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ABSTRACT

Molecular dynamics (MD) simulation is a well-established method
for studying protein motion at the atomic scale. However, it is
computationally intensive and generates massive amounts of data.
One way of addressing the dual challenges of computation efficiency
and data analysis is to construct simplified models of long-timescale
protein motion from MD simulation data. In this direction, we propose
to use Markov models with hidden states, in which the Markovian
states represent potentially overlapping probabilistic distributions
over protein conformations. We also propose a principled criterion
for evaluating the quality of a model by its ability to predict long-
timescale protein motions. Our method was tested on 2D synthetic
energy landscapes and two extensively studied peptides, alanine
dipeptide and the villin headpiece subdomain (HP-35 NleNle). One
interesting finding is that although a widely accepted model of
alanine dipeptide contains six states, a simpler model with only three
states is equally good for predicting long-timescale motions. We also
used the constructed Markov models to estimate important kinetic
and dynamic quantities for protein folding, in particular, mean first-
passage time. The results are consistent with available experimental
measurements.
Contact: chiangts@comp.nus.edu.sg

1 INTRODUCTION
Protein motion is the aggregate result of complex interactions
among individual atoms of a protein at timescales ranging over
several orders of magnitudes. Thermal fluctuations, which occur in
picoseconds (10−12 s), are small-amplitude, uncorrelated, harmonic
motions of atoms, but they eventually provide the protein enough
momentum to overcome energy barriers between metastable states.
In contrast, biologically significant conformational motions, which
occur in microseconds to milliseconds, are often large-scale,
correlated, anharmonic motions between meta-stable states. For
example, in a folded protein, they may occur between binding
and non-binding states. The wide range of timescales and complex
relationships among the motions at different timescales make
it difficult to capture the biologically significant, long-timescale
dynamics of protein motion in a compact model.

Molecular dynamics (MD) simulation is a well-established
method for studying macromolecular motion at the atomic
scale (Shea and Brooks III, 2001). However, it requires a detailed
energy function and the equations of motion must be integrated
with a time step much shorter than the timescale of atomic
thermal fluctuations. For many proteins, today’s computers can
generate roughly a few nanoseconds of simulation trajectories in
a day, which is insufficient for capturing events of biological
significance. Distributed computing (Pande et al., 2002) and
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specialized computer architectures (Shaw et al., 2007) speed up
MD simulation significantly, but the sheer size of data generated
is a major hurdle that prevents biological insights. One way of
addressing both the issues of computational efficiency and data
analysis is to construct simplified models that capture the essential
features of protein motions at long timescales. Markov dynamic
models (MDMs) provide a promising direction towards this goal.

An MDM of a system—here, a protein—can be represented
as a directed graph. Each node of the graph represents a state s
of the system, and each edge represents a transition from state
s to s′. An edge (s, s′) is also assigned the probability that the
system transitions from s to s′ in one time step. MDMs have
several advantages for modeling protein motion. First, they are
probabilistic and thus naturally capture the stochasticity of protein
motion. Second, MDMs represent states explicitly. This makes them
potentially easier to understand and faster to simulate. Finally, there
are standard algorithmic tools, e.g. first-step analysis (Taylor and
Karlin, 1994), for exploiting MDMs without expensive explicit
simulation.

A key question in MDM construction is the choice of states. What
are the Markovian states of a protein if we want to model its long-
timescale dynamics accurately? One contribution of this work is to
have states represent not individual protein conformations (Apaydin
et al., 2003; Singhal et al., 2004), not even disjoint regions of the
conformation space (Chodera et al., 2007; Ozkan et al., 2002), but
overlapping probabilistic distributions over the conformation space.
This choice reflects the view that a conformation does not contain
enough information to be assigned to a single state. Although this
may seem odd at first, it is in fact quite natural in modeling many
physical systems. For example, suppose that we want to classify
some physical objects into two states, table or chair. For a cubic
object one meter in size, if we see a meal on top of it, we may
consider it a table; if we see someone seated on it, we consider it a
chair. So, a cube in itself cannot be assigned a single state because of
insufficient information. Often, acquiring and representing missing
information, if at all possible, is more difficult than capturing it in a
probabilistic distribution. Hence, our choice of Markovian states that
represent probabilistic distributions over the protein conformation
space. This choice leads to MDMs with hidden states, formally,
hidden Markov models (HMMs). In this article, we present a method
to automatically construct an HMM of the long-timescale dynamics
of a protein from a dataset of MD simulation trajectories.

Another key question is how to measure the quality of a model.
A good model enables us to predict biologically relevant quantities
of protein motion accurately and efficiently. However, a particular
model may do well for one quantity, but poorly for another. Also,
we may not know in advance the quantities to be predicted when
constructing a model. Another contribution of this work is to propose
a principled criterion for evaluating the quality of a model by its
ability to predict long-timescale protein motions, as many interesting
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kinetic and dynamic properties of proteins ultimately depend on
such motions. Specifically, we score an HMM probabilistically
by its likelihood for a test dataset of MD trajectories. Using this
criterion, we are able to select models that make good predictions on
ensemble quantities characterizing the folding of alanine dipeptide
and the villin headpiece subdomain (HP-35 NleNle), two extensively
studied peptides.

We also present an efficient algorithm for computing mean first-
passage time from any conformation of a protein to the folded
conformation, using an HMM of protein dynamics.

2 RELATED WORK

2.1 Graphical models of protein motion
Our work proceeds from a series of developments that started with
adapting probabilistic roadmap (PRM) planning (Kavraki et al.,
1996) from robotics to model molecular motion. PRM is a class
of algorithms for controlling the motion of complex robots.

2.1.1 Roadmap models A PRM for a robot is an undirected graph.
Each node q of the graph represents a valid robot configuration
sampled randomly from the space of all valid robot configurations,
and each edge between two nodes q and q′ represents a valid
motion between robot configurations corresponding to q and q′.
PRM planning is currently the most successful approach for motion
planning of complex robots with many degrees of freedom. The
PRM approach was adapted to model and analyze the motion of
a flexible ligand binding with a protein (Singh et al., 1999). The
modified roadmap is a directed graph, in which each node represents
a sampled ligand conformation and each directed edge represents the
transition from one ligand conformation to another. Each edge is also
assigned a heuristic weight measuring the ‘energetic difficulty’ of
the transition. This approach was used to predict active binding sites
of a protein (Singh et al., 1999) and the dominant order of secondary
structure formation in protein folding (Amato et al., 2003).

2.1.2 From roadmaps to MDMs To capture the stochasticity
of molecular motion, a roadmap model was transformed into an
MDM by treating each roadmap node as a state and assigning each
edge (q,q′) the transition probability derived from the energetic
difference between the conformations corresponding to q and
q′ (Apaydin et al., 2003). We call this model a point-based MDM,
as each state represents a single conformation. This model was
used to compute efficiently the p-fold value, a theoretical measure
on the progress of protein folding (Apaydin et al., 2003) and
was later improved to predict experimental measures of folding
kinetics, such as folding rates and φ-values (Chiang et al., 2006).
An improved sampling method generates the states of an MDM
using MD simulation data (Singhal et al., 2004). It provides better
coverage of the biologically relevant part of the protein conformation
space.

2.1.3 From point-based to cell-based MDMs In a point-based
MDM, a state represents a conformation. However, a single
conformation rarely contains enough information to guarantee the
Markovian property, a fundamental model assumption requiring that
the future state of a protein depends on its current state only and
not on the past history. Consequently a large number of states are

needed to construct a good MDM. This drawback led to cell-based
MDMs (Chodera et al., 2007), in which each node corresponds to
a region (a cell) of the protein’s conformation space. A cell roughly
matches a basin in the protein’s energy landscape and represents a
metastable state. The protein interconverts rapidly among different
conformations within a basin s before it overcomes the energy barrier
and transitions to another basin s′. The assumption is that after many
interconversions within s, the protein ‘forgets’ the history of how it
entered s and transitions into s′ with probability depending on s only.
MD simulation is used to generate the data for building a cell-based
MDM (Chodera et al., 2007). To satisfy the Markovian property
well, conformations along simulation trajectories are grouped into
clusters in such a way that maximizes self-transition probabilities
for the states in the MDM. More recent work extended this
approach to build MDMs at multiple resolutions through hierarchical
clustering (Huang et al., 2010).

A preliminary form of the cell-based MDM was used earlier to
analyze a simplified lattice protein model (Ozkan et al., 2002). The
data for model construction was obtained by solving the master
equation instead of performing MD simulation.

2.2 Other approaches
Various alternative approaches have been explored to model and
understand protein motion. See Elber (2005) for a recent survey.
Here, we only mention a few that are more closely related to our
work.

Normal mode analysis (Levitt et al., 1985) and related approaches,
such as elastic network models (Haliloglu et al., 1997), simplify the
complex dynamic law that governs protein motion by approximating
it near an equilibrium conformation. One advantage is that they
capture the geometry and mass distribution of a protein structure
compactly in a relatively simple model. However, they are accurate
only in the neighborhood of the equilibrium conformation.

Another approach for building simple dynamic models is to
find reaction coordinates (Lois et al., 2009). Significant events
are described along a carefully chosen one-dimensional reaction
coordinate. The choice of this coordinate, however, requires a priori
understanding of the protein motion. Furthermore, not all proteins
can have their motions described and understood along a single
coordinate.

Instead of building simplified dynamic models, one may analyze
MD simulation data directly through dimensionality reduction
methods (Amadei et al., 1993; Teodoro et al., 2002). Unlike normal
mode analysis, this approach provides a global view of protein
motion. It may also help to identify a good reaction coordinate.
However, this approach does not provide a predictive model that
generalizes the simulation data. Nor does it identify interesting states
of protein dynamics.

3 MDMS WITH HIDDEN STATES
An MDM � of a protein can be represented as a weighted directed
graph. A node s of� represents a state of the protein, and a directed
edge (s,s′) from node s to s′ represents a transition between the
corresponding states. Each edge (s,s′) is assigned a weight ass′

representing the probability that the protein in state s transitions to
state s′ in a time step of fixed duration h. The probabilities associated
with the outgoing edges from any node s must sum up to 1. The
duration h is the time resolution of the model.
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An MDM describes how the state of the protein changes
stochastically over time. Given an initial state s0 of the protein
at time 0, an MDM can be used to predict a sequence of future
states s1,s2,..., where st is the state of the protein at time t×h for
t =1,2,.... If st =s, then the next state st+1 can be predicted by
choosing an outgoing edge (s,s′) from s with probability ass′ and
setting st+1 =s′. The simple and explicit structure of MDMs allows
such predictions to be computed efficiently.

In a point-based MDM, a state represents a single conformation.
In a cell-based MDM, a state represents a set of conformations
(Section 2.1). The definition of states is crucial. The choice of
a single conformation as a state is more precise and informative
than the choice of a set of conformations. However, it often causes
violation of the Markovian property and consequently reduces the
predictive power of the MDM. We now address the delicate question
of defining the states.

3.1 Why hidden states?
By defining a state as a subset of the protein conformation space,
rather than a single conformation, cell-based MDMs achieve the
dual objectives of better satisfying the Markovian assumption and
reducing the number of states. This is a major step forward.
However, cell-based MDMs still violate the Markovian assumption
in a subtle way. Consider a protein at a conformation q near the
boundary of a cell. The future state of the protein depends not only
on q, but also on the protein’s velocity, in other words, on the past
history of how the protein reached q. By requiring each conformation
to belong to a single state, cell-based MDMs violate the Markovian
assumption, especially near the cell boundaries. Similar violations
also occur in cells corresponding to shallow energy basins, where
the protein’s energy landscape is flat.

One way of avoiding such violations is to define more refined
states using information on both conformation and conformational
velocity. However, this necessarily increases the number of states,
thus partially reversing a key advantage of cell-based MDMs.
Furthermore, a much larger dataset is needed for model construction
in order to capture the detailed transition probabilities among the
refined states. In contrast, we propose to assign a conformation to
multiple states and use probability to capture the uncertainty of state
assignment. This leads to an MDM with hidden states, formally,
an HMM. Our HMM for protein dynamics is specified as a tuple
�= (S,C,�,A,E):

• the set of states S ={si | i=1,2,...,K};
• the conformation space C of a protein;

• �={πi | i=1,2,...,K}, where πi is the prior probability that
the protein is in state si ∈S at time t =0;

• A={aij | i,j=1,2,...,K}, where aij =p(sj|si) is the
probability of transitioning from state si ∈S to sj ∈S in
a single time step of duration h;

• E ={ei | i=1,2,...,K}, where ei(q)=p(q|si) is the emission
probability of observing conformation q∈C when the protein
is in state si ∈S.

The state space S is discrete, while the conformation space C is
continuous. Intuitively each state si ∈S loosely matches an energy
basin of the protein, and the corresponding emission probability

ei(q)=p(q|si) connects states with conformations by modeling the
distribution of protein conformations within the basin.

In an HMM, we cannot assign a unique state for a given
conformation q. Instead, we calculate p(si|q), the probability that
q belongs to a state si. The uncertainty in state assignment arises
because at a conformation q, the protein may have different
velocities, as well as other differences that we choose not to model
or do not know about. We model the uncertainty due to this lack of
information with the emission probability distributions.

In contrast, a cell-based MDM partitions C into disjoint regions
C1,C2,..., and each state si represents a region Ci. So we can
assign a conformation q to a unique state. If we define ei as a step
function such that ei(q) is a strictly positive constant for q∈Ci and
0 otherwise, then the states are no longer hidden, and our model
degenerates into a cell-based MDM. Our distribution-based models
are therefore more general than cell-based MDMs.

Hidden states was used to model protein structure before (Hirsch
and Habeck, 2008), but the goal there was to capture compactly the
variations in an ensemble of protein structures obtained from NMR
experiments, rather than the dynamics.

3.2 What is a good model?
Another difficulty with cell-based MDMs is the lack of a principled
criterion for evaluating model quality. Cell-based MDMs are
constructed to maximize the self-transition probabilities for the
states in the model (Chodera et al., 2007). This criterion, however,
results in the paradoxical conclusion that a trivial one-state model
is perfect, as all transitions are self-transitions. Since simple models
are generally preferred, how do we decide that a simple model, such
as the one-state model, is (not) as good as a more complex one?

Our goal is to build a model � of the long-timescale dynamics of
a protein from a given dataset D of MD simulation trajectories.
The model � is then used to predict the protein’s kinetic and
dynamic properties, such as mean first-passage times (MFPTs;
Leach, 2001), p-fold values (Du et al., 1998), transition state
ensembles (Leach, 2001), etc. A model �1 has stronger predictive
power than a model �2, if �1 predicts the kinetic and dynamic
properties more accurately than�2. Clearly, it is impossible to check
the predictive power of a model � on all such properties, as we
may not even know all of them in advance. However, since many
kinetic and dynamic properties are determined by protein motion
trajectories, we can check instead the ability of � to predict these
trajectories. In our HMM framework, we do this by calculating the
likelihood p(D|�), which is the probability that a dataset D of MD
simulation trajectories occur under the model �. The likelihood
p(D|�) measures the quality of �.

Specifically, let D={Di | i=1,2,...} be a dataset of trajectories.
Each trajectory Di is a sequence of protein conformations
(q0,q1,...,qT ), where qt is the protein conformation at time t×h.
The likelihood of � for Di is

p(Di|�)=
∑

Q∈ST

(
p(s0)

T∏

t=1

p(st |st−1)
T∏

t=0

p(qt |st)
)
, (1)

where st is the state of the protein at time t×h and p(s0), p(st |st−1)
and p(qt |st) are given by the model parameters �, A and E of
�, respectively (Bishop, 2007). The summation

∑
Q is performed

over all possible state assignments Q= (s0,s1,...,sT )∈ST to the
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conformations (q0,q1,...,qT ) in Di. The likelihood of � for the
entire dataset D is simply p(D|�)=∏

i p(Di|�).
In contrast to the cell-based MDM, the likelihood p(D|�)

provides a quantitative measure of model quality and enables us
to compare models with different number of states. This is possible,
because our model uses emission probabilities ei(q)=p(q|si) to
connect states with conformations, while a cell-based MDM does
not. The likelihood criterion shows that a single-state MDM is in
fact not good. Although the transition probabilities p(st |st−1)=1
for all t, the emission probabilities p(qt |st) are small, because the
model relies on a single state to capture variability over the entire
conformation space. Hence, the overall likelihood p(D|�) is small.

3.3 Benefits and limitations
One goal of model construction is to predict a protein’s kinetic
and dynamic properties. Since our model is constructed from MD
simulation data (Section 5), a basic question is ‘How can the
model provide better predictions than the simulation trajectories
themselves?’The answer is that the model generalizes the data under
the Markovian property and thus contains a lot more trajectories than
the dataset used in the model construction. Consider, for example,
a dataset contains two trajectories with state sequences (s0,s1,s2)
and (s′0,s1,s

′
2). Using the Markovian property, the model assumes

that two additional state sequences (s0,s1,s
′
2) and (s′0,s1,s2) are

also valid. By combining the trajectories, the model generates
exponentially more trajectories than the dataset contains. If the
assumption of the Markovian property is valid, then the model is
a more accurate approximation of the underlying protein dynamics
and can predict kinetic and dynamic properties better.

A related question is ‘With MD simulation data at the nanosecond
scale, how can the model predict events at the microsecond
or millisecond scale?’ Again using the Markovian property, the
model concatenates short simulation trajectories into much longer
ones (Chodera et al., 2006, 2007) and uses them to predict long-
timescale kinetic and dynamic properties. This approach can succeed
even for large proteins, if the transitions between metastable states
are relatively fast (Henzler-Wildman and Kern, 2007).

At the same time, our model cannot have state transitions not
implied by the simulation trajectories in the original dataset and
thus does not address the question of conformation space sampling,
which is difficult, but has seen rapid progress in recent years (e.g.
Raveh et al., 2009; Singhal et al., 2004). Advances in sampling
methods will provide better simulation data and improve the quality
of the resulting models.

4 MODEL EXPLOITATION
We now illustrate the use of our model in the context of protein
folding. However, our approach is general and can be used to study
the dynamics of a folded protein as well.

First, our MDM is a graphical model. We can gain various insights
of the underlying folding process by inspecting the structure and the
edge weights of the graph. We give an example in Section 6.

Next, our MDM is generative and can be used for simulation. To
generate a simulation trajectory of length T , we first sample a state
sequence (s0,s1,...,sT ) from the model. We sample the initial state
s0 according to a prior distribution adapted to the environmental
condition of the biological events under study. We then sample

each subsequent state st conditioned on the previous state st−1
according to the transition probabilities A. Next, we generate the
trajectory (q0,q1,...,qT ) by sampling each qt conditioned on st with
probability p(qt |st) according to the emission probabilities E.

Furthermore, an important advantage of MDMs is that they can
be analyzed systematically without explicitly generating simulation
trajectories. Specifically, our model allows for efficient computation
of ensemble properties of protein folding. Ensemble properties, such
as MFPT, characterize the average behavior of a folding process
over myriad pathways at the microscopic level. In principle, we
can compute ensemble properties by simulating many individual
pathways and then averaging over them, but explicit simulation is
computationally expensive. In the following, we describe a more
efficient algorithm that computes MFPT using our model. The p-fold
value and other ensemble properties can be computed similarly.

The MFPT of a conformation q is the expected time for a protein to
reach a folded conformation, starting from q. A straightforward way
of estimating the MFPT of q is to simulate many folding trajectories,
each starting from q and terminating upon reaching a folded
conformation. The estimated MFPT is then the average duration of
these trajectories. This approach typically requires a huge number
of simulation trajectories to get a reliable estimate for a single
conformation q. Instead, we apply first-step analysis (Taylor and
Karlin, 1994) from Markov chain theory to our model. It implicitly
simulates infinitely many trajectories (Section 3.3), resulting in
much faster and reliable computation of MFPTs.

Our computation proceeds in two stages. First, we compute the
MFPTs for all the states in S. Let CF ⊂C be the subset of folded
conformations of a protein. Let γi be the first-passage time (FPT) of
a folding trajectory that starts in state si. Consider what happens in
the very first time step of the folding trajectory:

• If the initial conformation q0 ∈CF, then obviously γi =0. This
event happens with probability ei(CF)=∫

CF
ei(q)dq.

• If q0 �∈CF, then γi depends on the MFPT of the state that
the trajectory reaches after a one-step transition. This event
happens with probability 1−ei(CF).

The MFPT for si is γ̄i =E(γi), where the expectation is taken over
all trajectories that start in si and end in CF. By conditioning on the
events in the first time step, we obtain the following equation for γ̄i:

γ̄i =0·ei(CF)+
(

1+
∑
sj∈S

p(sj|si)γ̄j

)
·(1−ei(CF)

)
. (2)

The transition probabilities p(sj|si) are model parameters. The only
unknowns in (2) are the MFPTs γ̄i for i=1,2,...,K . Since there
is one such equation for each γ̄i, we get a linear system of K
equations with K unknowns, which can be solved efficiently using
standard numerical methods. The algebraic process of solving the
linear system implicitly enumerates all possible state sequences of
the folding trajectories in an efficient way.

Next, we compute the MFPT for a given conformation q0. Let γ
be the FPT of a folding trajectory that starts at q0. Conditioning on
the initial state s0 at t =0, we see that the MFPT of q0 is given by

E(γ|q0)=
∑
s0∈S

E(γ|q0,s0)p(s0|q0). (3)

We calculate p(s0|q0) using the Bayes rule:

p(s0|q0)= p(q0|s0)p(s0)∑
s0∈S p(q0|s0)p(s0)

, (4)
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where p(s0) and p(q0|s0) can be obtained from the prior probabilities
� and the emission probabilities E of the model, respectively.
Calculating E(γ|q0,s0) is more subtle. Suppose that the initial
state s0 is some particular state si ∈S. It is tempting to think that
E(γ|q0,s0)= γ̄i. This is incorrect, because γ̄i =E(γ|s0) and the
additional information provided by q0 may alter the expected value
of γ . To calculate E(γ|q0,s0), we condition once more on the state
s1 at time t =1:

E(γ|q0,s0)=
∑
s1∈S

E(γ|q0,s0,s1)p(s1|q0,s0) (5)

=
∑
s1∈S

(
1+E(γ|s1)

)
p(s1|s0), (6)

where the last line follows from the conditional independence
properties of HMMs (Bishop, 2007). Now the values for E(γ|s1)
can be obtained from the MFPTs γ̄i where i=1,2,...,K , and the
values for p(s1|s0), from the transition probabilities A of the model.
Substituting (4) and (6) into (3) gives us the desired result.

In practice, when we compare with experimental measures, we
are interested in the MFPT for a region C′ of C rather than a single
conformation q0 ∈C. To calculate E(γ|C′), we need to modify (3),
(4), and (6) slightly by integrating q0 over C′.

5 MODEL CONSTRUCTION
Under the likelihood criterion, we want to construct a model �
that maximizes p(D|�) for a given dataset D of MD simulation
trajectories. Expectation maximization (EM) is a standard algorithm
for such optimization problems. However, EM is computationally
intensive. It may also get stuck in a local maximum and fail to find
the model with maximum likelihood. To alleviate these difficulties,
we proceed in three steps. First, we preprocess the input trajectories
to remove the ‘noise’, i.e. motions at timescales much shorter than
that of interest. Next, we use K-medoids clustering to build an initial
model �0. Since clustering is much faster than EM, we run the
clustering algorithm multiple times and choose the best result as�0.
This reduces the chance of ending up with a bad local maximum.
Finally, we initialize EM with �0 and search for the model with
maximum p(D|�). Since both K-medoids clustering and EM are
well known algorithms (see, e.g. Bishop, 2007), we only describe
the relevant details of these steps below.

Data preparation: the time resolution h of the model should be
compatible with the timescale of biological events under study. If h
is too large, the resulting model may miss the events under study. If h
is too small, the model will try to capture fine details at uninteresting
short timescales and become unnecessarily complex with reduced
predictive power. In our tests, a relatively wide range of h values
led to models with similar predictive power. We typically set h to be
1/100 to 1/10 the timescale of interest. We then apply standard signal
processing techniques (Oppenheim and Schafer, 2009) to smooth
and downsample each trajectory in D so that the time duration
between any two successive conformations along a trajectory is
exactly h.

Emission probability distributions: the emission probability ei
models the distribution of protein conformations in state si. We

approximate ei with a Gaussian distribution:

ei(q)=N(q|µi,σ
2
i )= 1

(2πσ2)1/2
exp

(− 1

2σ2
d2(q,µi)

)
, (7)

where d(q,µi) denotes a suitable distance measure between the
conformations q and µi. Other approximating distributions are
possible. There are two main considerations in choosing the
distribution: it should match the distribution of conformations in
si and be simple enough to be learned effectively with a limited
amount of data.

Initialization: the states in our model roughly correspond to energy
basins. Within a basin, a protein interconverts rapidly, which
allows interstate protein motions to satisfy the Markovian property.
Rapid interconversion results in a high-density cluster of protein
conformations inside the basin. So, to get an initial estimate of the
states, we treat the input dataset D as a set of conformations and use
the K-medoids algorithm to partition the conformations in D into
K clusters, where K is a prespecified parameter. K-medoids forms
compact clusters by minimizing the sum of intracluster distances
between conformations (Bishop, 2007) under the same distance d
as that in (7). The center of a cluster B is a conformation q∈B that
minimizes the sum of distances from q to other conformations in B.

Each cluster becomes a state of our initial model �0. Using the
cluster labels of the conformations in D, we can easily compute the
prior probabilities� and transition probabilities A for�0 by simply
counting. To get the emission probability ei(q)=N(q|µi,σ

2
i ), we set

µi to the center of the cluster corresponding to state si and σ2
i to the

variance of conformations in this cluster.

Optimization: we use �0 to initialize the EM algorithm and
search for a K-state HMM � that maximizes the likelihood
p(D|�). EM iterates over two steps, expectation and maximization,
and improves the current model until no further improvement is
possible. Inspection of (1) shows that our main difficulty is the
summation of all possible state assignments to the conformations
(q0,q1,...,qT ) along a trajectory Di. Performing this summation by
brute force takes time O(KT ), which is exponential in the length
T of the trajectory. EM overcomes this difficulty through dynamic
programming. See Bishop (2007) for details.

The number of states: the number of states K controls the model
complexity. It must be specified in both K-medoids clustering and
EM. A complex model with many states in principle fits the data
better, thus achieving higher likelihood. However, it may suffer from
overfitting when there is insufficient data. A complex model is also
more difficult to analyze and understand. Typically, a simple model
is preferred when it does not sacrifice much predictive power. To
choose a suitable K value, we pick a small random subset D′ of
D as a test dataset. We start with a small K value and gradually
increases it until the likelihood p(D′|�) levels off. It is important
to note that we can perform such a search over model complexity
because our likelihood criterion enables us to compare models with
different number of states.

6 RESULTS

6.1 Synthetic energy landscapes
Synthetic energy landscapes are useful for testing our algorithms in
controlled settings where the ground truth is known. In particular,
we want to examine whether our likelihood criterion and model
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A B C D E

Contour plots of synthetic energy landscapes.

Training dataset generated from Langevin dynamics.

Conformations generated from 1-state models.

Conformations generated from 2-state models.

Fig. 1. Five synthetic energy landscapes and the corresponding models.

Fig. 2. Average log-likelihood scores of the models for synthetic energy
landscapes.

construction algorithm can identify simple models with strong
predictive power.

We created a series of five energy landscapes in two dimensions
(Fig. 1). Landscapes A and B each contains one energy basin, but
B’s basin is slightly more elongated. Landscapes C, D and E each
contains two basins with varying amount of separation. For each
landscape, we used Langevin dynamics to generate 1000 trajectories
of 200 time steps each. We set aside half of the trajectories as the
training dataset for model construction and the other half as the test
dataset D′ for checking the quality of the model constructed.

For each landscape, we built models with increasing number of
states. In all the models, the resolution h is 10 simulation time steps.
The distance measure d used in defining the emission probabilities
is the Euclidean distance in the plane.

Figure 2 plots the scores of all the models. The score is the
average log-likelihood of a model for a single transition step along a
trajectory. It is computed by dividing the log-likelihood of a model
given D′ by the total number of conformations in D′. Figure 2 shows
that for landscape A, which contains only 1 basin, the 1-state model

Fig. 3. Average log-likelihood scores of alanine dipeptide models.

is slightly better than the 2-state model. As we move from landscape
A to E, the predictive power of the 1-state model degrades. The
2-state model performs fairly well on all five energy landscapes.
Figure 1 shows the differences between the 1- and 2-state models by
simulating them and plotting the resulting conformations. Figure 2
also shows that increasing the number of states beyond two has
negligible benefit. Although these results are not surprising, they
highlight the importance of a principled criterion for evaluating the
model quality.

6.2 Alanine dipeptide
Alanine dipeptide (Ace-Ala-Nme) is a small molecule widely used
for studying biomolecular motion, as it is simple and exhibits an
extensive range of torsional angles. We use the same dataset as that
from a previous study (Chodera et al., 2007). It consists of 1000
MD simulation trajectories, each roughly 20 ps in duration. Again,
we divide them equally into training and test datasets.

We built models with up to seven states. They are named A1 to
A7. As alanine dipeptide is very small, its motion is fast. So the
time resolution h of the models is set to 1.0 ps. A conformation of
alanine dipeptide is specified by three backbone torsional angles
(φ,ψ,ω), and the distance between two conformations is defined as
the root sum squared angular differences between the corresponding
torsional angles.

The conformation space of alanine dipeptide has been manually
decomposed into six disjoint regions, each corresponding to a meta-
stable state. This well-accepted decomposition has led to several
dynamic models of alanine dipeptide (Chodera et al., 2006, 2007).
For comparison, we built a 6-state model based on the same manual
decomposition. During the model construction, instead of applying
K-medoids, we group conformations into a cluster if they belong to
the same disjoint region of the manual decomposition. Other steps
of the construction algorithm remain the same. The resulting model
is named M6.

Figure 3 plots the average log-likelihood scores of all the models
constructed. Models A3–A7 all achieve scores comparable with that
of M6. The interesting finding is that although the score jumps
substantially as we move from A1 to A3, the score of A3 is almost
as good as those of A6 and M6. This indicates that for predicting
the motion of alanine dipeptide, the simpler 3-state model A3 is
almost as good as the 6-state model M6, which is obtained from
the well-accepted manual decomposition of the alanine dipeptide
conformation space!

To see the differences between A3 and M6, we simulated the
two models and plotted the resulting conformations (Fig. 4). Both
models capture accurately the frequently visited regions of the
conformation space, shown in red and blue in Figure 4. These
densely sampled regions correspond to energy basins that dominate
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(a) (b)

Fig. 4. Conformations generated from the 3-state model A3 (a) and the
6-state model M6 (b).

Table 1. Estimated MFPTs between αR and β/C5
regions of the alanine dipeptide conformation space

MFPT (ps)

A3 M6

αR → β/C5 26.5 28.5
β/C5 → αR 187.0 124.0

the long-timescale dynamics, and accurate modeling of these regions
is crucial. For A3, the conformations shown in green capture
a large, but less frequented region of the conformation space.
Although M6 models the same region as two closely spaced
clusters of conformations, the overall density and the location of
the conformations are similar in both models. M6 also models
the rarely visited region between 0<φ<90. Due to the transient
nature of the protein in these conformations, the additional model
complexity contributes little to the observable long-term dynamical
phenomena. Therefore, the average log-likelihood score levels off
when the number of states in the model surpasses 3.

To further validate our models, we used both A3 and M6
to compute MFPTs between the αR and β/C5 regions of the
conformation space. We designate conformations with (φ=−70±
15, ψ=−40±15, ω=180±15) to be within the αR region, and
conformations with (φ=−140±15, ψ=160±15, ω=180±15) to
be within the β/C5 region. Although the results for A3 and M6 differ
somewhat in details, they are consistent (Table 1). Both indicate that
the transition from αR to β/C5 is roughly an order of magnitude
faster than the reverse transition. This matches well with the results
reported by Chekmarev et al. (2004).

To assess the efficiency of our algorithm for MFPT computation
(Section 4), we also computed the MFPTs by explicitly generating
simulation trajectories from our constructed models. It took our
algorithm 1 s to compute one MFPT, as the alanine dipeptide models
are all very simple. In comparison, it took 120 s to generate a
sufficiently large number of simulation trajectories from the same
HMM in order to bring the standard deviation of the MFPT estimate
down to 1% of its value.

6.3 Villin
The data for the fast-folding variant of the villin headpiece (HP-35
NleNle) was generated by the Folding@home project. It consists

Fig. 5. Average log-likelihood scores for the villin headpiece models.

of 410 MD trajectories, initiated from nine unfolded conformations
denoted by Ik,k =0,...,8. Each trajectory is 1 µs in duration on the
average.

The training dataset contains a huge number of conformations.
For computational efficiency, we cluster the conformations to
form microstates in the conformation space. We sample 8000
conformations uniformly along the trajectories in the dataset as the
microstate centers. The remaining conformations in the dataset are
then clustered to the nearest microstate centers according to the root
mean square deviation (RMSD) of all heavy atoms in the peptide.
Earlier work (Plaku and Kavraki, 2007) then indicates that we may
assume that the peptide transits directly between microstates that are
close according to the RMSD between microstate centers and define
a graph that approximates the dynamics of the peptide accordingly.
Each node of this graph is a microstate and is connected to a small
number of other nodes close by in RMSD. An edge of the graph
is assigned a weight equal to the RMSD between the end nodes.
The distance between two microstates is defined as the length of
the shortest path between them in the graph. For large proteins, this
graph-based distance metric better captures the dynamics than the
RMSD metric.

We applied our model construction algorithm over the set of
microstates and built models with increasing number of states,
all at h=5 ns. The average log-likelihood score (Fig. 5) improves
significantly when the number of states grows from 1 to 20. It
improves more gradually between 20 and 200 states. Beyond 200
states, the score remains approximately constant.

To examine the dynamics of this peptide visually, consider the
20-state model. Figure 6a shows that state 7, 12, 13, 15 and 18 are
the most frequently visited states and thus significantly influence
the long-term dynamics. By calculating the probabilities p(s|q), we
infer that the initial conformations most likely belong to state 12
and the native conformation most likely belongs to state 15. States
12, 7 and 18 form a cycle and transit among themselves with high
probability. Although the conformations in state 12 may possess a
significant degree of helical structure, helix 1 is often oriented in the
wrong direction. From state 12, the peptide transits to states 7 and
18 by attaining additional helical structure (helix 3). In state 18, the
peptide loses significant portions of helix 1 and 2. However, it can
regain them relatively easily by transiting directly to states 7 and
12. It is interesting to observe the transition from states 12 to 13,
which corrects the orientation of helix 1. From state 13, the peptide
proceeds to state 15, the folded state, with very high probability. The
model also shows that it is much more difficult for the peptide to get
out of state 15 than to get in. Consequently, state 15 is also the most
frequently visited state and dominates the long-term dynamics, as
expected.

i275



[11:50 12/5/2010 Bioinformatics-btq177.tex] Page: i276 i269–i277

T.-H.Chiang et al.

(a)

12 18 7

13 15 PDB: 2F4K

(b)

State Sequence Prob.
0.0311
0.0294
0.0076
0.0052
0.0047

(c)

Fig. 6. (a) Main state transitions of the 20-state villin headpiece model. The
size of each node is proportional to the probability of the corresponding
state in the stationary distribution. The width of each edge is proportional
to the transition probability. States with probability <0.01 in the stationary
distribution, self-transitions and transitions with probability <0.002 are not
shown to avoid cluttering the diagram. The initial conformations most likely
belong to state 12, and the native conformation most likely belongs to
state 15. (b) Example conformations from states 7, 12, 13, 15 and 18. The
residues forming helix 1 are drawn in red. (c) The most likely state transition
sequences from states 12 to 15.

Our model suggests that attaining both the structure and the
correct orientation for helix 1 is likely a significant folding barrier.
This is consistent with earlier work suggesting that the ease of
attaining helix 1 is one of the factors allowing certain initial
conformations to fold faster than others (Ensign et al., 2007).

We also computed the MFPTs for the initial conformations I0
to I8 (Table 2). The results lie in the same microsecond range as

Table 2. Estimated MFPTs for nine initial conformations of the villin
headpiece (HP-35 NleNle)

MFPT (µs)

I0 I1 I2 I3 I4 I5 I6 I7 I8

5.89 5.87 5.86 5.88 5.84 5.84 5.85 5.84 5.86

the experimental measurements of 4.3 µs from laser temperature
jump (Kubelka et al., 2003) and 10 µs from NMR line-shape
analysis (Wang et al., 2003). In addition, the MFPTs for I4 and
I7 are slightly smaller, which is consistent with the computational
analysis of Ensign et al. in (2007).

For comparison, we also tried to compute the MFPTs by explicitly
generating trajectories from the constructed models. However, after
30 min of computation, the estimated MFPTs are still two orders of
magnitude below the microsecond range. In comparison, the results
in Table 2 were obtained in <1 min of computation.

7 DISCUSSION
The past decade has witnessed an increasing interest in graphical
models of protein dynamics at long timescales. Most recently,
the focus has been on cell-based MDMs built from precomputed
MD simulation data. Existing methods, however, suffer from
two main shortcomings. First, defining states by partitioning the
protein conformation space into disjoint cells causes violation of
the Markovian property. Second, there is no systematic criterion
for evaluating the model quality. Our work addresses these two
shortcomings by defining states as probability distributions of
conformations. This reflects the view that a single conformation
does not contain enough information to be assigned a unique state.
The resulting HMM-based modeling framework evaluates the model
quality by the likelihood of a model given a test dataset of simulation
trajectories. In contrast with the cell-based MDMs, our approach
enables us to compare models with different number of states and
choose the best one according to the likelihood criterion. The results
on synthetic energy landscapes and alanine dipeptide illustrate this
benefit.

In general, MDMs have several advantages over direct data
analysis of MD simulation trajectories (Amadei et al., 1993; Teodoro
et al., 2002), using techniques such as singular value decomposition
(SVD). MDMs generalize the simulation data used in constructing
them. They not only identify the important states, but also assemble
them together to provide a global view of the underlying stochastic
protein dynamics. Section 4 shows various ways of exploiting
MDMs. Such tasks are difficult or impossible with direct data
analysis.At the same time, these two approaches are complementary.
When simulation data is limited, it may be more effective and
simpler to perform data analysis directly. Furthermore, we may use
SVD to perform dimensionality reduction on the MD simulation
data in a preprocessing step before running our model construction
algorithm.

One important remaining issue is to scale up our approach to
handle large proteins. MD simulation is computationally expensive,
but advances in computer technology are making it more affordable
than before, and large simulation data repositories will become
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readily available over time. Increasingly, the future challenge will
be to gain biological insights from this data by building simple and
yet powerful models. As we scale up to larger proteins, the dynamics
of protein motion also becomes more complex. For large proteins, it
is likely that motions at different timescales contribute to different
biological functions. A hierarchy of MDMs constructed at different
timescales may capture such multi-timescale dynamics.

Finally, it will be interesting to apply our approach to model the
dynamics of a folded protein. The conformational flexibility of a
folded protein is critical to some of its functions (Henzler-Wildman
and Kern, 2007), such as allosteric interactions. Here, our approach
is likely to scale up well to larger proteins, as transitions between
the folded states are often fast and hence more easily captured by
short MD simulations.
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