
duplication of a parent gene but from duplication of another pseudogene.
To find these, we again needed to locate cases where a pseudogene and its
parent were on the separate segments of an SD pair. In this case, however,
we wanted other pseudogenes to be present on the segment containing
the parent gene. We then looked at whether the original pseudogene was
aligned with its parent or with another pseudogene. In the latter scenario,
we were able to conclude that the pseudogene arose from duplication
of another pseudogene and suggested that it formed a new category, the
duplicated-processed pseudogene. It is worth noting the possibility of other

scenarios, for example, the orginating pseudogene may be located on a
third duplicate segment distinct from that of the duplicated pseudogene and
the parent gene. More complex possibilities such as these are discussed in
detail in Khurana et al. (manuscript in preparation).

These cases suggest a sort of flowchart which can be traversed by a series
of rules which build upon each other. We list these rules in Figure 3. The
flowchart can be seen in Figure 4. Further discussion of this decisions tree,
including the strategies employed and their biological rational can be found
in the forth-coming paper by Khurana et al. We created a total of seven
rules to reach our goal. Rule 1 is a foundational rule, necessary for all
that follow it. Its goal is to mark all pseudogenes that are in the segment
of an SD pair whose parent gene is located in the other segment. These
pseudogenes are assigned the property has_parent_in_duplicate_segment
whose value is the segment of the parent. Rule 2 uses Rule 1 to find parent
segments and then checks the has_gene_count and has_pseudogene_count
values to determine if other genes or pseudogenes are present in the
segment. If these other features are present, the pseudogene is given
the property has_not_only_parent_in_duplicate_segment. Rule 3 functions
similarly except that it expects the has_pseudogene_count value to be 0 and
the has_gene count to be 1 (the parent gene). Matching pseudogenes are
given the property has_only_parent_in_duplicate_segment. At this point,
we can move to directly answer the questions raised by Case 1. Rule
4 uses Rule 3 to find segments containing only the parent gene. It then
retrieves the log of the Kimura score of the pseudogene. If its value is
above a high cutoff, it determines the pseudogene is under positive selection
and assigns it the sequence attribute maybe_positively_selected. Rule 5
behaves as Rule 4, except that for log Kimura scores below a low cutoff,
it assigns the pseudogene the maybe_negatively_selected attribute. The
path taken by Rule 5 is illustrated in Figure 5. Rule 6 closes out Case
1 by assigning maybe_neutrally_selected to eligible pseudogenes with log
Kimura scores between the high and low cutoff values. We chose 0.4 and
−0.4 as high and low cutoffs, as these correspond with the distribution
of scores for all pseudogenes (Khurana et al., manuscript in preparation).
Rule 7 handles Case 2 by comparing the alignment of the pseudogene
and its parent gene with the alignment of the pseudogene and the other
pseudogenes on the duplicate segment. It uses Rule 2 to find pseudogenes
on one segment of an SD pair whose parent gene is on the other segment
along with other pseudogenes. It then uses the SWRL built-in arithmetic
capabilities to measure the distance from the start of pseudogene (p1)
to the start of its segment (p1dist). It then looks at the distance from
start of the features on the duplicate segment. If the distance from start
for one of the other pseudogenes (p2dist) is closer to p1dist than the
distance from start of the parent gene is and if p2dist is within close
enough range of p1dist (within the length of p1), it is determined that p1
is aligned with the pseudogene on the duplicate pair. This allows us to
spot potential duplicated-processed pseudogenes which can be given the
property aligned_to_pseudogene. Figure 6 indicates the path traversed by
Rule 7.

4 RESULTS
With a fully entailed ontology loaded into a triple store, we were
able to issue SPARQL queries to find pseudogenes matching the
criteria specified by Cases 1 and 2. In both cases, the SPARQL
queries are quite simple and direct. Recall that in Case 1, we are
trying to compare the evolution rate of a pseudogene with that of its
parent. Using Rules 1–6, we isolated pseudogenes and parent genes
which occur on the segments of an SD pair, making sure that no
other genes or pseudogenes were present on the segment containing
the parent gene. By analyzing the substitution rate we attached a
quality to the pseudogene indicating whether it might be positively,
negatively or neutrally selected. We can now find pseudogenes of

i74



[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i75 i71–i78

SWRL reasoning on pseudogenes

Rule Antecedents Consequents
R1 ψ-gene p has parent gene g p has_parent_in_duplicate_segment d

p in segment s
s has SD pair d
d contains gene g

R2 ψ-gene p has parent in duplicate segment d p has_not_only_parent_in_duplicate_segment d
gene-count(d) > 0
pseudogene-count(d) > 0

R3 ψ-gene p has parent in duplicate segment d p has_only_parent_in_duplicate_segment d
gene-count(d) = 1
pseudogene-count(d) = 0

R4 ψ-gene p has only parent in duplicate segment d p has_quality MaybeUnderPositiveSelection
Kimura-score(p) >= 0.4

R5 ψ-gene p has only parent in duplicate segment d p has_quality MaybeUnderNegativeSelection
Kimura-score(p) <= -0.4

R6 ψ-gene p has only parent in duplicate segment d p has_quality UnderNeturalSelection
Kimura-score(p) > -0.4 and < 0.4

R7 ψ-gene p has not only parent in duplicate segment d p aligns_with p2
p in segment s
p is pdist from start of s
p has parent gene g
g is gdist from start of d
ψ-gene p2 in segment d
p2 is p2dist from start of d
abs(p2dist - pdist) < abs(gdist - pdist)
abs(p2dist - pdist) < length(p)

Fig. 3. Informal pseudocode description of the rules implemented in SWRL to traverse the flowchart.

Fig. 4. The decision tree to be traversed by SWRL rules. Dashed lines
indicate a ‘No’ answer; solid lines indicate a ‘Yes’ answer. The same
convention is used in Figures 5 and 6.

interest by naming those that possess this quality. For example, to
find quickly evolving pseudogenes one might issue the following:

SELECT ?p
WHERE
?p #has_quality #maybe_positively_selected

Fig. 5. The path traversed by Rule 5 on the decision tree. This path follows
Case 1 in looking to examples of pseudogenes which evolve at a less rapid
pace than their parent genes.

For the sake of brevity, we are skipping the necessary import
statements. In Case 2, we used Rule 7 to locate pseudogenes which
were derived from the duplication of another pseudogene rather
than a parent gene. These were found by testing the alignment of
a pseudogene to other pseudogenes present on the same segment
of the SD pair as the parent gene. A property relationship was
created between these aligned pseudogenes. To find examples of

i75



[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i76 i71–i78

M.E.Holford et al.

Fig. 6. The path traversed by Rule 7 on the decision tree. This path follows
Case 2 in looking for pseudogenes which have arisen from the duplication
of another pseudogene rather than their parent gene.

these duplicated-processed pseudogenes, we ask for pseudogenes
fulfilling this relationship:

SELECT ?p
WHERE
?p #aligned_to_pseudogene ?p2

As a result of this query, we discovered that PGOHUM00000154773
is potentially a duplicated-processed pseudogene, as it is more
closely aligned with the pseudogene PGOHUM00000154773 than to
its parent gene, ENSG00000205946. This relationship is illustrated
in Figure 7.

5 DISCUSSION
Because of their status as genomic fossils, pseudogenes are of
interest not only for how they currently appear but how they
arose and developed. Much like examining and dating bones to a
paleontologist, the issue of ascertainment is central to the student of
pseudogenes. In this, a certain amount of uncertainty is inherent.
For a number of pseudogenes, we can precisely describe their
origin and place in time; for others we are less certain. We can
see an example of this in Case 1 above, where a higher substitution
rate suggests that a pseudogene may be positively selected it also
raises the possibility that the surrounding region is negatively
selected. We cannot say with full certainty which possibility is
the case. The handling of uncertainty is a problematic issue when
formally describing pseudogenes. OWL and most other mainstream
ontology languages do not deal with the concept of probability with
respect to knowledge. This is largely because DL itself only deals
with data that is certain. Other branches of logic exist to handle
situations of uncertainty, such as fuzzy or probabilistic logic and
extensions to OWL have been proposed to build knowledge bases
using these logics (Ding and Peng, 2004). At present, however,
these are confined to the more experimental reaches of knowledge
representation studies. The alternative would be to define terms using
a conventional ontology to represent different levels of certainty with

Fig. 7. A potential duplicated-processed pseudogene found by aligning one
pseudogene with another on the same segment as the parent gene. The
pseudogene, PGOHUM00000154773, is located on chromosome 8 of the
reference sequence between bases 7199348 and 7200542. Its parent gene,
ENSG00000205946 (USP17L6P), is found on chromosome 4 between bases
8978698 and 8979894. PGOHUM00000154773 is found on an SD segment
located between 7199348 and 7200542 on chromosome 8. The parent gene
is on the duplicate segment located between 8966987 and 9017856 on
chromosome 4. The duplicate segment also contains another pseudogene,
PGOHUM00000149316 between bases 8992177 and 8992537. Because this
other pseudogene is a similar distance from the start of the segment as
PGOHUM00000154773 is to the start of its segment (25 190 bp versus
24 249 bp) and the parent gene is in a different portion of the segment
(11 711 bp from the start), the deduction that PGOHUM00000154773 is
aligned to PGOHUM00000149316 rather than ENSG00000205946 makes
sense. This was found by applying SWRL Rule 7.

regards to ascertainment. As our knowledge base grows, we hope to
explore this area more fully.

Performance presents another challenge to builders of biomedical
ontologies. Although OWL-DL guarantees computational
tractability, it does not promise that classification can be completed
using an amount of time and memory that we may find acceptable.
It is also an unfortunate truth that computational expense increases
as an ontology becomes more expressive. These problems are
particularly acute for genomics researchers, where vast amounts of
data can quickly bog down a DL reasoner even on a well apportioned
machine. For example, we initially ran out of memory while trying
to classify our ontology using the full set of pseudogenes. This
occurred even when running the reasoner on a 32 GB server.
After some experimentation, we were able to get the ontology to
classify by performing two steps. First, we removed all properties
that were not used for the creation of entailments for production
rules, generating the full set of inferences and then re-inserting the
non-essential properties. Second, we changed individual instances
of protein_coding_gene to a custom class SimpleGene which
extends SO’s biological_region class. This freed the reasoner from
applying the restrictions defined by SO for protein coding genes and
saved considerable amounts of memory. We felt this workaround
was acceptable because our production rules do not make use
of these restrictions. After the reasoner had finished generating
entailments, we added an assertion declaring SimpleGene a
subclass of protein_coding_gene, thus allowing future inferences to

i76



[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i77 i71–i78

SWRL reasoning on pseudogenes

Fig. 8. Informal depiction of the coverage provided by the current ontology, including portions derived from SO, as well as areas to be covered in future
work. In the diagram, plain lines indicate class hierarchy (is-a) relationships, while dashed lines indicate property (has-a) relationships.

be drawn upon the genes using SO. After applying these techniques,
classification of the full set of pseudogenes took around 19 min
using a 28 GB heap size. A diminished set containing one of
every 10 pseudogenes took around 11 min to classify and the set
containing one of every 4 took around 13 min. It is abundantly
clear that at present our approach could not be used for large-scale
annotations, such as that of an entire genome. For large amounts
of data, the integration of SO terms with relational database
technology through the CHADO schema and CHADO-XML offer
a far quicker solution. It is promising that RDF data can be queried
quickly using triple stores, but the process of creating the full set
of entailments by classifying the data through the reasoner is still
a significant performance bottleneck. We can only hope that the
future will continue to bring performance improvements in this
area, both through more efficient algorithms and faster technology.

The ontology we have presented here is an extension of SO
that joins additions related to pseudogenes with additions related
to SDs. It forms a useful prototype for describing pseudogenes and
provides a useful framework for reasoning and drawing biological
inferences. It stops short, however, of providing a canonical ontology
of the domain of pseudogenes. As part of our future research, we
intend to build upon the structure presented here to form a more
complete ontology. For example, it would be useful to add classes
and relationships to describe pseudogene characteristics such as
regulatory and transcribed. These terms could be incorporated from
previous work by Lam et al. (2009). We also wish to incorporate
the notion of derivation of a pseudogene, whether from the nucleus
or mitochondria. We hope to enlist the support of other pseudogene
researchers in this endeavor. Finally, we see the potential for further
development leading to an ontology of SDs. Figure 8 illustrates the
present coverage of our ontology and areas we hope to include in
the future.

6 CONCLUSION
We used the SO to build a knowledge base of pseudogenes,
extending SO terms where necessary to describe our data and
borrowing identifiers from the PGO ontology. We created a series

of custom SWRL rules to find situations of interest involving our
research on the relation between pseudogenes and SDs. Using these
rules and the inherent capabilities of DL reasoners, we were able to
infer new relationships about our existing data. We moved this fully
entailed knowledge base into a triple store with a SPARQL endpoint
to allow us to query it for biologically relevant information.

Funding: The National Institutes of Health and AL Williams
Professorship funds; National Institute of Health grants P01
DC04732 and R01 DA021253 (to K.C.).

Conflict of Interest: none declared.

REFERENCES
Bailey,J.A. and Eichler,E.E. (2006) Primate segmental duplications: crucibles of

evolution, diversity and disease. Nat. Rev. Genet., 7, 552–564.
Bechhofer,S. and Philip Lord,R.V. (2003) Cooking the semantic web with the OWL

API. In ISWC 2003, Springer, Berlin, pp. 659–675.
Ding,Z. and Peng,Y. (2004) A probabilistic extension to ontology language owl. In

Proceedings of the 37th Hawaii International Conference On System Sciences
(HICSS-37), IEEE., Big Island.

Duplication,S. (2010) Available at http://humanparalogy.gs.washington.edu/build36/
build36.htm (last accessed date January 8, 2010).

Eilbeck,K. and Lewis,S.E. (2004) Sequence ontology annotation guide. Comp. Funct.
Genomics, 5, 642–647.

Eilbeck,K. et al. (2005) The sequence ontology: a tool for the unification of genome
annotations. Genome Biol., 6, 1–12.

Hubbard,T. et al. (2002) The ensembl genome database project. Nucleic Acids Res.,
30, 38–41.

KAON (2010) Available at http://kaon2.semanticweb.org.
Karro,J.E. et al. (2007) Pseudogene.org: a comprehensive database and comparison

platform for pseudogene annotation. Nucleic Acids Res., 35, D55–D60.
Lam,H.Y.K. et al. (2009) Pseudofam: the pseudogene families database. Nucleic Acids

Res., 37, D738–D743.
Mungall,C.J. et al. (2007) A chado case study: an ontology-based modular schema

for representing genome-associated biological information. Bioinformatics, 23,
i337–i346.

OWL2 (2009) Available at http://www.w3.org/TR/owl2-profiles/ (last accessed date
February 1, 2010).

Rubin,D.L. et al. (1997) Biomedical ontologies: a functional perspective. Brief.
Bioinformatics, 9, 75–90.

Sirin,E. et al. (2007) Pellet: A practical owl-dl reasoner. Web Semant., 5, 51–53.

i77

http://humanparalogy.gs.washington.edu/build36/
http://kaon2.semanticweb.org
http://www.w3.org/TR/owl2-profiles/


[11:03 12/5/2010 Bioinformatics-btq173.tex] Page: i78 i71–i78

M.E.Holford et al.

Smith,B. et al. (2007) The obo foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat. biotechnol., 25, 1251–1255.

SPARQL (2008) Available at http://www.w3.org/tr/rdf-sparql-query (last accessed date
January 23, 2010).

SWRL (2005) Available at http://www.w3.org/submission/swrl (last accessed date
January 8, 2010).

SWRLTab (2010) Available at http://protege.cim3.net/cgi-bin/wiki.pl?swrltab (last
accessed date December 23, 2009).

Tsarkov,D. and Horrocks,I. (2006) Fact++ description logic reasoner: system
description. In Automated Reasoning, Springer, Berlin, pp. 292–297.

Virtuoso (2010) Available at virtuoso-openlinksw.com (last accessed date January 8,
2010).

Winston,M.E. et al. (1987) Ataxonomy of part-whole relations. Cogn. Sci., 11, 417–444.
Zhang,Z. and Gerstein,M. (2003) Patterns of nucleotide subsitution, insertion and

deltion in the human genome inferred from pseudogenes. Nucleic Acids Res., 31,
5338–5348.

i78

http://www.w3.org/tr/rdf-sparql-query
http://www.w3.org/submission/swrl
http://protege.cim3.net/cgi-bin/wiki.pl?swrltab

