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ABSTRACT

Motivation: There has recently been a notable shift in biomedical
information extraction (IE) from relation models toward the more
expressive event model, facilitated by the maturation of basic tools
for biomedical text analysis and the availability of manually annotated
resources. The event model allows detailed representation of
complex natural language statements and can support a number of
advanced text mining applications ranging from semantic search to
pathway extraction. A recent collaborative evaluation demonstrated
the potential of event extraction systems, yet there have so far
been no studies of the generalization ability of the systems nor the
feasibility of large-scale extraction.

Results: This study considers event-based IE at PubMed scale.
We introduce a system combining publicly available, state-of-the-
art methods for domain parsing, named entity recognition and event
extraction, and test the system on a representative 1% sample
of all PubMed citations. We present the first evaluation of the
generalization performance of event extraction systems to this scale
and show that despite its computational complexity, event extraction
from the entire PubMed is feasible. We further illustrate the value
of the extraction approach through a number of analyses of the
extracted information.

Availability: The event detection system and extracted data are open
source licensed and available at http://bionlp.utu.fi/.

Contact: jari.bjorne@utu.fi

1 INTRODUCTION

In response to the explosive growth of biomedical scientific
literature, there has recently been significant interest in the
development of automatic methods for analyzing domain texts
(Chapman and Cohen, 2009). In the previous decade of work on
automatic information extraction (IE) from biomedical publications,
efforts have focused in particular on the basic task of recognizing
entity mentions in text, such as gene, protein or disease names (Kim
etal.,2004; Smith et al., 2008; Yeh et al., 2005) and on the extraction
of simple relations of these entities, such as statements of protein—
protein interactions (PPI; Krallinger et al., 2008; Nédellec, 2005).
State-of-the-art IE methods frequently rely on a detailed analysis
of sentence structure (parsing) (Airola et al., 2008; Miwa et al.,
2009), and several studies have addressed the development and
adaptation of parsing methods to biomedical domain texts (Hara
et al., 2007; Lease and Charniak, 2005; McClosky, 2009; Rimell
and Clark, 2009).

The research focus on biomedical text analysis has brought
forth notable advances in many areas. Automatic protein and gene
Named Entity Recognition (NER) with performance exceeding 90%

*To whom correspondence should be addressed.

F-score! was demonstrated to be feasible in the recent BioCreative
community evaluation (Smith et al., 2008). Similarly, significant
improvement has been made in PPI extraction (Airola et al., 2008;
Chowdhary et al., 2009; Miwa et al., 2009) and there is an active
collaboration between database curators and method developers to
integrate PPI methods into curation pipelines (Chatr-aryamontri
et al., 2008). Finally, methods for a variety of biomedical text
processing tasks ranging from sentence splitting (Tomanek et al.,
2007) to full parsing (McClosky, 2009) have been introduced with
performance approaching or matching the performance of similar
methods on general English texts.

Building on such text analysis methods, several IE systems and
services have been created for retrieving interaction information
from PubMed (http://www.pubmed.com). Varying levels of parsing
and other NLP methods have been used to detect biological entities
of interest and their relationships. Most previous efforts have
focused on pairwise PPI, with extracted pairs often represented as
merged interaction networks. The MEDIE and InfoPubmed systems
(Ohta et al., 2006) offer access to deep syntactic analysis and
entity relation extraction results from the entire PubMed through
subject-verb-object search patterns. The Chilibot system looks
for pairwise relationships based on co-occurrence and uses the
presence of interaction keywords to type them (Chen and Sharp,
2004). The TextMed system, based on the LYDIA project (Lloyd
et al., 2005), uses shallow parsing and co-occurrence information
to generate pairwise entity relationship networks from PubMed
citations. The Ali Baba system likewise visualizes relationships from
PubMed abstracts as graphs (Palaga et al., 2009). IHOP hyperlinks
PubMed abstracts together through shared protein and gene
mentions (Hoffmann and Valencia, 2004). Finally, GoPubMed uses
Gene Ontology (http://www.geneontology.org/) and medical subject
headings (MeSH) (http://www.nlm.nih.gov/mesh/) to provide a
knowledge-based search for relevant citations (Doms and Schroeder,
2005).

Supported in part by the maturation of basic technologies for
biomedical text analysis and the availability of richly annotated
text corpora (Kim et al., 2008; Pyysalo et al., 2007), there has
recently been notable movement in the biomedical IE community
toward more detailed and expressive representations of extracted
information. In particular, event representations that can capture
different types of associations of arbitrary numbers of entities and
events in varying roles have been applied as an alternative to
the simple relation representation. While the applicability of the
results produced by IE methods employing relation representations
is closely tied to the specific relation type targeted (i.e. PPI
or gene—disease), event representations have wider potential in
supporting applications ranging from PPI to semantic search and

! F-score is the harmonic mean of (p)recision and (r)ecall, i.e. F = [%
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pathway extraction (Kim er al, 2009). Showing wide interest
in the approach, 24 teams participated in the first community-
wide competitive evaluation of event extraction methods, the
BioNLP’09 Shared Task on Event Extraction (http:/www-
tsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/; Kim et al., 2009). The
number is comparable to the 26 teams participating in the PPI task
of the established BioCreative II community evaluation (Krallinger
et al., 2008).

In this study, building on the best performing system in the
BioNLP’09 shared task (Bjorne et al., 2009) and J.Bjorne et al.
(submitted for publication) which remains competitive with even
the most recent advances (Miwa et al., 2010), we join together state-
of-the-art methods for biomedical text parsing, protein/gene name
recognition and IE into a unified system capable of event extraction
from unannotated text. We apply this system to a random 1% sample
of citations from the PubMed literature database, providing the first
estimate of the results of event extraction from the entire PubMed
data. We further analyze the performance of the key components
of the system, thus providing the first evaluation of the ability of
state-of-the-art event extraction systems to generalize to PubMed
scale.

2 SYSTEM AND METHODS

The event extraction system presented in this article follows the model of
the BioNLP’09 Shared Task on event extraction in its representation of
extracted information. The BioNLP’09 Shared Task was the first large-scale
evaluation of biomedical event detection systems (Kim et al., 2009). The task
introduced an event representation and extraction task based on the GENIA
event corpus annotation (Kim et al., 2008). The primary extraction targets
in the defined task are nine fundamental biomolecular event types (Table 1)
and the participants in these events. In this article, the term event refers to
events as defined by the Shared Task annotation scheme.

Several aspects of the event representation differentiate the event
extraction task from the body of domain IE studies targeting, e.g. PPI and
gene—disease relations, including previous domain shared tasks (Krallinger
et al., 2008; Nédellec, 2005). While domain IE has largely focused on a
relation model representing extracted information as entity pairs, the event
model allows for a more expressive way of capturing statement semantics.
Events can have an arbitrary number of participants whose roles in the

Table 1. Targeted event types with brief example statements expressing an
event of each type

Event type Example

Gene expression
Transcription
Localization
Protein catabolism

5-LOX is expressed in leukocytes

promoter associated with IL-4 gene transcription
phosphorylation and nuclear translocation of STAT6
I kappa B-alpha proteolysis by phosphorylation.

Phosphorylation BCL-2 was phosphorylated at the G(2)/M phase
Binding Bcl-w forms complexes with Bax and Bak
Regulation c-Met expression is regulated by Mitf

IL-12 induced STAT4 binding
DN-Rac suppressed NFAT activation

Positive regulation
Negative regulation

In the examples, the word or words marked as triggering the presence of the event are
shown in italics and event participants underlined. The event types are grouped by event
participants, with the first five types taking one theme, binding events multiple themes
and the regulation types theme and cause participants.

event (e.g. theme or cause) are specified, making it possible to capture n-ary
associations and statements where some participants occur in varying roles
or are only occasionally mentioned. Further, events are modeled as primary
objects of annotation and bound to specific statements in text (triggers),
allowing events to participate in other events and facilitating further analysis
such as the identification of events stated in a negated or speculative context.
Finally, events following the Shared Task model are given GENIA Event
ontology types drawn from the community-standard Gene Ontology, giving
each event well-defined semantics. Using events to represent information
contained in natural language sentences, for the first time it is now possible
to accurately describe in a formal fashion the multitude of different biological
phenomena depicted in research articles.

In the rest of this section, we describe the steps of the event extraction
pipeline (Fig. 1).

2.1 Named entity recognition

NER is a fundamental requirement for IE: the analysis of IE systems normally
takes the form of associations between references to entities, and most
applications require the references to be sufficiently specific to identify
particular real-world entities, i.e. entity names. Consequently, NER is a
well-studied subtask in IE. Also in the biomedical domain NER has been
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Fig. 1. Event extraction. A multiphased system is used to generate an event
graph, a formal representation for the semantic content of the sentence.
Before event detection, sentences are parsed (A) to generate a suitable
syntactic graph to be used in detecting semantic relationships. Event
detection starts with identification of named entities (B) with BANNER
(parses are not used at this step). Once named entities have been identified, the
trigger detector (C) uses them and the parse for predicting triggers, words
which define potential events. The edge detector (D) predicts relationship
edges (event arguments) between triggers and named entities. Finally, the
resulting semantic graph is divided into individual events by (E) duplicating
trigger nodes and regrouping argument edges.

i383


http://wwwtsujii.is.s.u-tokyo.ac.jp/GENIA/SharedTask/

J.Bjorne et al.

Table 2. NER system performance

System Corpus F-score References

JNLPBA (best) GENIA term 72.6%
BioCreative I (best) GENETAG 83.2%
BioCreative II (best)y GENETAG 87.2%

Kim et al. (2004)
Yeh et al. (2005)
Smith ef al. (2008)

BANNER GENETAG 86.4% Leaman and Gonzalez (2008)

Performance shown for the best performing systems at various shared tasks and the
BANNER system used in this work.

Note that while the GENIA term corpus used in the JNLPBA task requires
differentiation between, e.g. protein and gene entities, GENETAG only marks a single
gene/RNA/protein type, contributing to the measured differences.

considered in a wealth of studies, including several shared tasks which have
demonstrated significant recent advances in NER (Table 2).

While overall only a fraction of the systems participating in shared tasks
are publicly available, some systems competitive with the state-of-the-art
have been made available. In this study we apply the BANNER NER system
of Leaman and Gonzalez (2008), which in its current release achieves results
close to the best published on the standard GENETAG dataset (Table 2)
and was reported to have the best performance in a recent study comparing
publicly available taggers (Kabiljo et al., 2009).

BANNER follows the major trends in recent domain NER in being based
on a model automatically learned from annotated training data, specifically
using the conditional random field (CRF) model. BANNER applies a rich
set of features found beneficial in recent domain studies to represent its
input, including the part-of-speech tags and base forms of the input words,
word prefix and suffix features, and basic word form features. We use a
recent release of the BANNER system that further includes features derived
from lookup from a broad-coverage dictionary of gene and protein names as
well as a number of post-processing modules performing, for example, local
abbreviation detection to improve performance.

As a machine learning system, BANNER could be trained on a variety
of different corpus resources tagged for genes and proteins. As there are
a number of difficult issues in the joint use of annotated corpora relating
to differences in coverage and tagging criteria (Wang et al., 2009), we
chose to train the system on the GENETAG corpus (Tanabe et al., 2005).
In addition to being one of the largest manually annotated resources for
gene and protein NER and the reference standard used for the BioCreative
evaluations, GENETAG has been specifically constructed to include a
heterogeneous set of sentences from PubMed, a property expected to provide
good generalization performance to large-scale tagging of documents from
various subdomains.

2.2 Parsing

Our event detection system relies on the availability of full dependency
parses in the Stanford dependency (SD) scheme (de Marneffe and
Manning, 2008a; Fig. 1A). We use the Charniak—Johnson (Charniak
and Johnson, 2005) parser with the improved biomedical parsing model
of McClosky (2009) (http://bllip.cs.brown.edu/download/bioparsingmodel-
rell.tar.gz). This parser achieved the highest published parsing accuracy
on the GENIA Treebank (Tateisi et al., 2005) and is thus arguably the
best parser available for text in PubMed abstracts (McClosky, 2009). The
Penn Treebank scheme analyses given by the Charniak—Johnson parser
are subsequently processed using the Stanford conversion tool (http://nlp
.stanford.edu/software/stanford-parser-2008-10-26.tgz; de Marneffe et al.,
2006), resulting in the final analyses in the collapsed dependencies with
propagation of conjunct dependencies version of the SD scheme, as defined
by de Marneffe and Manning (2008a).

2.3 Event detection

At the core of our approach to event extraction are graph representations
of sentence syntax and semantics. The syntactic graph corresponds to a
dependency analysis of sentence structure, and the semantic graph represents
the event structure, with nodes representing named entities and events, and
edges corresponding to event arguments (Fig. 1). The syntactic graph is
generated from the text by the parser and the protein/gene entities of the
semantic graph are detected by the NER system. The goal of the core event
extraction system, described in detail in Bjorne et al. (2009) and J.Bjorne
et al. (submitted for publication) is then to generate the semantic graph
given a sentence with marked named entities and syntactic analysis. The
system considers the sentences independently since, based on an analysis
of the BioNLP’09 Shared Task dataset, only 4.8% of events cross sentence
boundaries.

The event extraction system is based on supervised machine learning, i.e.
it performs predictions for unknown cases based on a model automatically
learned from manually annotated training data, here derived from that
provided in the BioNLP’09 Shared Task. For the machine learning phases
of the system (trigger and event detection), we use the standard approach
of dividing the problem into individual examples (for each potential trigger
or event argument), which are then classified into a number of classes. For
each example, information about the sentence is converted into a number
of individual features, each describing a particular aspect of the text. The
classifier, in our case a support vector machine (SVM), then uses correlations
between all of these features to give a classification for each example.

As can be seen in Figure 1, the dependency parse is very close to the
semantic graph that we aim to extract, and consequently it is the most
important source of features. Notable is the use of very large numbers of
unique features, enabled by modern large-margin classification methods,
such as the SVMs used. For example, the training data for the edge detector
consists of 31792 examples with 295 034 unique features.

Our system has two key machine learning-based classification steps,
trigger detection and edge detection, followed by a rule-based event
construction step.

2.3.1 Trigger detection Triggers are the words in the sentence that state
the events between the named entities, and trigger detection is thus the first
step in event detection. As determined from the BioNLP’09 Shared Task
dataset, 92% of all triggers consist of a single word. Therefore, we represent
all triggers with their head word, the semantically most relevant word within
a particular trigger, typically its syntactic head. Trigger detection is thus the
task of identifying those individual words in the sentence that act as a trigger
head word. In contrast with NER, where sequential models are typically
applied (Smith et al., 2008), the system classifies each word in isolation as
one of the nine event types, or a negative, i.e. not corresponding to an event
trigger.

Triggers cannot be identified based only on the words themselves, as most
potential trigger words do not uniquely correspond to a specific trigger class.
For example, only 28% of the instances of the word activates are triggers
for positive regulation events in the BioNLP’09 Shared Task dataset and the
commonly used word overexpression is equally distributed between gene
expression events, positive regulation events and the negative class. For this
reason, a large number of features that aim to capture the full semantic context
of a potential trigger word are used in the classification.

Features for the trigger detection are based on both the linear order of
words and the dependency parse. The largest number of features comes
from the dependency parse, from which undirected chains of up to three
dependencies are built, starting from the potential trigger word. The words
themselves are also sliced into two or three letter N-grams that aim to capture
similarities between closely related words or inflected forms.

2.3.2 Edge detection Each edge in the semantic graph corresponds to
an event argument and edge detection thus follows trigger detection. Edge
detection is cast as a multiclass classification task, since event arguments may
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have multiple types (cause, theme). One example is defined for each possible
directed pairwise combination of trigger and entity nodes, and this example
will then be classified as belonging to one of the argument type classes or
as negative. Each edge example is classified independently, even though
the BioNLP’09 Shared Task event scheme imposes conditions on valid
combinations of argument types for each type of event. These conditions
are enforced in the event construction phase.

In contrast with trigger detection, the linear order of words is not
considered and the features are entirely based on the dependency parse,
more specifically on the shortest path of dependencies that link together
the two trigger or entity nodes under consideration. To describe the path as
features, it is divided into multiple dependency N-grams, each consisting
of 2-4 consecutive dependencies between sentence words. Features built
from previous classification steps, i.e. ones based on the named entities and
triggers, are also an important part of the edge detection feature set.

2.3.3 Event construction The semantic graph created in the trigger and
edge detection steps (Fig. 1D) contains strictly one event node for each
trigger word. The final events are created by duplicating these nodes when
necessary and separating their edges into valid combinations based on the
syntax of the sentences and the conditions on argument type combinations
stated in the BioNLP’09 Shared Task event scheme. This step is rule based
and as such does not require training data.

2.3.4 Machine learning method As the machine learning method
applied in all stages of the core event extraction system, we
use the SVM™UCss (Tgochantaridis er al, 2005) implementation
(http://svmlight.joachims.org/svm_multiclass.html) of an SVM. SVMs
perform competitively at a number of tasks in natural language processing
and are suited for tasks involving multidimensional, partially redundant
feature sets such as that applied in the event extraction system.

3 RESULTS

We apply the event extraction system to a 1% sample of the 2009
distribution of the PubMed literature database. The full PubMed
dataset contains 17.8 million citations, which we downsampled at
random to create a dataset of 177 648 citations. To assure that results
are representative of the full PubMed database, we performed no
document selection or filtering. Consequently, 81 516 of the citations
in the sample (46%) contain only a title but no abstract, and the
earliest citation in the sample is for an article published in 1867
(PMID 17230723). While many of the citations in the sample are
thus likely to have limited utility for biomolecular event extraction,
their inclusion assures unbiased results and a fair test of the true
generalization ability of the applied methods.

In total, the system extracted 168 949 events from 29 781 citations
in the PubMed sample. The number of extracted events for the nine
event types is presented in Table 3. The BANNER NER system
marked 365204 gene/protein entities in 54051 citations in the
sample, averaging two mentions per citation overall and almost
seven per citation for those containing at least one tagged entity.
By this estimate less than a third of PubMed citations contain
gene/protein mentions. When the extracted events are broken up by
publication year, a strong trend for increasing number of citations
containing gene/protein mentions and events is visible, with 25%
of citations from the last 10 years containing at least one event
(Fig. 2). Since the extracted events are of the protein/gene-specific
BioNLP’09 Shared Task types, this trend can be seen to reflect the
growing prominence of molecular biology. Based on the predicted
named entities and events, the present release of PubMed can be
estimated to contain more than 5 million citations with gene/protein

mentions, totaling over 35 million mentions overall and nearly 3
million citations containing events of the Shared Task types, totaling
over 16 million such events overall. The number of citations with
events has increased consistently with the growth of PubMed (Fig. 2)
until the year 2000. After this the total amount of citations grows
more rapidly, perhaps reflecting PubMed’s expanded coverage of
life science topics since then (Benton, 1999).

While not the primary result of this study, the extraction output
can be used to support analysis of some large-scale trends in
PubMed. As an example, Figure 3 shows the number of citations
per year with mentions of insulin, immunoglobulin G (/gG) and
tumor necrosis factor alpha (TNF-«), the three most common named
entities identified, and their associated events. We note that citations
for insulin show a long-term growing trend, perhaps reflecting
the considerable resources directed toward diabetes research. The
decreasing number of article abstracts mentioning IgG, despite its
centrality in many experimental applications, might be seen to
indicate its waning as a primary subject of research, considering
average gene quotation frequencies over time (Hoffmann and
Valencia, 2003). The number of citations mentioning tumor necrosis
factor alpha has grown explosively since it was first cloned
and named in 1984, showing continued and growing interest in

Table 3. Frequency of the nine event types in the output of the system on
the PubMed sample

Event Type Count (%)

48 144 (28.5)
43155 (25.5)

Gene expression
Positive regulation

Binding 24159 (14.3)
Negative regulation 21833 (12.9)
Regulation 13330 (7.9)
Localization 10766 (6.4)
Phosphorylation 3852 (2.3)
Transcription 2492 (1.5)
Protein catabolism 1218 (0.7)

TOTAL 168949 (100.0)
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Fig. 2. Total number of citations and citations with tagged gene/protein
mentions and events in the sample by year.
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Fig. 3. Number of citations with tagged mentions of insulin, IgG and TNF-
alpha (normalized for capitalization and hyphenization), as well as extracted
events of these proteins. The counts are cumulative for every five years to
smooth the curves.

this apoptosis-related cytokine centrally associated with multiple
pathways and implicated in cancer.

3.1 Evaluation

The event extraction system (without the NER component) achieves
an F-score of 52.86% (precision 58.13% and recall 48.46%) on
the BioNLP’09 Shared Task test set. The Shared Task data, based
on the GENIA corpus, is composed of PubMed citations relevant
to biological reactions concerning transcription factors in human
blood cells (Kim et al., 2008). The GENIA corpus is focused on
a particular subdomain and thus not a representative sample of
the entire PubMed, the focus of this study. Additional analysis is,
therefore, necessary to evaluate the extraction result. A particular
point of interest is the ability of the system to perform on input
data that, compared with the GENIA corpus, has far fewer events
per sentence and thus deviates from the distribution on which the
system was originally trained.

Evaluating the recall of the system would require fully annotating
a large enough fraction of the PubMed sample for all named
entities and events. Annotating sentences for positive and negative
events is, however, a time and labor-intensive process. For
example, annotating the GENIA event corpus consisting of 9372
sentences required 1.5 years with five part-time annotators and two
coordinators (Kim et al., 2008). Such an annotation is thus not
practical for this study, particularly since relevant events are very
rare in a random sample of PubMed not focused on any particular
subdomain. In contrast, manually inspecting the system output for
errors is a comparatively easy task and allows us to determine the
precision of the system output. We examine a random sample of 100
predicted named entities and 100 predicted events and determine
their correctness.

In the BioNLP’09 Shared Task data events are annotated
only between genes and proteins, leaving out e.g. the multitude
of signaling interactions between proteins and small inorganic
molecules such as Ca2*. Our aim in this work is to recover as many
of the biomolecular interactions stated in the texts as possible, so
we extend the criteria for what is considered a named entity and
an event. For named entities, we consider as positives cells, cellular

components and molecules that take part in biochemical interactions.
For events, we consider the event to be correct if all its named entity
arguments are correct and the trigger word in the text is correctly
detected.

In the manual evaluation of the 100 predicted named entities,
we estimate the precision of the named entity detection step (the
BANNER system) to be 87%. This compares well with BANNER
performance on the GENETAG corpus with precision of 89% (for
an f-score of 86%). The precision of the 100 predicted events was
64%, a figure close to the 58% (for f-score of 53%) established on
the BioNLP’09 Shared Task data. While recall cannot be directly
measured, as discussed above, considering that the event extraction
system was trained on example-rich data that favors making positive
predictions, it can be expected not to decrease substantially from
results established on subdomain corpora.

The results of this manual analysis indicate that the performance
of the named entity and event detection components does generalize
from the subdomain corpus data to a representative unbiased sample
of the entire PubMed. It should, however, be noted that evaluating
automatically generated predictions after the fact is more prone to a
positive bias than annotation of plain text with no predictions.

3.2 Event network

One of the most promising applications for large-scale event
mining is the generation of interaction networks. Unlike networks
constructed from binary interactions, an event network defines the
types and directions of the relationships, the polarity (positive or
negative) of regulatory relationships and the mechanisms involved
(e.g. phosphorylation). Sufficiently accurate event graphs can be
used for inferring complex regulatory relationship networks and
other biologically relevant tasks.

Figure 4 illustrates a sample network constructed from events
extracted by our system around interleukin-4. To build the network,
we merge the individual predicted events into a single graph,
loosely following the approach employed by Saeys et al. (2009).
We determine two protein mentions to be the same if their names
match after lowercasing and removal of whitespace and hyphens.
All mentions of the same protein are represented in the graph by
a single node. Event argument edges connect the proteins through
event trigger nodes.

The entire graph extracted from the PubMed sample has one
major connected component comprising 88477 (38%) of the total
of 232760 nodes. The remaining nodes form a large number of
considerably smaller connected components, the largest of which
contains a mere 95 nodes.

3.3 Topic analysis

As a final analysis of the extraction results, we studied the topics
of event-containing citations. Over 90% of records in PubMed
are manually indexed with a number of descriptors chosen from
Medical Subject Headings (MeSH), a hierarchical thesaurus in
which the descriptors are arranged primarily in general—specific
hierarchy. The descriptors assigned to a PubMed citation record
express the main topics discussed in the respective article and allow
queries within specific subtopics, reducing the variance and sparsity
of simple keyword search. In the following, we investigate the
connection between MeSH descriptors and event types, establishing
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Fig. 4. Extracted event network around interleukin-4. This graph shows a subset of the predicted event network, including only named entities with at least
50 extracted instances. The round event nodes are (P)ositive regulation, (N)egative regulation, (R)egulation, gene (E)xpression, (B)inding, p(H)osphorylation
and (L)ocalization. For clarity, single-argument events (E, B, H and L) are displayed only when they also act as arguments of regulation events.

the topical areas in PubMed likely to contain citations relevant to
event extraction.

We measured the degree of dependence between a MeSH
descriptor d and an event type e using pointwise mutual information

P(d,e)

MI(d,e)=log PP’

where P(d,e) is defined as the fraction of citations indexed by
the descriptor d and containing at least one event of type e,
out of all citations that contain at least one event. Similarly,
P(d) (respectively P(e)) is the fraction of citations containing the
descriptor d (respectively event of type e) out of all citations that
contain at least one event. The measure calculates the ratio of joint
probability of d and e to the probability of their co-occurrence by
chance. To deal with sparsity problems, we first expanded, for each
citation, the set of its original MeSH descriptors indexed in PubMed
with all descriptors that are more general in the MeSH hierarchy.
This allows us to find more general descriptors, rather than the
specific ones indexed in PubMed.

For each of the nine event types, we built a list of five most
related descriptors, that is, descriptors with the highest pointwise

MI. To avoid unnecessarily specific descriptors, we only considered
those descriptors that were present in at least 10% of citations
with an event of the given type, and discarded descriptors that
were hyponyms (more specific) to another descriptor already in
the list. The resulting lists are given in Table 4. These illustrate
that the descriptors obtained are indeed relevant to the respective
event types, except for the two obviously too general descriptors
Technology, Industry, and Agriculture and Information Services,
which we discarded in all subsequent analyses. Apart from validating
the IE system, although very indirectly, these MeSH descriptor lists
can be used to focus PubMed searches to citations likely containing
the relevant event types.

Of the 177 648 citations in the PubMed sample, 66 227 (37.3%)
are indexed by at least one of the descriptors in Table 4, or its
hyponym (we will refer to these citations as MeSH-relevant). In
contrast, only 12405 (7.3%) of the 168 949 events identified by the
system were extracted from the 62.7% MeSH-irrelevant citations,
demonstrating that the MeSH terms in Table 4 are indeed strong
predictors of citations containing relevant events.

Intuitively, it can be expected that MeSH-irrelevant citations are
also likely to contain a higher proportion of false positive named
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Table 4. Top related MeSH descriptors for the nine event types

Event type Five most related MeSH descriptors

Gene expression Gene expression regulation; RNA; gene expression;
cytokines; immunohistochemistry

Intracellular signaling peptides and proteins;
phosphotransferases; transcription factors;
cytokines; gene expression regulation

Molecular mechanisms of pharmacological action;
intracellular signaling peptides and proteins;
therapeutic uses; phosphotransferases;

tumor cells, cultured

Positive regulation

Negative regulation

Binding Protein binding; information services;
physicochemical phenomena; chemistry techniques;
analytical receptors; cell surface

Regulation Gene expression regulation; RNA, messenger;
transcription factors; protein kinases; peptide
hormones

Localization Endocrine system, protein precursors; nerve tissue
proteins; hormones, hormone substitutes and
hormone antagonists; organelles

Transcription RNA; gene components; gene expression; base
sequence; transcription factors

Phosphorylation Organic chemistry phenomena; tyrosine

adaptor proteins, signal transducing;
phosphotransferases (alcohol group acceptor)
phosphoproteins

Hydrolases; macromolecular substances;
technology, industry and agriculture;
physicochemical processes; metabolism

Protein catabolism

Table 5. Comparison of named entity and event detection precision between
MeSH-relevant and MeSH-irrelevant citations

Citation TP Fp Precision (%)
Named entities MeSH-relevant 66 5 93.0
MeSH-irrelevant 21 8 72.4
Events MeSH-relevant 58 29 66.7
MeSH-irrelevant 4 9 30.8

entities and events. To verify this hypothesis, we measure the
proportions of true positive (TP) named entities and events among
MeSH-relevant citations and contrast them to the proportions in
MeSHe-irrelevant citations. The results of this analysis, performed
on the same set of 100 random events and 100 random entities
introduced in Section 3.1, are presented in Table 5. For both named
entities and events, the proportion of TPs (precision) is notably
lower in MeSH-irrelevant citations. In case of named entities, the
difference is 20.6 percentage points (significant with P =0.009, two-
tailed Fisher’s test) and in case of events, the difference is full 35.9
percentage points (significant with P=0.028, two-tailed Fisher’s
test). These results suggest that MeSH descriptors may provide
features for the event extraction system with a high predictive power
and could be, for instance, used to generate likely negative examples
for further retraining of the extraction system. Thus, the broad
manual annotation of the MeSH descriptors can enhance detailed
automated event extraction.

Table 6. Processing requirements for different components as measured for
the sample and estimated for the whole PubMed

Sample PubMed
Component Time (h) Space (MB) Time (day) Space (GB)
NER (BANNER) 18 272 75 27
Parsing 53 830 222 81
Event extraction 27 276 114 27
TOTAL 98 1378 411 135

Space requirements are stated for uncompressed XML files.

3.4 Computational requirements

The computational requirements of the system components, in terms
of time and space, are detailed in Table 6.

NER using BANNER is a comparatively light-weight processing
step in the pipeline. Processing the entire dataset consumed <18h
on a desktop-level computer, averaging more than three citations
per second. NER tagging could thus be run for the entire PubMed
database in ~75 days on a single machine, or a matter of days on a
modest cluster.

Full dependency parsing is the most resource-intensive step in the
pipeline. The parsing time of the Charniak—Johnson parser for one
sentence is in our case 0.81 s, with an additional 0.15 s taken by the
SD scheme conversion. Parsing all 935 186 sentences in the PubMed
sample would thus take 249 processor hours (2.84 processor years
projected for the entire PubMed). However, only sentences with at
least one recognized named entity, and thus a potential target for the
IE system, need to be parsed, considerably decreasing the number
of sentences that must be parsed to 199 941 and the parsing time to
53 h (222 days projected for the entire PubMed).

We note that the parsing process is not a straightforward technical
undertaking. The Charniak—Johnson parser takes about 10 s to load
the parsing model files and, in order for this fixed time penalty
not to accumulate, it is necessary to divide the parsing task to
large batches rather than parsing a single abstract, or even single
sentence at a time. On the other hand, there were 26 sentences in
the PubMed sample that caused the parser to process interminably
without producing an analysis. It was necessary to detect these cases,
terminate the parser and restart the process. Of the 199 915 sentences
parsed by the Charniak—Johnson parser, further 37 sentences were
not successfully processed by the SD conversion tools. The final
number of successfully parsed sentences was thus 199 878. It must
be stressed that this number represents a highly respectable 99.97%
of sentences successfully parsed, demonstrating the high reliability
achieved by the current state-of-the-art in syntactic parsing.

Finally, the event extraction step took 27 processor hours (114
processor days projected for the entire PubMed), thus averaging
roughly one citation per 2s for the 54051 citations with at least
one detected named entity. The total processing time of the pipeline
was 98 processor hours (411 processor days projected for the entire
PubMed), or, one PubMed citation per 2 s.
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4 DISCUSSION AND CONCLUSIONS

We have presented to the best of our knowledge the first application
of event-style biomedical interaction extraction to a large-scale
real-world dataset, 1% of the PubMed citation database. We
combined the event detection system of J.Bjorne ef al. (submitted
for publication), the winning system of the BioNLP’09 Shared
Task, with the efficient Charniak—Johnson parser (Charniak and
Johnson, 2005) equipped with the biomedical domain model
of McClosky (2009) and the BANNER named entity detector
(Leaman and Gonzalez, 2008), creating a system capable of
extracting events from unannotated biomedical text. Successful
processing of 1% of PubMed in 98 processor hours demonstrates
that the computational requirements, although considerable,
are well within reach of generally available computational
resources.

Analysis of the 1% PubMed sample dataset produced over 160 000
biomedical events. Based on a manual analysis of a subset of these
predicted events, the precision of the system was 64%, indicating
that the event detection system performance generalized well to
real world conditions represented by a random, unbiased sample
of PubMed. Analysis of the resulting event graph showed that the
generated events form a highly connected interaction network. It
is especially in this regard that extraction of events, rather than n-
ary relations, holds a great promise: the complexity of interaction
networks can only be utilized effectively when detailed information
about the type, direction and polarity of the various interactions is
available.

Even though a mere 1% of PubMed was analyzed in this study, the
result is a large dataset of over 160 000 events extracted by a state-of-
the-art event extraction system as well as 177 000 PubMed citations
processed with the essential NLP tools. In most respects, this dataset
is representative of the entire PubMed and allows a number of
subsequent analyses to be performed even before the entire PubMed
is processed by the system. As a practical contribution to the
emerging field of biomedical event detection, we publish the dataset
in a flexible XML format as well as the widely adopted BioNLP’09
Shared Task format. The event detection system used in this study
and described in more detail in Bjorne et al. (2009) and J.Bjorne
et al. (submitted for publication) is published under an open source
license. Both are available at http://bionlp.utu.fi/.

Having shown its feasibility, the future work will focus on
processing the entire PubMed and, as with this study, making the
results available for analysis to the community.
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